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Abstract. Given two graphs H and G, let H(G) denote the number of subgraphs of G isomorphic 
to H. We prove that if H is a bipartite graph with a one-factor, then for every triangle-free graph 
G with n vertices H(G) < H(T2(n)), where T2(n) denotes the complete bipartite graph of n vertices 
whose eolour classes are as equal as possible. We also prove that if K is a complete t-partite graph 
of m vertices, r > t, n > max(m, r - 1), then there exists a complete (r - 1)-partite graph G* with 
n vertices such that K(G) < K(G*) holds for every Kr-free graph G with n vertices. In particular, in 
the class of all/(,-free graphs with n vertices the complete balanced (r - 1)-partite graph T,_l(n ) 
has the largest number of subgraphs isomorphic to K t (t < r), C,, K2.a. These generalize some 
theorems of Turhn, Erdfs and Sauer. 

1. Introduction 

Let T,-1 (n) denote the complete (r - 1)-partite graph with n vertices whose colour 

classes are as equal as possible, i.e., each class contains either Lr- - -~J  or [ r _ ~ n  1]  

vertices. Turfin's well-known theorem [8, 9] states that every K,-free graph G with 
n vertices contains at most as many edges as T,_l(n ) does. Furthermore, if G is 
different from T,_I (n), then its number of edges e(G) is strictly smaller than e(T,_ 1 (n)). 

In this paper we consider the following extension of this problem. Given a graph 
H, and two natural numbers r and n, what is the maximum number of subgraphs 
isomorphic to H a K,  free graph with n vertices can have? (Notice that if K , ~  H 
then the order of magnitude of this maximum is obviously cn Ivth~l. So we are 
interested either in a sharper asymptotic formula or in an exact result.) Turhn's 
theorem settles the special case when H is a single edge. 

To formulate our results, we shall need some notation. For  any two graphs 
H and G, let H ~  denote the number of different embeddings tp: V(H) ~ V(G) such 
that 

(i) v~ # v2~cp(v~) # q)(v2), 

(ii) vlv2 e E(H)=~q~(vl)q@2)~ E(G) 

for every pair vl, v2 ~ V(H). 
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Let H(G) denote the number of subgraphs of G isomorphic to H. Evidently, 
H(G)/H(G-') is equal to the number of automorphisms of H, provided that H(G) v~ O. 
Hence, in any class of graphs @, H(G) and H(G) attain their maxima for the same 
Gefa.  

Theorem 1. Let H be a bipartite graph with m >_ 3 vertices, containing Lm/2J inde- 
pendent edges. 

Then, for every triangle free graph G with n > m vertices, H(G) < H(T2(n)) , and 
equality holds if  and only i f  G ~- T2(n ). 

In particular, it follows that in the class of all triangle-free graphs of n vertices 
T2(n) contains the largest number of subgraphs isomorphic to Pk (the path of 
length k), C2k (the cycle of length 2k), T2(k) etc. The problem of maximizing the 
number of odd cycles is radically different (cf. [3, 6]). 

Let ,~-(1) re(2) -%-1 and --,-1 be two complete subgraphs of a graph H, IV(K~Pl)I = 
(2) I v(g,-x) l  = r - 1. We call them adjacent, if IV(K~P~) N V(K~,2_~)I = r - 2. We say 

that the (r - l)-skeleton of  H is connected, if for any two vertices v~, v2 ~ V(H) there 
is a sequence -',-t,r:(~)..., -,-,-lr"(*)~ of complete subgraphs of H such that v~ ~ h ,_  1,''(1)- 
v = rots) and ~(o and t,-(i+~) 2 ~ ZXr-1, "~'1.-1 "~r-1 are adjacent for every I < i < s. The following 
assertion is a straightforward generalization of Theorem 1. 

Theorem 2. Let r >_ 3, and let H be an (r - 1)-partite graph with m > r - 1 vertices, 
containing Lm/(r - 1)J vertex disjoint complete subgraphs of  r - 1 vertices. Suppose 
further that the (r - 1)-skeleton of  each component of  H is connected. 

Then, for every K,-free graph G with n vertices, H(G) <_ H(T,_I(n)), and equality 
holds i f  and only i f  G ~ T,_ 1 (n). 

In particular, we obtain that, for every r - 1 < k < n, in the class of all K,-free 
graphs with n vertices T,-1 (n) contains the largest number of subgraphs isomorphic 
to T,_l(k ). 

For  the more general problem, when we wish to maximize the number of 
subgraphs isomorphic to a given complete t-partite graph whose classes may have 
different sizes, we can prove the following. 

Theorem 3. Let K be a complete t-partite graph of m vertices, and let r > t, 
n >_ max(m, r - 1) be arbitrary integers. 

Then there exists a complete (r - 1)-partite graph G* with n vertices such that ,  
for every Kk-free graph G with n vertices, K(G) <<_ K(G*). Furthermore, i f  n >_ m + 1, 
then max K( G) is attained for complete (r - 1)-partite graphs only. 

