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Abstract. In a series of four papers we prove the following relaxation of the Loebl–Komlós–Sós
conjecture: For every α > 0 there exists a number k0 such that for every k > k0, every n-vertex
graph G with at least ( 1

2
+ α)n vertices of degree at least (1 + α)k contains each tree T of order k

as a subgraph. The method to prove our result follows a strategy similar to approaches that employ
the Szemerédi regularity lemma: We decompose the graph G, find a suitable combinatorial structure
inside the decomposition, and then embed the tree T into G using this structure. Since for sparse
graphs G, the decomposition given by the regularity lemma is not helpful, we use a more general
decomposition technique. We show that each graph can be decomposed into vertices of huge degree,
regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain
expansion properties. In this paper, we introduce this novel decomposition technique. In the three
follow-up papers, we find a suitable combinatorial structure inside the decomposition, which we then
use for embedding the tree.
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1. Introduction.

1.1. Statement of the problem. This is the first of a series of four papers
[HKP+a, HKP+b, HKP+c, HKP+d] in which we provide an approximate solution of
the Loebl–Komlós–Sós conjecture, a problem in extremal graph theory which fits the
classical form, Does a certain density condition imposed on a graph guarantee a certain
subgraph? Classical results of this type include Dirac’s theorem, which determines the
minimum degree threshold for containment of a Hamilton cycle, or Mantel’s theorem,
which determines the average degree threshold for containment of a triangle. Indeed,
most of these extremal problems are formulated in terms of the minimum or average
degree of the host graph.

We investigate a density condition which guarantees the containment of each tree
of order k. The greedy tree-embedding strategy shows that requiring a minimum
degree of more than k − 2 is sufficient. Further, this bound is best possible as any
(k − 2)-regular graph avoids the k-vertex star. Erdős and Sós conjectured that one
can replace the minimum degree with the average degree, with the same conclusion.

Conjecture 1.1 (Erdős–Sós conjecture 1963). Let G be a graph of average degree
greater than k − 2. Then G contains each tree of order k as a subgraph.

A solution of the Erdős–Sós conjecture for all k greater than some absolute con-
stant was announced by Ajtai, Komlós, Simonovits, and Szemerédi in the early 1990s.
In a similar spirit, Loebl, Komlós, and Sós conjectured that a median degree of k − 1
or more is sufficient for containment of any tree of order k. By median degree we
mean the degree of a vertex in the middle of the ordered degree sequence.

Conjecture 1.2 (Loebl–Komlós–Sós conjecture 1995 [EFLS95]). Suppose that
G is an n-vertex graph with at least n/2 vertices of degree more than k − 2. Then G
contains each tree of order k.

We discuss Conjectures 1.1 and 1.2 in detail in section 1.3. Here, we just state
the main result we achieve in our series of four papers, an approximate solution of
the Loebl–Komlós–Sós conjecture.

Theorem 1.3 (main result [HKP+d]). For every α > 0 there exists k0 such that
for any k > k0 we have the following: Each n-vertex graph G with at least ( 1

2 + α)n
vertices of degree at least (1 + α)k contains each tree T of order k.

The proof of this theorem is in [HKP+d]. The first step towards this result
is Lemma 3.14, which constitutes the main result of the present paper. It gives a
decomposition of the host graph G into several parts which will be useful later for the
embedding. See section 1.5 for a description of the result and its role in the proof of
Theorem 1.3. Also see [HPS+15] for a more detailed overview of the proof.

1.2. The regularity lemma and the sparse decomposition. The Szemerédi
regularity lemma has been a major tool in extremal graph theory for more than
three decades. It provides an approximation of an arbitrary graph by a collection of
generalized quasi-random graphs. This allows one to represent the graph by a so-
called cluster graph. Then, instead of solving the original problem, one can solve a
modified simpler problem in the cluster graph.

The applicability of the original Szemerédi regularity lemma is, however, limited
to dense graphs, i.e., graphs that contain a substantial proportion of all possible edges.
There is a version of the regularity lemma for sparser graphs by Kohayakawa and
Rödl (see [Koh97]) later strengthened by Scott [Sco11], as well as other statements
that draw on something from its philosophy (e.g., [EL]). However, these statements
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provide a much less informative picture than Szemerédi’s original result. A regularity-
type representation of general (possibly sparse) graphs is one of the most important
goals of contemporary discrete mathematics. By such a representation we mean an
approximation of the input graph by a structure of bounded complexity carrying
enough of the important information about the graph.

A central tool in the proof of Theorem 1.3 is a structural decomposition of the
graph G. This decomposition—which we call sparse decomposition—applies to any
graph whose average degree is greater than a constant. The sparse decomposition
provides a partition of any graph into vertices of huge degrees and into a bounded
degree part. The bounded degree part is further decomposed into dense regular pairs,
an edge set with certain expander-like properties, and a vertex set which is expanding
in a different way (we shall give a more precise description in section 1.5). This kind
of decomposition was first used by Ajtai et al. in their yet unpublished work [AKSS]
on the Erdős–Sós conjecture. The main goal of this paper is to present the sparse
decomposition and to show that each graph has such a sparse decomposition: This will
be done in Lemma 3.13. Lemma 3.14 provides a sparse decomposition with additional
tailor-made features for graphs that fulfill the conditions of Theorem 1.3.

In the case of dense graphs the sparse decomposition produces a Szemerédi reg-
ularity partition (as explained in section 3.8), and thus the decomposition lemma
(Lemma 3.13) extends the Szemerédi regularity lemma. But the interesting setting
for the decomposition lemma is the field of sparse graphs.

1.3. Loebl–Komlós–Sós conjecture and Erdős–Sós conjecture. Let us
first introduce some notation. We say that H embeds in a graph G and write H ⊆ G if
H is a (not necessarily induced) subgraph ofG. The associated map φ : V (H)→ V (G)
is called an embedding of H in G. More generally, for a graph class H we write H ⊆ G
if H ⊆ G for every H ∈ H. Let trees(k) be the class of all trees of order k.

Conjecture 1.2 is dominated by two parameters: One quantifies the number of
vertices of “large” degree, and the other tells us how large this degree should actually
be. By strengthening either of these bounds sufficiently, the conjecture becomes
trivial. Indeed, if we replace n/2 with n, then any tree of order k can be embedded
greedily. Also, if we replace k−2 with 4k−4, then G, being a graph of average degree
at least 2k − 2, has a subgraph G′ of minimum degree at least k − 1. Again we can
greedily embed any tree of order k.

On the other hand, one may ask whether smaller lower bounds would suffice. For
the bound k − 2, this is not the case, since stars of order k require a vertex of degree
at least k − 1 in the host graph. Another example can be obtained by considering
a disjoint union of cliques of order k − 1. No tree of order k is contained in such a
graph.

For the bound n/2, the following example shows that this number cannot be
decreased much. First, assume that n is even, and that n = k. Let G∗ be obtained
from the complete graph on n vertices by deleting all edges inside a set of n

2 + 1
vertices. It is easy to check that G∗ does not contain the k-vertex path. In general,
G∗ does not contain any tree of order k with independence number less than k

2 + 1.
Now, taking the union of several disjoint copies of G∗, we obtain examples for other
values of n (and by adding a small complete component, we can get to any value of
n). See Figure 1 for an illustration.

However, we do not know of any example attaining the exact bound n/2. Thus
it might be possible to lower the bound n/2 from Conjecture 1.2 to the one attained
in our example above.
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Fig. 1. An extremal graph for the Loebl–Komlós–Sós conjecture.

Conjecture 1.4. Let k ∈ N, and let G be a graph on n vertices, with more than
n
2 − b

n
k c − (n mod k) vertices of degree at least k − 1. Then trees(k) ⊆ G.

It might even be that if n/k is far from integrality, a slightly weaker lower bound
on the number of vertices of large degree still works (see [Hla, HP16]).

Several partial results concerning Conjecture 1.2 have been obtained; let us briefly
summarize the major ones. Two main directions can be distinguished among those
results that prove the conjecture for special classes of graphs: One places restrictions
either on the host graph or on the class of trees to be embedded. Among the latter
type is the result by Bazgan, Li, and Woźniak [BLW00], who proved the conjecture
for paths. Also, Piguet and Stein [PS08] proved that Conjecture 1.2 is true for trees
of diameter at most 5, which improved earlier results of Barr and Johansson [BJ]
and Sun [Sun07]. Restrictions on the host graph have led to the following results:
Soffer [Sof00] showed that Conjecture 1.2 is true if the host graph has girth at least 7.
Dobson [Dob02] proved the conjecture for host graphs whose complement does not
contain a K2,3. This has been extended by Matsumoto and Sakamoto [MS], who
replace the K2,3 with a slightly larger graph.

A different approach is to solve the conjecture for special values of k. One such
case, known as the Loebl conjecture or also as the (n/2−n/2−n/2)-conjecture, is the
case k = n/2. Ajtai, Komlós, and Szemerédi [AKS95] solved an approximate version
of this conjecture, and later Zhao [Zha11] used a refinement of this approach to prove
the sharp version of the conjecture for large graphs.

An approximate version of Conjecture 1.2 for dense graphs, that is, for k linear
in n, was proved by Piguet and Stein [PS12].

Theorem 1.5 (Piguet and Stein [PS12]). For any q > 0 and α > 0 there exists a
number n0 such that for any n > n0 and k > qn the following holds. For each n-vertex
graph G with at least n/2 vertices of degree at least (1+α)k we have trees(k + 1) ⊆ G.

This result was proved using the regularity method. Adding stability arguments,
Hladký and Piguet [HP16] and, independently, Cooley [Coo09] proved Conjecture 1.2
for large dense graphs.

Theorem 1.6 (Hladký–Piguet [HP16] and Cooley [Coo09]). For any q > 0 there
exists a number n0 = n0(q) such that for any n > n0 and k > qn the following holds:
For each n-vertex graph G with at least n/2 vertices of degree at least k we have
trees(k + 1) ⊆ G.

Let us now turn our attention to the Erdős–Sós conjecture. The Erdős–Sós con-
jecture, Conjecture 1.1, is best possible whenever n(k − 2) is even. Indeed, in that
case it suffices to consider a (k−2)-regular graph. This is a graph with average degree
exactly k − 2 which does not contain the star of order k. Even when the star (which
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Fig. 2. An almost extremal graph for the Erdős–Sós conjecture.

in a sense is a pathological tree) is excluded from the considerations, we can—at least
when k−1 divides n—consider a disjoint union of n

k−1 cliques Kk−1. This graph con-
tains no tree from trees(k). There is another important graph with many edges which
does not contain, for example, the path Pk, depicted in Figure 2. This graph consists
of a set of vertices of size b(k − 2)/2c that are connected to all vertices in the graph.
This graph has 1

2 (k− 2)n−O(k2) edges when k is even and 1
2 (k− 3)n−O(k2) edges

otherwise, and therefore it gets close to the conjectured bound when k � n. Apart
from the already mentioned announced breakthrough by Ajtai, Komlós, Simonovits,
and Szemerédi, work on this conjecture includes [BD96, Hax01, MS, SW97, Woź96].

Conjectures 1.2 and 1.1 both have an important application in Ramsey theory.
Each implies that the Ramsey number of two trees Tk+1 ∈ trees(k + 1), T`+1 ∈
trees(`+ 1) is bounded by R(Tk+1, T`+1) 6 k+ `+ 1. Actually more is implied: Any
2-edge-coloring of Kk+`+1 contains either all trees in trees(k + 1) in red, or all trees
in trees(`+ 1) in blue.

The bound R(Tk+1, T`+1) 6 k + ` + 1 is almost tight only for certain types of
trees. For example, Gerencsér and Gyárfás [GG67] showed R(Pk, P`) = max{k, `} +

bmin{k,`}
2 c − 1 for paths Pk ∈ trees(k), P` ∈ trees(`). Harary [Har72] showed

R(Sk, S`) = k + ` − 2 − ε for stars Sk ∈ trees(k), S` ∈ trees(`), where ε ∈ {0, 1}
depends on the parity of k and `. Haxell,  Luczak, and Tingley [HLT02] confirmed
asymptotically that the discrepancy of the Ramsey bounds for trees depends on their
balancedness, at least when the maximum degrees of the trees considered are moder-
ately bounded.

1.4. Related tree containment problems.

Minimum degree conditions for spanning trees. Recall that the tight min-
degree condition for containment of a general spanning tree T in an n-vertex graph G
is the trivial one, mindeg(G) > n−1. However, the only tree which requires this bound
is the star. This indicates that this threshold can be lowered substantially if we have
a control of maxdeg(T ). Szemerédi and his collaborators [KSS01, CLNGS10] showed
that this is indeed the case and obtained tight min-degree bounds for certain ranges
of maxdeg(T ). For example, if maxdeg(T ) 6 no(1), then mindeg(G) > ( 1

2 + o(1))n is
a sufficient condition. (Note that G may become disconnected close to this bound.)

Trees in random graphs. To complete the picture of research involving tree
containment problems, we mention two rich and vivid (and also closely connected)
areas: trees in random graphs and trees in expanding graphs. The former area is
centered around the following question: What is the probability threshold p = p(n) for
the Erdős–Rényi random graph Gn,p to contain asymptotically almost surely (a.a.s.)
each tree/all trees from a given class Fn of trees? Note that there is a difference
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between containing “each tree” and “all trees” (i.e., all trees simultaneously; this is
often referred to as universality), as the error probabilities for missing individual trees
might sum up.

Most research has focused on containment of spanning trees or almost spanning
trees. The only well-understood case is when Fn = {Pkn} is a path. The threshold

p = (1+o(1)) lnn
n for appearance of a spanning path (i.e., kn = n) was determined by

Komlós and Szemerédi [KS83] and independently by Bollobás [Bol84]. Note that this
threshold is the same as the threshold for connectedness. We should also mention
a previous result of Pósa [Pós76] which determined the order of magnitude of the
threshold, p = Θ( lnn

n ). The heart of Pósa’s proof, the celebrated rotation-extension
technique, is an argument about expanding graphs, and indeed many other results
about trees in random graphs exploit the expansion properties of Gn,p in the first
place.

The threshold for the appearance of almost spanning paths in Gn,p was deter-
mined by Fernandez de la Vega [FdlV79] and independently by Ajtai, Komlós, and
Szemerédi [AKS81]. Their results state that a path of length (1−ε)n appears a.a.s. in
Gn,Cn

for C = C(ε) sufficiently large. This behavior extends to bounded degree trees.

Indeed, Alon, Krivelevich, and Sudakov [AKS07] proved that Gn,Cn
(for a suitable

C = C(ε,∆)) a.a.s. contains all trees of order (1− ε)n with maximum degree at most
∆ (the constant C was later improved in [BCPS10]).

Let us now turn to spanning trees in random graphs. It is known [AKS07] that
a.a.s. Gn,C lnn

n
contains a single spanning tree T with bounded maximum degree

and linearly many leaves. This result can quite easily be reduced to the main re-
sult of [AKS07] regarding almost spanning trees. The constant C can be taken as
C = 1+o(1), as shown recently by Hefetz, Krivelevich, and Szabó [HKS12]; obviously
this is best possible. The same result also applies to trees that contain a path of linear
length whose vertices all have degree two. A breakthrough in the area was achieved
by Krivelevich [Kri10], who gave an upper bound on the threshold p = p(n,∆) for
embedding a single spanning tree of a given maximum degree ∆. This bound is es-
sentially tight for ∆ = nc, c ∈ (0, 1). Even though the argument in [Kri10] is not
difficult, it relies on a deep result of Johansson, Kahn, and Vu [JKV08] about factors
in random graphs. Montgomery [Mona] complemented Krivelevich’s result, obtain-
ing an almost tight upper bound on p(n,∆) in the case when ∆ is small. Further,
Montgomery [Monb] achieved an essentially optimal bound for containment of some
comb-like graphs.

Regarding universality of random graphs with respect to spanning trees, most of
the research has focused on the subclass of bounded-degree trees. Let us mention
papers [JKS12] and [FNP], which improve the upper bounds for the probability of
containing all trees of maximum degree ∆ (the results are meaningful for ∆ < nc for
some small value of c).

Trees in expanders. By an expander graph we mean a graph with a large
Cheeger constant, i.e., a graph which satisfies a certain isoperimetric property. As
indicated above, random graphs are very good expanders, and this is the main mo-
tivation for studying tree containment problems in expanders. Another motivation
comes from studying the universality phenomenon. Here the goal is to construct
sparse graphs which contain all trees from a given class, and expanders are natural
candidates for this. The study of sparse tree-universal graphs is a remarkable area
in itself which brings challenges in both probabilistic and explicit constructions. For
example, Bhatt, Chung, Leighton, and Rosenberg [BCLR89] give an explicit con-
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struction of a graph with only O∆(n) edges which contains all n-vertex trees with
maximum degree at most ∆. The above-mentioned paper by Johannsen, Krivelevich,
and Samotij [JKS12] shows a number of universality results for expanders, too. For
example, they show universality for the class of graphs with a large Cheeger constant
that satisfy a certain connectivity condition.

Friedman and Pippenger [FP87] extended Pósa’s rotation-extension technique
from paths to trees and found many applications (e.g., [HK95, Hax01, BCPS10]). Su-
dakov and Vondrák [SV10] use tree-indexed random walks to embed trees in Ks,t-free
graphs (this property implies expansion); a similar approach is employed by Benjamini
and Schramm [BS97] in the setting of infinite graphs. Tree-indexed random walks are
also used (in conjunction with the regularity lemma) in the work of Kühn, Mycroft,
and Osthus [KMO11a, KMO11b] on Sumner’s universal tournament conjecture.

In our proof of Theorem 1.3, embedding of trees in expanders plays a crucial role,
too. However, our notion of expansion is very different from those studied previously.
(Actually, we introduce two, very different, notions in Definitions 3.3 and 3.6.)

1.5. Overview of the proof of our main result. This is a very brief overview
of the proof. A more thorough overview is given in [HPS+15].

The structure of the proof of our main result (Theorem 1.3) resembles the proof
of the dense case, Theorem 1.5. We obtain an approximate representation—called
the sparse decomposition—of the host graph G from Theorem 1.3. Then we find a
suitable combinatorial structure inside the sparse decomposition. Finally, we embed
a given tree T into G using this structure.

Here we explain the key ingredients of the proof in more detail. The input graph
G has Θ(kn) edges. Indeed, an easy counting argument gives that e(G) > kn/4. On
the other hand, we can assume that e(G) < kn, as otherwise G contains a subgraph of
minimum degree at least k, and the assertion of Theorem 1.3 follows. Recall that the
Szemerédi regularity lemma gives an approximation of dense graphs in which o(n2)
edges are neglected. The sparse decomposition introduced here captures all but at
most o(kn) edges. The vertex set of G is partitioned into a set of vertices of de-
gree much larger than k and a set of vertices of degree O(k). Further, the induced
graph on the second set is split into regular pairs (in the sense of the Szemerédi reg-
ularity lemma) with clusters of sizes Θ(k) leading to a cluster graph Greg, and into
two additional parts which each have certain (different) expansion properties. The
first of these two expanding parts—called Gexp—is a subgraph of G that contains
no bipartite subgraphs of a density above a certain threshold density (we call such
bipartite subgraphs dense spots). The second expanding part—called the avoiding
set E—consists of vertices that lie in many of these dense spots. The vertices of huge
degrees, the regular pairs, and the two expanding parts form the sparse decomposition
of G. The key ideas behind obtaining this sparse decomposition are given in [HPS+15,
section 3], and full details can be found in section 3. It is well known that regular
pairs are suitable for embedding small trees. In [HKP+d] we work out techniques
for embedding small trees in each of the three remaining parts of the sparse decom-
position. A nontechnical description of these techniques is given in section 3.5 (for
E) and section 3.6 (for Gexp). It is a bit difficult to describe precisely the way in
which the huge degree vertices are utilized. At this moment it suffices to say that it
is easy to extend a partial embedding of a k-vertex tree from a vertex u mapped to
a huge-degree vertex x to the children of u. Of course, for such an extension alone,
deg(x) > k − 1 would have been sufficient. So, the fact that the degree of x is much
larger than k is used (together with other properties) to accommodate these children
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so that it is possible to continue even with subsequent extensions.
Tree-embedding results in the dense setting (e.g., Theorem 1.5) rely on finding

a (connected) matching structure in the cluster graph. Indeed, this allows for dis-
tributing different parts of the tree in the matching edges. Analogously, in the second
paper of this series [HKP+b] we find a structure based on the sparse decomposition.
This rough structure utilizes all the concepts suitable for embedding trees described
above: huge degree vertices, the avoiding set E, the graph Gexp, and dense regular
pairs. Somewhat surprisingly, the dense regular pairs do not come only from Greg.
Let us make this more precise. An initial matching structure is found in Greg, and
this structure is enhanced using other parts of G to yield further regular pairs, re-
ferred to in this context as the regularized matching. One may ask what the role of
Greg is. The answer is that either we can take directly a sufficiently large matching
in Greg, or the lack of any such matching in Greg gives us information about a com-
pensating enhancement in the form of a regularized matching based on other parts of
the decomposition. A simplified version of this rough structure is given as Lemma 7
in [HPS+15].

However, the rough structure is not immediately suitable for embedding T , and
we shall further refine it in the third paper of this series [HKP+c]. We will show that
in the setting of Theorem 1.3, we can always find one of ten configurations, denoted
by (�1)–(�10), in the host graph G. Obtaining these configurations from the rough
structure is based on pigeonhole-type arguments such as the following: If there are
many edges between two sets, and few “kinds” of edges, then many of the edges are of
the same kind. The different kinds of edges come from the sparse decomposition (and
allow for different kinds of embedding techniques). Just “homogenizing” the situation
by restricting to one particular kind is not enough; we also need to employ certain
“cleaning lemmas.” A simplest such lemma would be that a graph with many edges
contains a subgraph with a large minimum degree, the latter property evidently being
more directly applicable for a sequential embedding of a tree. The actual cleaning
lemmas we use are complex extensions of this simple idea.

Finally, in [HKP+d], we show how to embed the tree T . This is done by first es-
tablishing some elementary embedding lemmas for small subtrees and then combining
these for each of the cases (�1)–(�10) to yield an embedding of the entire tree T .

A scheme of the proof of Theorem 1.3 is given in Figure 3.

2. Notation and preliminaries.

2.1. General notation. All graphs considered in this paper are finite, undi-
rected, without multiple edges, and without self-loops. We write V (G) and E(G) for
the vertex set and edge set of a graph G, respectively. Further, v(G) = |V (G)| is the
order of G, and e(G) = |E(G)| is its number of edges. If X,Y ⊆ V (G) are two, not
necessarily disjoint, sets of vertices, we write e(X) for the number of edges induced by
X, and e(X,Y ) for the number of ordered pairs (x, y) ∈ X ×Y such that xy ∈ E(G).
In particular, note that 2e(X) = e(X,X).

For a graph G, a vertex v ∈ V (G), and a set U ⊆ V (G), we write deg(v) and
deg(v, U) for the degree of v and for the number of neighbors of v in U , respectively.
We write mindeg(G) for the minimum degree of G, mindeg(U) := min{deg(u) : u ∈
U}, and mindeg(V1, V2) = min{deg(u, V2) : u ∈ V1} for two sets V1, V2 ⊆ V (G). Note
that for our purposes, the minimum degree of a graph on zero vertices is ∞. Similar
notation is used for the maximum degree, denoted by maxdeg(G). The neighborhood
of a vertex v is denoted by N(v). We set N(U) :=

⋃
u∈U N(u). The symbol “−” is used

for two graph operations: If U ⊆ V (G) is a vertex set, then G−U is the subgraph of
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Fig. 3. Structure of the proof of Theorem 1.3, including parts from [HKP+b, HKP+c, HKP+d].

G induced by the set V (G) \ U . If H ⊆ G is a subgraph of G, then the graph G−H
is defined on the vertex set V (G) and corresponds to deletion of edges of H from G.
Any graph with zero edges is called empty.

A family A of pairwise disjoint subsets of V (G) is an `-ensemble in G if |A| > `
for each A ∈ A.
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The set {1, 2, . . . , n} of the first n positive integers is denoted by [n].
Suppose that we have a nonempty set A, and X and Y each partition A. Then X�

Y denotes the coarsest common refinement of X and Y, i.e.,

X � Y := {X ∩ Y : X ∈ X , Y ∈ Y} \ {∅} .

We frequently employ indexing by many indices. We write superscript indices in
parentheses (such as a(3)), as opposed to notation of powers (such as a3). We some-
times use subscript indices to refer to parameters appearing in a fact/lemma/theorem.
For example, αT1.3 refers to the parameter α from Theorem 1.3. We omit rounding
symbols when this does not affect the correctness of the arguments. In overviews, we
occasionally write f � g with the same meaning as f = o(g).

In Table 1 we indicate our notation system (with a look ahead to [HKP+b,
HKP+c, HKP+d]).

Table 1
Specific notation used in the series.

lower case Greek letters small positive constants (� 1)
φ reserved for embedding; φ : V (T )→ V (G)

upper case Greek letters large positive constants (� 1)
one-letter bold sets of clusters

bold (e.g., trees(k),LKS(n, k, η)) classes of graphs
blackboard bold (e.g., H,E, Sη,k(G),XA) distinguished vertex sets, except for

N, which denotes the set {1, 2, . . .}
calligraphic (e.g., A,D,N ) families (of vertex sets, “dense spots,”

and regular pairs)
∇ (“nabla”) reserved for “sparse decomposition”

Lemma 2.1. For all `, n ∈ N, every n-vertex graph G contains a (possibly empty)
subgraph G′ such that mindeg(G′) > ` and e(G′) > e(G)− (`− 1)n.

Proof. We construct the graph G′ by sequentially removing vertices of degree less
than ` from the graph G. In each step we remove at most ` − 1 edges. Thus the
statement follows.

2.2. Regular pairs. In this section we introduce the notion of regular pairs,
which is central for Szemerédi’s regularity lemma and its extension, discussed in sec-
tion 2.3. We also list some simple properties of regular pairs.

Given a graph H and a pair (U,W ) of disjoint sets U,W ⊆ V (H), the density of
the pair (U,W ) is defined as

d(U,W ) :=
e(U,W )

|U ||W |
.

For a given ε > 0, a pair (U,W ) of disjoint sets U,W ⊆ V (H) is called an ε-regular
pair if |d(U,W ) − d(U ′,W ′)| < ε for every U ′ ⊆ U , W ′ ⊆ W with |U ′| > ε|U |,
|W ′| > ε|W |. If the pair (U,W ) is not ε-regular, then we call it ε-irregular.

We give a useful and well-known property of regular pairs.

Fact 2.2. Suppose that (U,W ) is an ε-regular pair of density d. Let U ′ ⊆
W,W ′ ⊆ W be sets of vertices with |U ′| > α|U |, |W ′| > α|W |, where α > ε. Then
the pair (U ′,W ′) is a 2ε/α-regular pair of density at least d− ε.

The following fact states a simple relation between the density of a (not necessarily
regular) pair and the densities of its subpairs.
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Fact 2.3. Let H = (U,W ;E) be a bipartite graph of d(U,W ) > α. Suppose that
the sets U and W are partitioned into sets {Ui}i∈I and {Wj}j∈J , respectively. Then
at most βe(H)/α edges of H belong to a pair (Ui,Wj) with d(Ui,Wj) 6 β.

Proof. Trivially, we have

(2.1)
∑

i∈I,j∈J

|Ui||Wj |
|U ||W |

= 1 .

Consider a pair (Ui,Wj) of d(Ui,Wj) 6 β. Then

e(Ui,Wj) 6 β|Ui||Wj | =
β

α

|Ui||Wj |
|U ||W |

α|U ||W | 6 β

α

|Ui||Wj |
|U ||W |

e(U,W ) .

Summing over all such pairs (Ui,Wj) and using (2.1) yields the statement.

2.3. Regularizing locally dense graphs. The regularity lemma [Sze78] has
proved to be a powerful tool for attacking graph embedding problems; see [KO09] for
a survey. We first state the lemma in its original form.

Lemma 2.4 (regularity lemma). For all ε > 0 and ` ∈ N there exist n0,M ∈ N
such that for every n > n0 the following holds. Let G be an n-vertex graph whose
vertex set is prepartitioned into sets V1, . . . , V`′ , `

′ 6 `. Then there exists a partition
{U0, U1, . . . , Up} of V (G), ` < p < M , with the following properties:

(1) For every i, j ∈ [p] we have |Ui| = |Uj |, and |U0| < εn.
(2) For every i ∈ [p] and every j ∈ [`′] either Ui ∩ Vj = ∅ or Ui ⊆ Vj.
(3) All but at most εp2 pairs (Ui, Uj), i, j ∈ [p], i 6= j, are ε-regular.

Property (3) above is often called ε-regularity of the partition {U0, U1, . . . , Up}.
For us, it is more convenient to introduce this notion in the bipartite context (in
Definition 2.6).

We shall use Lemma 2.4 for auxiliary purposes only as it is helpful only in the
setting of dense graphs (i.e., graphs which have n vertices and Ω(n2) edges). This
is not necessarily the case in Theorem 1.3. For this reason, we give a version of
the regularity lemma—Lemma 2.5 below—which allows us to regularize even sparse
graphs.

More precisely, suppose that we have an n-vertex graph H whose edges lie in
bipartite graphs H[Wi,Wj ], where {W1, . . . ,W`} is an ensemble of sets of individual
sizes Θ(k). Although ` may be unbounded, for a fixed i ∈ [`] there are only a bounded
number (independent of k), say m, of indices j ∈ [`] such that H[Wi,Wj ] is nonempty.
See Figure 4 for an example. Lemma 2.5 then allows us to regularize (in the sense of
the regularity lemma, Lemma 2.4) all the bipartite graphs G[Wi,Wj ] using the same

partition {W (0)
i ∪̇W

(1)
i ∪̇ · · · ∪̇W

(pi)
i = Wi}`i=1. Note that as |Wi| = Θ(k) for all i ∈ [`],

then H has at most

Θ(k2) ·m · ` 6 Θ(k2) ·m · n

Θ(k)
= Θ(kn)

edges. Thus, when k � n, this is a regularization of a sparse graph. This “sparse regu-
larity lemma” is very different from that of Kohayakawa and Rödl (see, e.g., [Koh97]).
Indeed, the Kohayakawa–Rödl regularity lemma only deals with graphs which have
no local condensation of edges, e.g., subgraphs of random graphs.1 Consequently, the

1There is a recent refinement of the Kohayakawa–Rödl regularity lemma, due to Scott [Sco11].
Scott’s regularity lemma gets around the no-condensation condition, which proves helpful in some
situations, e.g., [AKSV14]; still, the main features remain.



956 HLADKÝ ET AL.

Fig. 4. A locally dense graph as in Lemma 2.5. The sets W1, . . . ,W` are depicted with gray
circles. Even though there are a large number of them, each Wi is linked to only boundedly many
other Wj ’s (at most four in this example). Lemma 2.5 allows us to regularize all the bipartite graphs
using the same system of partitions of the sets Wi.

resulting regular pairs are of density o(1). In contrast, Lemma 2.5 provides us with
regular pairs of density Θ(1), but on the other hand, is useful only for graphs which
are locally dense.

Lemma 2.5 (regularity lemma for locally dense graphs). For all m, z ∈ N and
ε > 0 there exists qMAXCL ∈ N such that the following is true. Suppose H and F
are two graphs, V (F ) = [`] for some ` ∈ N, and maxdeg(F ) 6 m. Suppose that
Z = {Z1, . . . , Zz} is a partition of V (H). Let {W1, . . . ,W`} be a qMAXCL-ensemble
in H, such that for all i, j ∈ [`] we have

(2.2) 2|Wi| > |Wj | .

Then for each i ∈ [`] there exists a partition W
(0)
i ,W

(1)
i , . . . ,W

(pi)
i of the set Wi such

that for all i, j ∈ [`] we have
(a) 1/ε 6 pi 6 qMAXCL,

(b) |W (i′)
i | = |W

(j′)
j | for each i′ ∈ [pi], j

′ ∈ [pj ],

(c) for each i′ ∈ [pi] there exists x ∈ [z] such that W
(i′)
i ⊆ Zx,

(d)
∑
i |W

(0)
i | < ε

∑
i |Wi|, and

(e) at most ε |Y| pairs
(
W

(i′)
i ,W

(j′)
j

)
∈ Y form an ε-irregular pair in H, where

Y :=
{(
W

(i′)
i ,W

(j′)
j

)
: ij ∈ E(F ), i′ ∈ [pi], j

′ ∈ [pj ]
}
.

We use Lemma 2.5 in the proof of Lemma 3.13. Lemma 3.13 is in turn the main
tool in the proof of our main structural decomposition of the graphGT1.3, Lemma 3.14.
In the proof of Lemma 3.14 we decompose the input graph into several parts with
very different properties, and one of these parts is a locally dense graph which then
can be regularized by Lemma 3.13. A similar regularity lemma is used in [AKSS].

The proof of Lemma 2.5 is similar to the proof of the standard regularity lemma
(Lemma 2.4), as given, for example, in [Sze78]. The key notion is that of the index
(a.k.a. the mean square density) which we recall now. For us, it is convenient to work
in the category of bipartite graphs.
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Definition 2.6. Suppose that X = {X0, X1, . . . , X`} and Y = {Y0, Y1, . . . , Yp}
are partitions of a set X and a set Y with distinctive sets X0 and Y0 which we call
garbage clusters. We use the symbol ◦ to indicate a new partition in which the garbage
cluster is broken into singletons, e.g., X ◦ = {X1, . . . , X`} ∪ {{x} : x ∈ X0}. We say
that X refines Y up to the garbage cluster if X ◦ refines Y◦.

Suppose that G = (A,B;E) is a bipartite graph. Let A = {A0, A1, . . . , As} and
B = {B0, B1, . . . , Bt} be partitions of A and B, with garbage clusters A0 and B0. We
say that the pair (A,B) is an ε-regular partition of G if at most εst pairs (Ai, Bj),
i ∈ [s], j ∈ [t], are irregular. Otherwise, (A,B) is ε-irregular.

We then define the index of (A,B) by

ind(A,B) =
1

(|A|+ |B|)2
·

∑
X∈A◦,Y ∈B◦

e(X,Y )2

|X||Y |
.

Clearly, ind(A,B) ∈ [0, 1]. Here is another fundamental property of the index.

Fact 2.7 (bipartite version of Lemma 7.4.2 in [Die05]). Suppose that G = (A,B;E)
is a bipartite graph. Let A and A′ be partitions of A with given garbage clusters. Let
B and B′ be partitions of B with given garbage clusters. Suppose that A′ refines A
and B′ refines B up to garbage clusters. Then ind(A′,B′) > ind(A,B).

Lemma 2.8 (index pumping lemma; bipartite version of Lemma 7.4.4. in [Die05]).

Let ε ∈ (0, 1
4 ) and p, q ∈ N. Let G be a bipartite graph G = (A,B;E), with |A|2 6

|B| 6 2|A|. Suppose that A and B are partitions of vertex sets A and B with distinctive
garbage clusters A0 and B0. Suppose further that

(a) p 6 |A|, |B| 6 q,
(b) |A0| < ε|A|, |B0| < ε|B|, and
(c) all the sets in A ∪ B \ {A0, B0} have the same size.

If (A,B) is not an ε-regular partition of G, then there exist partitions A′ and B′ of A
and B with garbage clusters A′0 and B′0 such that

(i) p+ 1 6 |A′|, |B′| 6 2q16q,

(ii) |A′0| 6 |A0|+ |A|
2p , |B′0| 6 |B0|+ |B|

2p ,
(iii) all the sets in A′ ∪ B′ \ {A′0, B′0} have the same size,
(iv) the partitions A′ and B′ refine A and B up to garbage clusters, and

(v) ind(A′,B′) > ind(A,B) + ε5

3691 .

We note that by stating a version for bipartite graphs we had to adjust numerical
values compared to [Die05]. Recall that the proof of Lemma 2.8 has two independent
steps: First the partitions A and B are suitably refined (so that the index increases),
and then these new partitions are further refined (up to garbage clusters) so that
the nongarbage sets have the same size. The latter step does not decrease the index
by Fact 2.7 but may possibly increase the sizes of the garbage clusters. Thus, we
can state a version of Lemma 2.8 in which refinements are performed simultaneously
on a number of bipartite graphs (referred to as (Gi)i in the corollary below), and
in addition further partitions (referred to as (Cj)j below) are refined on which no
regularization is imposed.

Corollary 2.9. Let ε ∈ (0, 1
4 ) and p, q ∈ N. Let Gi i ∈ I be bipartite graphs

Gi = (Ai, Bi;Ei). Let Cj, j ∈ J be sets of vertices. Suppose that all the sets Ai,
Bi, and Cj are mutually disjoint. Suppose further that for each i ∈ I and j ∈ J ,

max{ |Ai|2 , |Bi|2 } 6 |Cj | 6 min{2|Ai|, 2|Bi|}. Suppose that Ai and Bi are partitions of
Ai and Bi with garbage clusters A0i and B0i, and that Cj are partitions of Cj with
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garbage clusters C0j. Suppose further that for each i ∈ I and j ∈ J ,
(a) p 6 |Ai|, |Bi|, |Cj | 6 q,
(b) |A0i| < ε|Ai|, |B0i| < ε|Bi|, |C0j | < ε|Cj |, and
(c) all the sets in

⋃
m∈I(Am ∪ Bm \ {A0m, B0m}) ∪

⋃
n∈J(Cn \ {C0n}) have the

same size.
If all partitions (Ai,Bi), i ∈ I, are ε-irregular, then there exist partitions A′i and B′i
of A and B with garbage clusters A′0i and B′0i, and partitions C′j of Cj with garbage
clusters C ′0j such that for each i ∈ I and j ∈ J ,

(i) p+ 1 6 |A′i|, |B′i|, |C′j | 6 2q · 16q,

(ii) |A′0i| 6 |A0i|+ |Ai|
2p , |B′0i| 6 |B0i|+ |Bi|

2p , and |C ′0j | 6 |C0j |+ |Cj |
2p ,

(iii) all the sets in
⋃
m∈I A′m∪B′m \{A′0m, B′0m}∪

⋃
n∈J C′n \{C ′0n} have the same

size,
(iv) the partitions A′i, B′i, and C′j refine Ai, Bi, and Cj up to garbage clusters,

and
(v) ind(A′i,B′i) > ind(Ai,Bi) + ε5

3691 .

We are now in a position to prove Lemma 2.5. But first, let us describe how
a more naive approach fails. For each edge ij ∈ E(F ) consider a regularization of

the bipartite graph H[Wi,Wj ], let {U (i′)
i,j }i′∈[qi,j ] be the partition of Wi into clusters,

and let {U (j′)
j,i }j′∈[qj,i] be the partition of Wj into clusters such that almost all pairs

(U
(i′)
i,j , U

(j′)
j,i ) ⊆ (Wi,Wj) form an ε′-regular pair (for some ε′ of our choice). We would

now be done if the partition {U (i′)
i,j }i′∈[qi,j ] of Wi were independent of the choice of the

edge ij. This need not be the case, however. The natural next step would therefore
be to consider the common refinement

�
j:ij∈E(F )

{
U (i′)i,j

}
i′∈[qij ]

of all the obtained partitions of Wi. The pairs obtained in this way, however, lack
any regularity properties as they are too small. Indeed, it is a notorious drawback of
the regularity lemma that the number of clusters in the partition is enormous as a
function of the regularity parameter. In our setting, this means that qi,j � 1

ε′ . Thus

a typical cluster U
(i′1)
i,j1

occupies on average only a 1
qi,j1

-fraction of the cluster U
(i′2)
i,j2

,

and thus already the set U
(i′1)
i,j1
∩ U (i′2)

i,j2
⊆ U

(i′2)
i,j2

is not substantial (in the sense of the
regularity). The same issue arises when regularizing multicolored graphs (cf. [KS96,
Theorem 1.18]). The solution is to impel the regularizations to happen in a synchro-
nized way.

Proof of Lemma 2.5. Without loss of generality, assume that ε < 1. Set ε̃ = ε/8.
The number qMAXCL can be taken by considering the function q 7→ 2q ·16q with initial

value d 4z
ε̃ e and iterating it d 3691(m+1)

ε̃6 e many times.

For each i ∈ [`] consider an arbitrary initial partitionWi = {W (0)
i ,W

(1)
i , . . . ,W

(pi)
i }

of Wi such that for the garbage cluster we have |W (0)
i | 6 ε̃|Wi|, and all the nongarbage

clusters W
(i′)
i are disjoint subsets of some set Zr, r ∈ [z]. Further, we make all the

nongarbage clusters (coming from all the sets Wi) have the same size. It is clear that
this can be achieved, and that we can further impose that

(2.3) 1 +
1

ε
6 pi 6

4z

ε
.
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By Vizing’s theorem we can cover the edges of F by nonempty disjoint matchings
M1, . . . ,MQ, Q 6 m+ 1. For each q ∈ [Q] we shall introduce a variable indq,

indq =
1

|Mq|
∑

xy∈Mq

ind(Wx,Wy) .

We shall now keep refining the partitions (Wz)z∈V (F ) in steps ` = 1, 2, . . . as
follows. Suppose that for some q ∈ [Q], for the matching

M ′q = {xy ∈Mq : the partition (Wx,Wy) of H[Wx,Wy] is ε̃-irregular}

we have |M ′q| > ε̃|Mq|. We apply Corollary 2.9 with the following setting. The parti-
tions {(Wx,Wy)}xy∈M ′q play the role of (Ai,Bi)’s, and the partitions {Wx}x∈V (F )\V (M ′q)

play the role of Cj ’s. Further, in step ` we set pC2.9 = 1
ε + `. Corollary 2.9 says that

for the modified partitions (which we still denote the same), the index along each

edge of M ′q increased by at least ε̃5

3691 . Combined with Fact 2.7 and with the fact that

|M ′q| > ε̃|Mq|, we get that indq increased by at least ε̃6

3691 , and no other index indt
decreased. Observe also that the lower bound in Corollary 2.9(i) makes it possible to
apply Corollary 2.9 with pC2.9 increased by one in the next step.

Since
∑Q
t=1 indt 6 |Q| 6 m + 1, we conclude that after at most 3691(m+1)

ε̃6 steps,
for each q ∈ [Q] the number of bipartite graphs H[Wx,Wy], xy ∈ Mq, that are
partitioned ε̃-irregularly is less than ε̃|Mq|. In particular, among all the bipartite
graphs (H[Wx,Wy])xy∈E(F ), at most ε̃ · e(F ) are partitioned ε̃-irregularly. We claim
that this system of partitions satisfies properties (a)–(e) as in the statement of the
lemma.

Each irregular pair counted in (e) is a pair contained either in an ε̃-regularly
partitioned or an ε̃-irregularly partitioned bipartite graph H[Wx,Wy]. It follows from
above that the number of irregular pairs of each of these two types is upper-bounded

by ε
2 |Y|. For the bound (d), recall that initially we had |W (0)

i | 6 ε
2 |Wi|. During

each application of Corollary 2.9, the garbage sets W
(0)
i could have grown by at most

|Wi|
2p for p = 1

ε + 1, 1
ε + 2, . . . . Thus, at the end of the process, we have |W (0)

i | 6
( ε2 +

∑
p> 1

ε
2−p)|Wi| 6 ε|Wi|, as needed. The other assertions of the lemma are

clear.

Usually after applying the regularity lemma to some graph G, one bounds the
number of edges which correspond to irregular pairs or to regular but sparse pairs,
or are incident to the exceptional sets U0. We shall do the same for the setting of
Lemma 2.5.

Lemma 2.10. In the situation of Lemma 2.5, suppose that maxdeg(H) 6 Ωk and
e(H) 6 kn, and that each edge xy ∈ E(H) is captured by some edge ij ∈ E(F ), i.e.,
x ∈Wi, y ∈Wj. Moreover, suppose that

(2.4) d(Wi,Wj) > γ if ij ∈ E(F ).

Then all but at most ( 4ε
γ + εΩ + γ)nk edges of H belong to regular pairs (W

(i)
i′ ,W

(j)
j′ ),

i, j 6= 0, of density at least γ2.

Proof. Set w := min{|Wi| : i ∈ V (F )}. By (2.4), each edge of F represents at
least γw2 edges of H. Since e(H) 6 kn, it follows that e(F ) 6 kn/(γw2). Thus, by
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the assumption (2.2),
∑
AB∈E(F ) |A||B| 6 e(F )(2w)2 6 4kn

γ . Using (e) of Lemma 2.5
we get that the number of edges of H contained in ε-irregular pairs from Y is at most

(2.5)
4εnk

γ
.

Write E1 for the set of edges of H which are incident to a vertex in
⋃
i∈[`]W

(0)
i .

Then by (d) of Lemma 2.5, and since maxdeg(H) 6 Ωk,

(2.6) |E1| 6 εΩnk .

Let E2 be the set of those edges of H which belong to ε-regular pairs (W
(i′)
i ,W

(j′)
j )

with ij ∈ E(F ), i′ ∈ [pi], j
′ ∈ [pj ] of density at most γ2. We claim that

(2.7) |E2| 6 γkn .

Indeed, because of (2.4) and by Fact 2.3 (with αF2.3 := γ and βF2.3 := γ2), for each
ij ∈ E(F ) there are at most γeH(Wi,Wj) edges contained in the bipartite graphs

H[W
(i′)
i ,W

(j′)
j ], i′ ∈ [pi], j

′ ∈ [pj ], with dH(W
(i′)
i ,W

(j′)
j ) 6 γ2. Since∑

ij∈E(F )

eH(Wi,Wj) 6 kn,

the validity of (2.7) follows. Combining (2.5)–(2.7), we finish the proof.

2.4. LKS graphs. Write LKS(n, k, α) for the class of all n-vertex graphs with
at least ( 1

2 +α)n vertices of degrees at least (1+α)k. With this notation, Conjecture 1.2
states that every graph in LKS(n, k, 0) contains every tree from trees(k + 1).

Given a graph G, denote by Sη,k(G) the set of those vertices of G that have degree
less than (1 + η)k, and by Lη,k(G) the set of those vertices of G that have degree at
least (1 + η)k.2 Thus the sizes of the sets Sη,k(G) and Lη,k(G) are what specifies the
membership to LKS(n, k, η).

Define LKSmin(n, k, η) as the set of all graphs G ∈ LKS(n, k, η) that are
edge-minimal with respect to the membership in LKS(n, k, η). In order to prove
Theorem 1.3 it suffices to restrict our attention to graphs from LKSmin(n, k, η),
and this is why we introduce the class. Let us collect some properties of graphs in
LKSmin(n, k, η).

Fact 2.11. For any graph G ∈ LKSmin(n, k, η) the following are true:
1. Sη,k(G) is an independent set.
2. All the neighbors of every vertex v ∈ V (G) with deg(v) > d(1 + η)ke have

degree exactly d(1 + η)ke.
3. |Lη,k(G)| 6 d(1/2 + η)ne+ 1.

Observe that every edge in a graph G ∈ LKSmin(n, k, η) is incident to at least
one vertex of degree exactly d(1 + η)ke. This gives the following inequality:

(2.8) e(G) 6 d(1 + η)ke |Lη,k(G)|
F2.11(3)

6 d(1 + η)ke
(⌈(

1

2
+ η

)
n

⌉
+ 1

)
< kn .

(The last inequality is valid under the additional mild assumption that, say, η < 1
20

and n > k > 20. This can be assumed throughout the paper.)

2“S” stands for “small,” and “L” for “large.”
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Definition 2.12. Let LKSsmall(n, k, η) be the class of graphs G ∈ LKS(n, k, η)
for which we have the following three properties:

1. All the neighbors of every vertex v ∈ V (G) with deg(v) > d(1 + 2η)ke have
degrees at most d(1 + 2η)ke.

2. All the neighbors of every vertex of Sη,k(G) have degree exactly d(1 + η)ke.
3. We have e(G) 6 kn.

Observe that the graphs from LKSsmall(n, k, η) also satisfy property 1 and a
quantitatively somewhat weaker version of property 2 of Fact 2.11. This suggests that
in some sense LKSsmall(n, k, η) is a good approximation of LKSmin(n, k, η).

As stated, we will prove Theorem 1.3 only for graphs from LKSmin(n, k, η).
However, it turns out that the structure of LKSmin(n, k, η) is too rigid. In particu-
lar, LKSmin(n, k, η) is not closed under discarding a small number of edges during
our cleaning procedures. This is why the class LKSsmall(n, k, η) comes into play:
Starting with a graph in LKSmin(n, k, η), we perform some initial cleaning and ob-
tain a graph which lies in LKSsmall(n, k, η/2). We then heavily use its structural
properties from Definition 2.12 throughout the proof.

3. Decomposing sparse graphs. In this section, we work out a structural
decomposition of a possibly sparse graph which is suitable for embedding trees. Our
motivation comes from the success of the regularity method in the setting of dense
graphs (see [KO09]). The main technical result of this section, the “decomposition
lemma” (Lemma 3.13), provides such a decomposition. Roughly speaking, each graph
of a moderate maximum degree can be decomposed into regular pairs and two different
expanding parts.

We then combine Lemma 3.13 with a lemma on creating a gap in the degree
sequence (Lemma 3.2) to get a decomposition lemma for graphs from LKS(n, k, η)
(Lemma 3.14). Lemma 3.14 asserts that each graph from LKS(n, k, η) can be de-
composed into vertices of degree much larger than k, regular pairs, and expanding
parts. Further we give a non-LKS-specific version of Lemma 3.14 in Lemma 3.15,
which asserts that each graph with average degree bigger than an absolute constant
has a sparse decomposition. Such a decomposition lemma was used by Ajtai, Komlós,
Simonovits, and Szemerédi in their work on the Erdős–Sós conjecture, and we ex-
pect that it will find applications in other tree-embedding problems, and possibly
elsewhere.

3.1. Creating a gap in the degree sequence. The goal of this section is to
show that any graph G ∈ LKSmin(n, k, η) has a subgraph G′ ∈ LKSsmall(n, k, η/2)
which has a gap in its degree sequence. Note that G′ then contains almost all the
edges of G. This is formulated in Lemma 3.2. Before stating and proving it, we
illustrate our proof technique on a simpler version of Lemma 3.2 that applies to all
graphs. This simpler lemma will not be used except in the proof of Lemma 3.15,
which also serves for illustration only.

Lemma 3.1. Let (Ωi)i∈N be a sequence of positive numbers with
Ωj

Ωj+1
6 η

2 for

all j ∈ N. Let G be a graph of order n with average degree k. Then there are an
index i∗ 6 4

η and a spanning subgraph G′ ⊆ G with e(G′) > e(G)− ηkn and with the

property that G′ contains no vertex with degree in the interval [Ωik,Ωi+1k).

Proof. Set R := b4η−1c. For i ∈ [R] and any graph H ⊆ G define the sets
Xi(H) := {v ∈ V (H) : degH(v) ∈ [Ωik,Ωi+1k)}, and for i = R + 1 set Xi(H) :=
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{v ∈ V (H) : degH(v) ∈ [Ωik,∞)}. As∑
i∈[R]

∑
v∈Xi(G)∪Xi+1(G)

deg(v) 6 4e(G) ,

by averaging we find an index i∗ ∈ [R] such that∑
v∈Xi∗ (G)∪Xi∗+1(G)

deg(v) 6
4e(G)

R
=

2kn

R
.

Let G0 ⊆ G be obtained from G by deleting all the edges incident to Xi∗(G) ∪
Xi∗+1(G). In particular,

(3.1) e(G0) > e(G)− ηkn/2 .

We continue successively deleting edges as follows. If in some step j = 1, 2, . . . the
set Xi∗(Gj−1) is nonempty, we take an arbitrary vertex vj ∈ Xi∗(Gj−1) and obtain
a new graph Gj from Gj−1 by deleting all the (at most Ωi∗+1k many) edges incident
to vj . Obviously, this procedure will terminate eventually. Let G′ denote the final
graph. Clearly, G′ has the desired gap in the degree sequence. It therefore suffices to
upper bound e(G)− e(G′).

Observe that for any vertex vj above we have vj ∈
⋃R+1
i=i∗+2Xi(G). Thus,

e(G′)− e(G0) 6 Ωi∗+1k

∣∣∣∣∣
R+1⋃
i=i∗+2

Xi(G)

∣∣∣∣∣ 6 Ωi∗+1k ·
2e(G)

Ωi∗+2k
6
ηkn

2
.

Combining this with (3.1), we get the statement.

Lemma 3.2. Let η ∈ (0, 1), G ∈ LKSmin(n, k, η), and let (Ωi)i∈N be a sequence
of positive numbers with Ω1 > 2 and Ωj/Ωj+1 6 η2/100 for all j ∈ N. Then there
exist an index i∗ 6 100η−2 and a subgraph G′ ⊆ G such that

(i) G′ ∈ LKSsmall(n, k, η/2), and
(ii) no vertex v ∈ V (G′) has degree degG′(v) ∈ [Ωi∗k,Ωi∗+1k).

Proof. Set R := b100η−2c. For i ∈ [R] and any graph H ⊆ G define the sets
Xi(H) := {v ∈ V (H) : degH(v) ∈ [Ωik,Ωi+1k)}, and for i = R + 1 set Xi(H) :=
{v ∈ V (H) : degH(v) ∈ [Ωik,∞)}. As∑

i∈[R]

∑
v∈Xi(G)∪Xi+1(G)

deg(v) 6 4e(G) ,

by averaging we find an index i∗ ∈ [R] such that

(3.2)
∑

v∈Xi∗ (G)∪Xi∗+1(G)

deg(v) 6
4e(G)

R
.

Let E0 be the set of all the edges incident to Xi∗(G) ∪Xi∗+1(G). Now, starting
with G0 := G − E0, inductively define graphs Gj ( Gj−1 for j > 1 using any of the
following two types of edge deletions:

(T1) If there is a vertex vj ∈ Xi∗(Gj−1), then we choose an edge ej incident to vj
and set Gj := Gj−1 − ej .
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(T2) If there is an edge ej = ujvj of Gj−1 with uj ∈ Sη/2,k(Gj−1) and vj ∈⋃R+1
i=i∗+1Xi(Gj−1), then set Gj := Gj−1 − ej .

Since we keep deleting edges, the procedure stops at some point, say at step j∗, when
neither (T1) nor (T2) is applicable. Note that the resulting graph Gj∗ already has
property (ii).

Let E1 ⊆ E(G) be the set of those edges deleted by applying (T1). We shall
estimate the size of E1. First, observe that∣∣∣∣∣

R+1⋃
i=i∗+2

Xi(G)

∣∣∣∣∣ 6 2e(G)

Ωi∗+2k
.

Moreover, each vertex of
⋃R+1
i=i∗+2Xi(G) appears at most (Ωi∗+1 − Ωi∗)k < Ωi∗+1k

times as the vertex vj in the deletions of type (T1). Consequently,

(3.3) |E1| 6 Ωi∗+1

∣∣∣∣∣
R+1⋃
i=i∗+2

Xi(G)

∣∣∣∣∣ k 6 2Ωi∗+1e(G)

Ωi∗+2
.

Consider an arbitrary vertex w ∈ Lη,k(G) ∩ Sη/2,k(Gj∗) and the interval of those
(j−1)’s for which w ∈ Lη/2,k(Gj−1)∩Sη,k(Gj−1). In such a step the vertex w cannot
play the role of the vertices uj or vj in (T2). So, each vertex from Lη,k(G)∩Sη/2,k(Gj∗)
is incident to at least ηk/2 edges from the set E0 ∪ E1. Therefore, by the definition
of E0, by (3.2), and by (3.3),

∣∣Lη,k(G) ∩ Sη/2,k(Gj∗)
∣∣ 6 2 · |E0 ∪ E1|

ηk/2
6

(
4

R
+

2Ωi∗+1

Ωi∗+2

)
· 4e(G)

ηk

(2.8)

6
ηn

2
.

Thus

|Lη/2,k(Gj∗)| > |Lη,k(G)| − |Lη,k(G) ∩ Sη/2,k(Gj∗)| > (1/2 + η/2)n ,

and consequently, Gj∗ ∈ LKS(n, k, η/2).
Last, we obtain the graph G′ by successively deleting any edge from Gj∗ which

connects a vertex from Sη/2,k(Gj∗) with a vertex whose degree is not exactly d(1+ η
2 )ke.

This does not affect the already obtained property (ii), since we could not apply (T2)
to Gj∗ . We claim that for the resulting graph G′ we have G′ ∈ LKSsmall(n, k, η/2).
Indeed, Lη/2,k(G′) = Lη/2,k(Gj∗), and thus G′ ∈ LKS(n, k, η/2). Property 2 of
Definition 2.12 follows from the last step of the construction of G′. To see prop-
erty 1 of Definition 2.12, we use Fact 2.11(2) for G (which by assumption is in
LKSmin(n, k, η)).

3.2. Decomposition of graphs with moderate maximum degree. First
we introduce some useful notions. We start with dense spots which indicate an accu-
mulation of edges in a sparse graph.

Definition 3.3 ((m, γ)-dense spot, (m, γ)-nowhere-dense). An (m, γ)-dense spot
in a graph G is a nonempty bipartite subgraph D = (U,W ;F ) of G with d(D) > γ
and mindeg(D) > m. We call G (m, γ)-nowhere-dense if it does not contain any
(m, γ)-dense spots.

We remark that dense spots as bipartite graphs do not have a specified orientation;
that is, we view (U,W ;F ) and (W,U ;F ) as the same object.
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Fact 3.4. Let (U,W ;F ) be a (γk, γ)-dense spot in a graph G of maximum degree
at most Ωk. Then max{|U |, |W |} 6 Ω

γ k.

Proof. It suffices to observe that

γ|U ||W | 6 e(U,W ) 6 maxdeg(G) ·min{|U |, |W |} 6 Ωk ·min{|U |, |W |}.
The next fact asserts that in a bounded degree graph there cannot be too many

edge-disjoint dense spots containing a given vertex.

Fact 3.5. Let H be a graph of maximum degree at most Ωk, let v ∈ V (H), and
let D be a family of edge-disjoint (γk, γ)-dense spots in H. Then fewer than Ω

γ dense
spots from D contain v.

Proof. The proof follows as v sends more than γk edges to each dense spot from
D to which it is incident, the dense spots D are edge-disjoint, and deg(v) 6 Ωk.

Our second definition in this section might seem less intuitive at first sight. It
describes a property for finding dense spots outside some “forbidden” set U , which in
later applications will be the set of vertices already used for a partial embedding of a
tree T ∈ trees(k) from Theorem 1.3 during our sequential embedding procedure. In
section 3.5 we give a nontechnical description of this embedding technique. Informally,
a set E of vertices is avoiding if for each set U of size Θ(k) and each vertex v ∈ E
there is a dense spot containing v that is almost disjoint from U .

Definition 3.6 ((Λ, ε, γ, k)-avoiding set). Suppose that G is a graph, and D is a
family of dense spots in G. A set E ⊆

⋃
D∈D V (D) is (Λ, ε, γ, k)-avoiding with respect

to D if for every U ⊆ V (G) with |U | 6 Λk the following holds for all but at most εk
vertices v ∈ E. There is a dense spot D ∈ D with |U ∩ V (D)| 6 γ2k that contains v.

Note that a subset of a (Λ, ε, γ, k)-avoiding set is also (Λ, ε, γ, k)-avoiding.
We now come to the main concepts of this section, the bounded and the sparse

decompositions. These notions in a way correspond to the partition structure from
the regularity lemma, although they are naturally more complex since we deal with
(possibly) sparse graphs here. Lemma 3.13 is then a corresponding regularization
result.

Definition 3.7 ((k,Λ, γ, ε, ν, ρ)-bounded decomposition). Suppose that k ∈ N,
ε, γ, ν, ρ > 0, and Λ > 2. Let V = {V1, V2, . . . , Vs} be a partition of the vertex
set of a graph G. We say that (V,D, Greg, Gexp,E) is a (k,Λ, γ, ε, ν, ρ)-bounded
decomposition of G with respect to V if the following properties are satisfied:

1. Gexp is a (γk, γ)-nowhere-dense subgraph of G with mindeg(Gexp) > ρk.
2. The elements of V are disjoint subsets of V (G).
3. Greg is a subgraph of G − Gexp on the vertex set

⋃
V. For each edge xy ∈

E(Greg) there are distinct Cx 3 x and Cy 3 y from V, and G[Cx, Cy] =
Greg[Cx, Cy]. Furthermore, G[Cx, Cy] forms an ε-regular pair of density at
least γ2.

4. We have νk 6 |C| = |C ′| 6 εk for all C,C ′ ∈ V.
5. D is a family of edge-disjoint (γk, γ)-dense spots in G − Gexp. For each
D = (U,W ;F ) ∈ D all the edges of G[U,W ] are covered by D (but not
necessarily by D).

6. If Greg contains at least one edge between C1, C2 ∈ V, then there exists a
dense spot D = (U,W ;F ) ∈ D for which C1 ⊆ U and C2 ⊆W .

7. For each C ∈ V there is a V ∈ V so that either C ⊆ V ∩ V (Gexp) or
C ⊆ V \ V (Gexp). For each C ∈ V and D = (U,W ;F ) ∈ D, we have
C ∩ U,C ∩W ∈ {∅, C}.
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8. E is a (Λ, ε, γ, k)-avoiding subset of V (G)\
⋃

V with respect to dense spots D.
We say that the bounded decomposition (V,D, Greg, Gexp,E) respects the avoiding

threshold b if for each C ∈ V we have either maxdegG(C,E) 6 b or mindegG(C,E) >
b.

Here “exp” in Gexp stands for “expander,” and “reg” in Greg stands for “regu-
lar(ity).”

The members of V are called clusters. Define the cluster graph Greg as the graph
on the vertex set V that has an edge C1C2 for each pair (C1, C2) which has density
at least γ2 in the graph Greg.

Property 7 tells us that the clusters may be prepartitioned, just as is the case
in the classic regularity lemma. When in Lemma 3.14 below we classify the graph
G from Theorem 1.3, we shall use the prepartition into (roughly) SαT1.3,k(G) and
LαT1.3,k(G).

As stated above, the notion of bounded decomposition is needed for our regularity
lemma–type decomposition given in Lemma 3.13. It turns out that such a decompo-
sition is possible only when the graph is of moderate maximum degree. On the other
hand, Lemma 3.1 tells us that the vertex set of any graph can be decomposed into
vertices of enormous degree and moderate degree. The graph induced by the latter
type of vertices then admits the decomposition from Lemma 3.13. Thus, it makes
sense to enhance the structure of bounded decomposition by vertices of unbounded
degree. This is done in the next definition.

Definition 3.8 ((k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition). Suppose that k ∈
N, ε, γ, ν, ρ > 0, and Λ,Ω∗,Ω∗∗ > 2. Let V = {V1, V2, . . . , Vs} be a partition
of the vertex set of a graph G. We say that ∇ = (H,V,D, Greg, Gexp,E) is a
(k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition of G with respect to V1, V2, . . . , Vs if the
following hold:

1. H ⊆ V (G), mindegG(H) > Ω∗∗k, maxdegH(V (G) \ H) 6 Ω∗k, where H is
spanned by the edges of

⋃
D, Gexp, and edges incident to H.

2. (V,D, Greg, Gexp,E) is a (k,Λ, γ, ε, ν, ρ)-bounded decomposition of G−H with
respect to V1 \H, V2 \H, . . . , Vs \H.

If the parameters do not matter, we call ∇ simply a sparse decomposition, and
similarly we speak about a bounded decomposition.

Definition 3.9 (captured edges, graphs G∇ and GD). In the situation of Def-
inition 3.8, we define the graph GD as the graph induced by the dense spots, i.e.,
V (GD) =

⋃
D∈D V (D), E(GD) =

⋃
D∈D E(D).

We refer to the edges in E(Greg) ∪ E(Gexp) ∪ EG(H, V (G)) ∪ EGD (E,E ∪
⋃

V)
as captured by the sparse decomposition. We write G∇ for the subgraph of G on the
same vertex set which consists of the captured edges.

Likewise, the captured edges of a bounded decomposition (V,D, Greg, Gexp,E) of
a graph G are those in E(Greg) ∪ E(Gexp) ∪ EGD (E,E ∪

⋃
V).

We now include an easy fact about the relation of GD and Greg.

Fact 3.10. Let ∇ = (H,V,D, Greg, Gexp,E) be a sparse decomposition of a graph
G. Then each edge xy ∈ E(GD) with x, y ∈

⋃
V either is contained in Greg or is not

captured.

Proof. Indeed, suppose that xy ∈ E(GD), x, y ∈
⋃

V, and xy 6∈ E(Greg). Prop-
erty 2 of Definition 3.8 says that x, y /∈ H. Further, by property 8 of Definition 3.7,
we have x, y 6∈ E. Last, property 5 of Definition 3.7 implies that xy 6∈ E(Gexp). Hence
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xy is not captured, as desired.

We now give a bound on the number of clusters reachable through edges of the
dense spots from a fixed vertex outside H.

Fact 3.11. Let ∇ = (H,V,D, Greg, Gexp,E) be a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse
decomposition of a graph G. Let x ∈ V (G) \H. Assume that V 6= ∅, and let c be the
size of each of the members of V. Then there are fewer than

2(Ω∗)2k

γ2c
6

2(Ω∗)2

γ2ν

clusters C ∈ V with degGD (x,C) > 0.

Proof. Property 1 of Definition 3.8 says that degGD (x) 6 Ω∗k. For each D ∈ D
with x ∈ V (D) we have that degD(x) > γk, since D is a (γk, γ)-dense spot. By
Fact 3.5,

(3.4) |{D ∈ D : degD(x) > 0}| < Ω∗

γ
.

Furthermore, by Fact 3.4, and using properties 4 and 6 of Definition 3.7, we see
that for a fixed D ∈ D, we have

|{C ∈ V : C ⊆ V (D)}| 6 2Ω∗k

γ
· 1

c
6

2Ω∗

γν
.

Together with (3.4) this gives that the number of clusters C ∈ V with degGD (x,C) > 0
is less than

Ω∗

γ
· 2Ω∗k

γc
6

Ω∗

γ
· 2Ω∗

γν
,

as desired.

As a last step before we state the main result of this section, we show that the
cluster graph Greg corresponding to a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition
(H,V,D, Greg, Gexp,E) has bounded degree.

Fact 3.12. Let ∇ = (H,V,D, Greg, Gexp,E) be a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse
decomposition of a graph G, and let Greg be the corresponding cluster graph. Let c be

the size of each cluster in V. Then maxdeg(Greg) 6 Ω∗k
γ2c 6

Ω∗

γ2ν .

Proof. Let C ∈ V. Then by the definition of Greg and by property 3 of Defini-

tion 3.7, we have degGreg
(C) 6

∑
C′∈NGreg (C)

eGreg (C,C′)

γ2|C||C′| =
∑
C′∈NGreg (C)

eGreg (C,C′)

γ2|C|c .

Since the maximum degree in Greg is upper-bounded by Ω∗k (cf. property 1 of Defi-
nition 3.8), we get

degGreg
(C) 6

∑
C′∈NGreg (C)

eGreg
(C,C ′)

γ2|C|c
6

Ω∗k|C|
γ2|C|c

D3.7(4)

6
Ω∗

γ2ν
,

as desired.

We now state the most important lemma of this section. It says that any graph of
bounded degree has a bounded decomposition which captures almost all of its edges.
This lemma can be considered as a sort of regularity lemma for sparse graphs.
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Lemma 3.13 (decomposition lemma). For each Λ,Ω, s ∈ N and each γ, ε, ρ > 0
there exist k0 ∈ N and ν > 0 such that for every k > k0 and every n-vertex graph
G with e(G) 6 kn, maxdeg(G) 6 Ωk, and with a given partition V of its vertex set
into at most s sets, the following holds for each b > 0. There exists a (k,Λ, γ, ε, ν, ρ)-
bounded decomposition (V,D, Greg, Gexp,E) with respect to V which captures all but
at most ( 4ε

γ +εΩ+γ+ρ)kn edges of G and respects avoiding threshold b. Furthermore,
we have

(3.5)
∣∣∣E(D) \

(
E(Greg) ∪ EGD

[
E,E ∪

⋃
V
])∣∣∣ 6 (4ε

γ
+ εΩ + γ

)
kn .

A proof of Lemma 3.13 is given in section 3.7.

3.3. Decomposition of LKS graphs. Lemmas 3.2 and 3.13 enable us to de-
compose graphs in LKS(n, k, η) in a particular manner.

Lemma 3.14. For every η,Λ, γ, ε, ρ ∈ (0, 1) there are ν > 0 and k0 ∈ N such that
for every k > k0 and for every number b > 0 the following holds. For every sequence
(Ωj)j∈N of positive numbers, with Ω1 > 2, Ωj/Ωj+1 6 η2/100 for all j ∈ N, and
for every G ∈ LKS(n, k, η), there are an index i and a subgraph G′ of G with the
following properties:

(a) G′ ∈ LKSsmall(n, k, η/2).
(b) i 6 100η−2.
(c) G′ has a (k,Ωi+1,Ωi,Λ, γ, ε, ν, ρ)-sparse decomposition (H,V,D, G′reg, G

′
exp,E)

with respect to the partition {V1, V2} := {Sη/2,k(G′),Lη/2,k(G′)}, and with re-
spect to avoiding threshold b.

(d) (H,V,D, G′reg, G
′
exp,E) captures all but at most ( 4ε

γ + εΩb100η−2c + γ + ρ)kn

edges of G′.
(e) |E(D) \ (E(G′reg) ∪ EG′ [E,E ∪

⋃
V])| 6 ( 4ε

γ + εΩb100η−2c + γ)kn.

Proof. Let ν and k0 be given by Lemma 3.13 for input parameters ΩL3.13 :=
Ωb100η−2c, ΛL3.13 := Λ, γL3.13 := γ, εL3.13 := ε, ρL3.13 := ρ, bL3.13 := b, and sL3.13 :=

2. Now, given G, let us consider a subgraph G̃ of G such that G̃ ∈ LKSmin(n, k, η).
When Lemma 3.2 is applied to the sequence (Ωj)j and G̃, we have a graph G′ ∈
LKSsmall(n, k, η/2) and an index i 6 100η−2. We set H := {v ∈ V (G) : degG′(v) >
Ωi+1k}.

Observe that by inequality (2.8), e(G′) < kn. Let (H,D, G′reg, G
′
exp,E) be the

(k,Λ, γ, ε, ν, ρ)-bounded decomposition of the graph G′ − H with respect to
{Sη/2,k(G′),Lη/2,k(G′) \ H} that is given by Lemma 3.13. Clearly, it follows that
(H,V,D, G′reg, G

′
exp,E) is a (k,Ωi+1,Ωi,Λ, γ, ε, ν, ρ)-sparse decomposition of G′ cap-

turing at least as many edges as promised in the lemma.

The process of embedding a given tree TT1.3 ∈ trees(k) into GT1.3 is based on the
sparse decomposition ∇ = (H,V,D, Greg, Gexp,E) of GT1.3 given by Lemma 3.14 and
is much more complex than in approaches based on the standard regularity lemma.
The embedding ingredient in the classic (dense) regularity method inheres in blow-
up lemma type statements, which roughly say that regular pairs of positive density
in some sense behave like complete bipartite graphs. In our setting, in addition to
regular pairs, we shall use three other components of ∇: the vertices of huge degree
H, the nowhere-dense graph Gexp, and the avoiding set E. Each of these components
requires a different strategy for embedding (parts of) TT1.3. Let us mention that
rather major technicalities arise when combining these strategies.
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These strategies are described precisely and in detail in [HKP+d]. An informal
account of the role of E is given in section 3.5. We discuss the use of Gexp in section 3.6.
Only very little can be said about the set H at an intuitive level: These vertices have
huge degrees but are very unstructured otherwise. If only o(kn) edges are incident to
H, then we can neglect them. If, on the other hand, there are Ω(kn) edges incident to
H, then we have no choice but to use them for our embedding. Very roughly speaking,
in that case we find sets H′ ⊆ H and V ′ ⊆ V (G)\H such that still mindeg(H′, V ′)� k
and mindeg(V ′,H′) = Ω(k), and then we use H′ and V ′ in our embedding.

Last, let us note that when GT1.3 is close to the extremal graph (depicted in
Figure 1), then all the structure in GT1.3 captured by Lemma 3.14 accumulates in
the cluster graph G′reg, i.e., H, G′exp, and E are all almost empty. For that reason,
when some of H, G′exp, or E is substantial, we gain some extra aid. In comparison,
one of the almost extremal graphs for the Erdős–Sós conjecture, Conjecture 1.1, has
a substantial H-component (see Figure 2).

3.4. Decomposition of general graphs. A version of Lemma 3.14 can be
formulated for general graphs. To illustrate this, we present below a generic lemma
of this type, which will not be used in the proof of the main theorem.

Lemma 3.15. For every η,Λ, γ, ε, ρ > 0 there are numbers ν > 0 and k0 ∈ N
such that for every sequence (Ωj)j∈N of positive numbers with

Ωj
Ωj+1

6 η
4 , the following

holds. Suppose that G is a graph of order n with average degree k > k0. Then there
is an index i 6 4

η , such that G has a (k,Ωi+1,Ωi,Λ, γ, ε, ν, ρ)-sparse decomposition

(H,V,D, Greg, Gexp,E) that captures all but at most

(3.6)

(
η +

4ε

γ
+ εΩb4η−1c + γ + ρ

)
kn

edges.

The proof follows the same strategy as that of Lemma 3.14.

Proof outline. By Lemma 3.1 there exists a spanning subgraph G′ of G with
e(G) − e(G′) < ηkn and an index i 6 4

η such that the assertion of Lemma 3.2(ii)
holds. The bounded-degree part can then be decomposed using Lemma 3.13, yielding
the desired sparse decomposition.

This decomposition could be used to attack other problems—probably with a ver-
sion of Lemma 3.15 tailored to a particular setting similarly as we did in Lemma 3.14.
However, our feeling is that such a decomposition lemma is limited in applications to
tree-containment problems. The reason is that two of the features of the sparse de-
composition, the nowhere-dense graph Gexp and the avoiding set E, seem to be useful
only for embedding trees. See sections 3.5 and 3.6 for a discussion of the respective
embedding strategies.

3.5. The role of the avoiding set E. Let us explain the role of the avoiding set
E in Lemma 3.13. As stated above, our aim in Lemma 3.13 will be to locally regularize
parts of the input graph G. Of course, first we try to regularize as large a part of
the graph G as possible. The avoiding set arises as a result of the impossibility of
regularizing certain parts of the graph. Indeed, it is one of the most surprising steps in
our proof of Theorem 1.3 that the set E is initially defined as—very loosely speaking—
“those vertices where the regularity lemma fails to work properly,” and only then do
we prove that E actually satisfies the useful conditions of Definition 3.6.
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We now sketch how to utilize avoiding sets for the purpose of embedding trees.
In our proof of Theorem 1.3 we preprocess the tree T = TT1.3 ∈ trees(k) by choosing
several cut-vertices so that the tree decomposes into small components, called shrubs.
We cut T so that the order of each shrub is at most τk, where τ > 0 is a small
constant. Then we sequentially embed those shrubs. Thus embedding techniques
for embedding a single shrub are the building blocks of our embedding machinery,
and E is one of the environments which provides us with such a technique. Let us
discuss here the simpler case of embedding end-shrubs (i.e., shrubs incident to a single
cut-vertex). More precisely, we show how to extend a partial embedding of a tree by
one end-shrub. To this end, let us suppose that φ is a partial embedding of a tree
T , and v ∈ V (T ) is its active vertex , i.e., a vertex which is embedded, but not all
its children are. We write U ⊆ V (G) for the current image of φ. Let T ′ ⊆ T be an
end-shrub which is not embedded yet, and suppose u ∈ V (T ′) is adjacent to v. We
have v(T ′) 6 τk.

We now show how to extend the partial embedding φ to T ′, assuming that
degG

(
φ(v),E \ U

)
> γk for some (1, ε, γ, k)-avoiding set E (where τ � ε � γ � 1).

Let X be the set of at most εk exceptional vertices from Definition 3.6 corresponding
to the set U . We now embed T ′ into G, starting by embedding u in a vertex of
E \ (U ∪ X) in the neighborhood of φ(v). By Definition 3.6, there is a dense spot
D = (AD, BD;F ) ∈ D such that φ(u) ∈ V (D) and |U ∩V (D)| 6 γ2k. As D is a dense
spot, we have degG(φ(u), V (D)) > γk. We can greedily embed T ′ into D using the
minimum degree in D. See Figure 5 for an illustration, and [HKP+d, Lemma 6.4] for
a precise formulation.

Fig. 5. Embedding using the set E.

We indeed use the avoiding set for embedding shrubs of T as above. The major
simplification we made in the exposition is that we only discussed the case when T ′ is
an end-shrub. To cover embedding of an internal shrub T ′ as well (i.e., a shrub that
is incident to more than one cut-vertex), one needs to have a more detailed control
over the embedding, i.e., one must be able to extend the embedding of T ′ to the
neighboring cut-vertices in such a way that one can then continue the embedding.

Last, let us remark that unlike in our simple example above, we use an (Λ, ε, γ, k)-
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avoiding set with Λ � 1. This is because in the actual proof one has to avoid more
vertices than just the current image of the embedding.

3.6. The role of the nowhere-dense graph Gexp. Here we give some intu-
ition on how the (γk, γ)-nowhere-dense graph Gexp from the (k,Ω∗∗,Ω∗,Λ, γ, ε′, ν, ρ)-
sparse decomposition3 (H,V,D, Greg, Gexp,E) of a graph G is useful for embedding a
given tree T ∈ trees(k). We start out with the rather simple case when T is a path.
We then point out an issue with this approach for trees with many branching vertices
and show how to overcome this problem.

Embedding a path in Gexp. Assume that we are given a path T = u1u2 · · ·uk ∈
trees(k) and that we wish to embed it in Gexp. The idea is to apply a one-step look-
ahead strategy. We first embed u1 in an arbitrary vertex v ∈ V (Gexp). Then, we
extend our embedding φ` of the path u1 · · ·u` in Gexp in step ` by embedding u`+1

in a (yet unused) neighbor w of the image of the active vertex u`, requiring that

(3.7) degGexp

(
w, φ`(u1 · · ·u`)

)
<
√
γk .

Let us argue that such a vertex w exists using induction on `. First, observe that
property 1 of Definition 3.7 implies that φ`(u`) has at least ρk neighbors. By (3.7)
applied to `−1, at most

√
γk of these neighbors lie inside φ`(u1 · · ·u`−1); this property

is also trivially satisfied when ` = 1. Further, an easy calculation shows that at most
16
√
γk of them have degree more than

√
γk in Gexp into the set φ`(u1 · · ·u`); otherwise

we would get a contradiction to Gexp being (γk, γ)-nowhere-dense. Since we assumed
ρ > 17

√
γ, we can find a vertex w satisfying (3.7) and thus embed all of T .

Embedding trees with many branching points. We certainly cannot hope
that a nonempty graph Gexp alone will provide us with embeddings of all trees T ∈
trees(k) from Theorem 1.3. For instance, if T is a star, then we need in G a vertex of
degree k − 1, which Gexp might not have. The structure of LKS graphs allows us to
deal with embedding high-degree vertices. However, even without any vertex of large
degree in our tree, the method described above might not always work, as we show
next.

Consider a binary tree T ∈ trees(k), rooted at its central vertex r. Now if we try
to embed T sequentially as above, we will arrive at a moment when there are many
(as many as log2 k) active vertices, regardless of the order in which we embed.4 Now,
the neighborhoods of the images of the active vertices cannot be controlled much,
i.e., they may be intersecting considerably. Hence, when embedding children of active
vertices, we might block available space in the neighborhoods of other active vertices.
See Figure 6 for an illustration.

To remedy the situation, we partition T so that the first q levels of T from the
root r form the set of the cut-vertices W . All other vertices make up the end-shrubs
T ∗1 , . . . , T

∗
h . That is, |W | = 2q − 1, and h = 2q+1 − 2.

We first embed the few cut-vertices W . As ρk will be much larger than 2q,
following a strategy similar to the one above, we ensure that all cut-vertices get
correctly embedded. The next step is to make the transitions at the qth level from
embedding cut-vertices to embedding shrubs T ∗1 , . . . , T

∗
h . But since this step requires

us to exploit the structure of LKS graphs, we skip the details in the high-level overview

3We shall assume that 17
√
γ < ρ; this will be the setting of the sparse decomposition we shall

work with in the proof of Theorem 1.3.
4The only requirement on the ordering is that in each moment the embedded part of the tree

forms a connected subgraph; in particular, we may use the depth-first and the breadth-first orders.
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Fig. 6. Embedded part of the binary tree in bold. The neighborhoods of active vertices may
overlap.

here. For the sake of this simplified example, let us assume that all the cut-vertices
are embedded in a set L with

(3.8) mindegGexp
(L) > δk

(where ρ� δ < 1 is a small constant).
For the point we wish to make here, it is more relevant to see how to complete the

last part of our embedding, that is, how to embed a tree T ∗i whose root ri is already
embedded in a vertex φ(ri) ∈ V (Gexp). Let imi := im(φ) be the current (partial)
image of φ. Further, we assume that throughout the entire process we have

(3.9) degGexp
(φ(ri), V (Gexp) \ im) ' δk/2 ,

where im is the image at that moment (and in particular, also at the end of the
process). We explain how to achieve this property at the end.

We emphasize that at this moment we are working exclusively with the tree T ∗i ;
i.e., any other tree T ∗j either is completely embedded or will be embedded only after
we finish the embedding of T ∗i . Suppose we are about to embed a vertex v ∈ V (T ∗i )
whose ancestor v′ ∈ V (T ∗i ) ∪W is already embedded in V (Gexp). We choose for the
image of v any (yet unused) vertex w in the neighborhood of ϕ(v′), requiring that

(3.10) degGexp
(w, imi) < ρk/100 .

This condition is very similar to our path-embedding procedure above and can be
proved in exactly the same way, using the fact that Gexp is (γk, γ)-nowhere-dense.
When v′ ∈W is a cut-vertex, we need to combine this argument with (3.9).

Note that during our embedding |im(φ)\imi| will grow. However, |im(φ)\imi| is at
most v(T ∗i ), which is much smaller than ρk. Thus, for every vertex v′′ ∈ V (T ∗i ), when
its time to be embedded comes, we still have a small degree into the partial image of the
tree. Therefore v′′ can be embedded on a vertex w that satisfies degGexp

(w, im(φ)) <
ρk/50 similarly as in (3.10).

Note that the trick here was to keep working on one subtree T ∗i , whose size is
small enough to be negligible in comparison to the degree of the vertices in Gexp. So,
by avoiding the vertices that have a considerable degree into imi, we actually also
avoid those vertices that have a considerable degree into im(φ). Breaking up the tree
into tiny shrubs was thus the key to successfully embedding it.
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Let us now explain how to achieve (3.9). Instead of just embedding the tree
T ∗i , we shall also reserve an equal number of vertices in Gexp that are touched only
exceptionally. More precisely, in a given step, instead of extending the embedding
from a vertex to its two children, we first find four candidate vertices, and then we
randomly select two of them to host these children and insert the remaining two into
a reserve set R. Condition (3.10) is replaced by degGexp

(w, imi ∪ R) < ρk/100. This
allows us to avoid not only imi but also R when extending the embedding of T ∗i . The
only time the set R may be used to host a vertex v of some tree T ∗1 , . . . , T

∗
h is when

v is the root of such a tree. Since the choice for the inclusion of vertices to R was
random, with high probability we have5

(3.11) degGexp
(φ(ri), imi) ≈ degGexp

(φ(ri), R)± h ,

where the ±h term amounts to the roots for which the random choice is not used. Re-
call that h� ρk. This together with (3.8) establishes (3.9). We call this probabilistic
tool Duplicate and introduce it in [HKP+d, section 6.3].

3.7. Proof of the decomposition lemma. This subsection is devoted to the
proof of the decomposition lemma (Lemma 3.13). In the proof, we start by extracting
the edges of as many (γk, k)-dense spots from G as possible; these together with
the incident vertices will form the auxiliary graph GD. Most of the remaining edges
will form the edge set of the graph Gexp. Next, we consider the intersections of the
dense spots captured in GD. We apply the regularity lemma for locally dense graphs
(Lemma 2.5) to the subgraph of GD that is spanned by the large intersections, and
thus obtain Greg. The other part of V (GD) will be taken as the (Λ, ε, γ, k)-avoiding
set E.

Setting up the parameters. We start by setting

ν̃ := ε · 3−
ΩΛ
γ3 .

Let qMAXCL be given by Lemma 2.5 for input parameters

(3.12) mL2.5 :=
Ω

γν̃
, zL2.5 := 4s, and εL2.5 := ε .

Define an auxiliary parameter q := max{qMAXCL, ε
−1}, and choose the output pa-

rameters of Lemma 3.13 as

k0 :=
⌈qMAXCL

ν̃

⌉
and ν :=

ν̃

q
.

Defining D and Gexp. Given a graphG, take a familyD of edge-disjoint (γk, γ)-
dense spots such that the resulting graph GD ⊆ G (which contains those vertices and
edges that are contained in

⋃
D) has the maximum number of edges.

Then by Lemma 2.1 there exists a graph Gexp ⊆ G−GD with mindeg(Gexp) > ρk
and such that

(3.13) |E(G) \ (E(Gexp) ∪ E(GD))| 6 ρkn .

This choice of D and Gexp already satisfies properties 5 and 1 of Definition 3.7.

5Equality (3.11) holds with positive probability not only for one fixed root ri but even for all
roots simultaneously. Indeed, allowing the additive error ≈ in (3.11) to be k3/4 (which we can still
afford), the Chernoff bound gives that for one fixed root ri, (3.11) fails with probability at most

exp(−Θ(
√
k)). Thus, we can take the union bound over all the roots (boundedly many of them).
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Preparing for an application of the regularity lemma. Let

(3.14) X :=�D{U,W, V (G) \ V (D)} ,

where the latter partition refinement ranges over all D = (U,W ;F ) ∈ D. Let B :=
{X ∈ X : X ⊆ V (GD)}, B̃ := {B ∈ B : |B| > 2ν̃k}, and C̃ := B \ B̃. Furthermore,
let B̃ :=

⋃
B∈B̃ B and E :=

⋃
C∈C̃ C.

Now, partition each set B ∈ B̃ into cB := d|B|/2ν̃ke subsets B1, . . . , BcB of
cardinalities differing by at most one, and let B′ be the set containing all the sets Bi
(for all B ∈ B̃). Then for each B ∈ B′ we have that

(3.15) ν̃k 6 |B| 6 2ν̃k 6 εk .

Construct a graph H on B′ by making two vertices A1, A2 ∈ B′ adjacent in H if
(A) there is a dense spot D = (U,W ;F ) ∈ D such that A1 ⊆ U and A2 ⊆ W ,

and
(B) dG(A1, A2) > γ.

Note that it follows from the wayD was chosen that ifA1A2 ∈ E(H), thenG[A1, A2] =
GD[A1, A2]. On the other hand, note that we do not necessarily have G[A1, A2] =
D[A1, A2] for the dense spot D appearing in (A), just because there may be several
such dense spots D.

By the assumption of Lemma 3.13, maxdeg(G) 6 Ωk. So, for each B ∈ B′
we have eG(B, B̃ \ B) 6 Ωk|B|. On the other hand, (3.15) and (B) imply that
γν̃k|B|degH(B) 6 eG(B, B̃ \B). We conclude that

(3.16) maxdeg(H) 6
Ω

γν̃
= mL2.5 .

Regularizing the dense spots in B̃. We apply Lemma 2.5 with parameters
mL2.5, zL2.5, and εL2.5 as defined by (3.12) to the graphs HL2.5 := GD and FL2.5 := H,
together with the ensemble B′ in the role of the sets Wi and the partition of V (GD)
induced by

ZL2.5 := V �
{
V (Gexp), V (G) \ V (Gexp)

}
�
{
V E, V (G) \ V E

}
,

where V E := {v ∈ V (G) : deg(v,E) > b}.
Observe that B′ is a (ν̃k)-ensemble satisfying condition (2.2) of Lemma 2.5,

by (3.15), by the choice of k0, and by (3.16). Thus we obtain integers {pA}A∈B′ ,
a family V = {W (1)

A , . . . ,W
(pA)
A }A∈B′ , and a set W0 :=

⋃
A∈B′W

(0)
A such that, in

particular, we have the following:
(I) We have ε−1 6 pA 6 qMAXCL for all A ∈ B′.

(II) We have |W (x)
A | = |W

(y)
B | for any A,B ∈ B′ and for any x ∈ [pA], y ∈ [pB ].

(III) For any A ∈ B′ and any a ∈ [pA], there is a set V ∈ V for which W
(a)
A ⊆ V .

We have that W
(a)
A ⊆ V (Gexp), or W

(a)
A ∩ V (Gexp) = ∅ and W

(a)
A ⊆ V E, or

W
(a)
A ∩ V E = ∅.

(IV)
∑
e∈E(H) |irreg(e)| 6 ε

∑
AB∈E(H) |A||B|, where irreg(AB) is the set of all edges

of the graph G contained in an ε-irregular pair (W
(x)
A ,W

(y)
B ), with x ∈ [pA],

y ∈ [pB ], AB ∈ E(H).
Let Greg be obtained from GD by erasing all vertices in W0 and all edges that

lie in pairs (W
(x)
A ,W

(y)
B ) which are irregular or of density at most γ2. Then proper-

ties 2, 3, 6, and 7 of Definition 3.7 are satisfied. Further, Lemma 2.10 implies (3.5).
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Together with (3.13) we obtain that the number of edges that are not captured by
(V,D, Greg, Gexp,E) is at most ( 4ε

γ + εΩ + γ + ρ)kn.

Note that properties (I) and (II) and (3.15) imply that for all A ∈ B′ and for any
a ∈ [pA] we have that

εk > |A| > |W (a)
A | >

ν̃k

qMAXCL
>
ν̃k

q
= νk .

Thus also property 4 of Definition 3.7 holds.
The refinement in (3.14) guarantees that the bounded decomposition we have

constructed respects the avoiding threshold b.
Thus, it remains only to prove property 8 of Definition 3.7.

The avoiding property of E. In order to prove property 8 of Definition 3.7, we
have to show that E is (Λ, ε, γ, k)-avoiding with respect to D. For this, let Ū ⊆ V (G)
be such that |Ū | 6 Λk. Let X be the set of those vertices v ∈ E that are not contained
in any dense spot D ∈ D for which |Ū∩V (D)| 6 γ2k. Our aim is to see that |X| 6 εk.

Let DX ⊆ D be the set of all dense spots D with X ∩ V (D) 6= ∅. Setting

A := {A ∈ C̃ : A ∩X 6= ∅}, the definition of E trivially implies that |X|2ν̃k 6 |A|. Now,

by the definition of B, we know that there are at most 3|DX | sets A ∈ A. Indeed, for
each D = (U,W ;F ) ∈ DX , A is a subset of U , or of W , or of V (G) \ V (D). Thus,

(3.17) 3|DX | > |A| > |X|
ν̃k

.

By Fact 3.5, each vertex of V (G) lies in at most Ω/γ of the (γk, γ)-dense spots
from D. Hence

Ω

γ
|Ū | >

∑
D∈DX

|V (D) ∩ Ū | > |DX |γ2k
(3.17)

> log3

(
|X|
ν̃k

)
γ2k ,

where the second inequality holds by the definition of X. Thus

|X| 6 3
ΩΛ
γ3 · ν̃k = εk ,

as desired. This finishes the proof of Lemma 3.13.

3.8. Sparse decomposition of dense graphs. Let us explain our remark
above that in the setting of a dense graph G, Lemmas 3.14 and 3.15 produce a
regularity partition in the usual sense. So, suppose that G is an n-vertex graph and
has at least an2 edges. This needs to be understood with the usual quantification
“a > 0 is fixed and n is large.”

Recall that when we employ a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition, the
parameters satisfy Ω∗∗,Ω∗,Λ� 1� γ, ε, ν, ρ > 0. The interplay between the param-
eters is quite complicated, and we do not give it here in full (see [HKP+d, p. 1142] for
details). We justify with “parameter choice” any further relation we assume between
them. Also, let us note that while our exact choice of parameters made in [HKP+d]
is tailored for proving Theorem 1.3, we expect these relations to be satisfied in any
application of Lemma 3.15, at least on the loose level on which we make use of them
in this section.

First, we argue that it makes sense to set k linear in n, i.e., k = cn for some
c depending on a only. Indeed, having k � n would allow that all edges of G are
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uncaptured in (3.6), which would make the lemma worthless. On the other hand,
with k � n we would have all vertices from Q = {v ∈ V (G) : deg(v) >

√
an} ending

up in the huge-degree set H for which the sparse decomposition provides no structural
information. Since |Q| >

√
an, that would be a big loss of information and thus would

often be undesirable.
So, suppose now that k = cn, and suppose that (H,V,D, Greg, Gexp,E) is a

(k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition of the dense graph G. Since Ω∗∗k =
Ω∗∗cn > n, we have that H = ∅. Next, we argue that Gexp contains no vertices.
Suppose on the contrary that it does. Then the minimum degree condition in prop-
erty 1 of Definition 3.7 tells us that Gexp has at least ρk vertices of degree at least
ρk each. Thus, e(Gexp) > ρ2k/2 = c2ρ2n2/2. Since Gexp has at most n vertices, and
since cρ� γ (parameter choice), we get that Gexp contains at least one (γk, γ)-dense
spot, a contradiction to Gexp being nowhere-dense. Last, we claim that |E| 6 εk. To
this end, consider the set UD3.6 = V (G). We have |UD3.6| = n 6 Λcn, and thus the
condition in Definition 3.6 applies. But there cannot exist any (γk, γ)-dense spot as
asserted in Definition 3.6 since for such a dense spot D we would have |V (D)| < γ2k,
contradicting its required minimum degree condition. Thus, we conclude that all the
vertices v ∈ E are exceptional in the sense of Definition 3.6, leading to the desired
bound on |E|.

To summarize, in the sparse decomposition (H,V,D, Greg, Gexp,E), we have that
H, Gexp, E are empty or almost empty. Thus, according to Definition 3.9, all the
captured edges lie in the regularized graph Greg. Property 4 of Definition 3.7 tells
us that the clusters have size at least νk = (νc)n, that is, linear in the order of G.
Further, this property tells us that these clusters are of the same size. We conclude
that Greg is a regularization of G in the sense of the original regularity lemma.

3.9. Algorithmic aspects of the decomposition lemma. Let us look back
at the proof of the decomposition lemma (Lemma 3.13) and observe that we can
get a bounded decomposition of any bounded-degree graph algorithmically in quasi-
polynomial time (in the order of the graph). Note that this in turn efficiently provides
a sparse decomposition of any graph, since the initial step of splitting the graph into
huge- versus bounded-degree vertices (cf. Lemma 3.2) can be done in polynomial time.

There are only two steps in the proof of Lemma 3.13 which need to be done
algorithmically: the extraction of dense spots and the simultaneous regularization of
some dense pairs.

It will be more convenient to work with a relaxation of the notion of dense spots.
We call a graph H (d, `)-thick if v(H) > ` and e(H) > dv(H)2. The notion of thick
graphs is a relaxation of dense spots, where the minimum degree condition is replaced
by imposing a lower bound on the order and the bipartiteness requirement is dropped.
It can be verified that in our proof it is not important that the dense spots D and
the nowhere-dense graph Gexp be parametrized by the same constants; i.e., the entire
proof would go through even if the spots in D were (γk, γ)-dense, and Gexp were
(βk, β)-nowhere-dense for some β � γ. Each (βk, β)-thick graph gives (algorithmi-
cally) a (βk/4, β/4)-dense spot, and thus it is enough to extract thick graphs.

For the extraction of thick graphs we would need to efficiently answer the follow-
ing: Given a number β > 0, find a number γ > 0 such that for an input number h
and an N -vertex graph we can localize in G a (γ, h)-thick graph if it contains a (β, h)-
thick graph, and output NO otherwise.6 Employing techniques from a deep paper of
Arora, Frieze, and Kaplan [AFK02], one can solve this problem in quasi-polynomial

6We could additionally assume that maxdeg(G) 6 O(h) due to the previous step of removing the
set H of huge-degree vertices.
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time O(N c·logN ). This was communicated to us by Maxim Sviridenko. On the nega-
tive side, a truly polynomial algorithm seems to be out of reach, as Alon et al. [AAM+]
reduced the problem to the notorious hidden clique problem, the tractability of which
has been an open question for 20 years.

Theorem 3.16 (see [AAM+]). If there is no polynomial time algorithm for solving
the clique problem for a planted clique of size n1/3, then for any ε ∈ (0, 1) and δ > 0
there is no polynomial time algorithm that distinguishes between a graph G on N
vertices containing a clique of size κ = Nε and a graph G′ on N vertices in which the
densest subgraph on κ vertices has density at most δ.7

Of course, Theorem 3.16 leaves some hope for a polynomial time algorithm when

h = No(1) (which corresponds to kL3.13 = n
o(1)
L3.13).

The regularity lemma can be made algorithmic [ADL+94]. The algorithm from
[ADL+94] is based on index pumping-up and thus applies even to the locally dense
setting of Lemma 2.5.

It will turn out that the extraction of dense spots is the only obstruction to a
polynomial time algorithm for Theorem 1.3. In [HKP+d], we sketch a truly polynomial
time algorithm which avoids this step. It seems that the method sketched there is
generally applicable for problems which employ sparse decompositions.
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Hladký was funded by a BAYHOST fellowship, a DAAD fellowship, Charles Uni-
versity grant GAUK 202-10/258009, EPSRC award EP/D063191/1, and an EPSRC
Postdoctoral Fellowship during the work on the project.
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Rényi Institute of Mathematics of the Hungarian Academy of Sciences; and Charles
University in Prague during their long-term visits.

The yet unpublished work of Ajtai, Komlós, Simonovits, and Szemerédi on the
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Symbol index

[n], 954
�, 954
d(U,W ), 954
deg, 952
E(G), 952
e(G), 952
ensemble, 953
e(X), 952
e(X,Y ), 952
GD, 965
Greg, 965
G∇, 965
ind(A,B), 957
Lη,k(G), 960
LKS(n, k, η), 960
LKSmin(n, k, η), 960
LKSsmall(n, k, η), 961
maxdeg, 952
mindeg, 952
N(v), 952
Sη,k(G), 960
trees(k), 947
V (G), 952
v(G), 952



THE APPROXIMATE LOEBL–KOMLÓS–SÓS CONJECTURE I 979

General index

active vertex, 969
avoiding (set), 964
avoiding threshold, 965

bounded decomposition, 964

captured edges, 965
cluster, 965
cluster graph, 965

dense spot, 963
density, 954

embedding, 947
empty graph, 953
ensemble, 953

garbage cluster, 957

index, 957
irregular, 954
irregular partition, 957

nowhere-dense, 963

refine up to garbage cluster, 957
regular pair, 954
regular partition, 957
respect avoiding threshold, 965

sparse decomposition, 965

thick graph, 975
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[Hla] J. Hladký, Szemerédi Regularity Lemma and Its Applications in Combinatorics, MSc.
thesis, Charles University in Prague, Prague, Czech Republic, 2008, http://users.
math.cas.cz/∼hladky/papers.html.

[HLT02] P. E. Haxell, T.  Luczak, and P. W. Tingley, Ramsey numbers for trees of small
maximum degree, Combinatorica, 22 (2002), pp. 287–320.
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