6 

Remark I. The graph G* in Theorem 3 is not necessarily balanced. In fact, the ratio 
of the sizes of its smallest and largest classes is not even bounded. Indeed, let K be the 
complete bipartite graph Ka.b whose colour classes are of size a and b, respectively, 
and let r = 3. Then K.,,_~, will contain c.,b(m°(n -- m) b + mb(n -- mr)  + O(n "+b-'l) 
copies of K.,b. Hence, if ( a -  b )2>  a + b, then T2(n) is clearly not optimal. 

a 
Furthermore if a, b --* oo, a >> b, then for the optimal Km n-= we have m ,-, - - - -~n.  

' a +  
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Remark 2. Theorem 3 cannot be generalized to every t-partite graph, because one 
can easily construct a bipartite graph K for which no (complete) bipartite graph G* 
can be optimal. An easy example can be obtained by taking two disjoint stars 
K1.o-2 andj  oining their centres by a path of length 3. Any bipartite graph G contains 
at most 

/ qG)  ___ 2 + O(n "-q = 2 o( _ + 

a - - 2 j  

copies of K. Let us divide now a set of n points into 5 classes Co, C1 . . . . .  Ca, 
/ 

and join every vertex in Ci to every vertex in Ci+l(mod5). If [Col = (I-aZ--)n, 

n 
I C1 ] . . . .  = I C41 = 2a and a is SUfficiently large, then we obtain a graph G1 for which 

K(G~) is much larger than the above upper bound for the maximum of K(G) over 
all bipartite graphs G with n vertices. 

Remark 3. If n = m, then we may have other extremal graphs that are not r - 1- 
partite, as well. For example, let r = 4, n = m = 6, K = K 3 ,  3. Then, it is easy to 
show that in the class of all K,-free graphs G with 6 vertices max K3, a(G) is attained 
for Ka. a, K3.a plus an edge, and Ka,2.1. 

Theorem 3 implies that to determine max K(G) and the extremal graphs is 
IlZCG)l=n 

equivalent to maximizing certain polynomials. We mention three particular cases. 

Corollary 4. [4, 5, 7-1 For t < r and for every K,-free graph G with n > r - 1 vertices, 
Kt(G) <_ Kt(T,_I(n)) and equality holds if  and only if  G ~- T,_l(n ). 

Proof. The statement is trivial for n = r - 1. By Theorem 3, for n > r - 1 > t, 
the extremal graphs are of the form Knt.~, ..... ~.-c The number of K,'s in K~I.~ 2 ..... ~,-i 
is ~ ni,ni~.., ni,, which is maximal if and only if the ni's a r e  as equal 

1 < i t  < i2<  -" </ t  < r - 1  

as possible, i.e. Knl,n ~ ..... '*-1 -~ T,-l(n)" [] 

Corollary 5. For every K,-free graph G with n > max(r - 1, 5) vertices, C4(G) = 
K2.2(G) _< C4(T,_I(n)), and equality holds i f  and only if  G ~- T,_l(n ). 

Proof. The extremal graphs are of the form K~l ..... n.-c The number of K2.2's in 
K~I ..... ,~-1 is 

(:) ,) + 2 E nqni2n,,n,, - + n - n i  (1) 
1 <_it<i2<ia<i4<r-1 "= 

The first sum is maximal if and only if the ni's are as equal as possible. We show 
that the second sum S is minimal in the same case. 

Assume that the ni's are chosen so that S is minimal, but there are some indices 
i,j such that n i < n~ - 1. Then increasing n i and decreasing n~ by 1, S will change by 
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= _ ni _ _ -- 1)  

,) 
[(,,) = ( n - - n ' - n s )  2 - 2 + s n i ( n j - 1 ) ( n i - n . i +  l ) < O .  []  

The following corollary can be proved quite similarly. 

Coronary 6. eor  every K,-free graph G with n > m a x ( r -  1, 6) vertices, K2,3(G) < 
K2,3(T,_I(n)), and equality holds if and only if G "~ T,_l(n ). 

Many related questions are discussed in [1, 2]. 

2. Proof of Theorem 1 

A bipartite graph H is said to have the T-property (the strong T-property) if, for any 
natural number n _> III(/-/)1, and for arty triangle-free graph G with n vertices, 

_< 

(and equality holds if and only if G ~- Tz(n)). 
Using this terminology, our Theorem 1 states that any bipartite graph H having 

a perfect matching (or (I v(n)l - 1 ) / 2  independent edges if I V(H)I is odd) has the 
strong T-property. 

Lemma 2.1. Let H be a bipartite graph, all of whose connected components H 1, 
H2, ..., H k have the T-property. Assume that each Hi, except possibly the last one, 
consists of two equal colour classes. 

Then H has the T-property. Furthermore, if H1 has the strong T-property, then 
H has the strong T-property, too. 

Proof. It is more convenient to estimate H(G), the number of different embeddings of 
H into G. Set [ V(Hi)I = m~. Embedding the connected components of H successively, 
by our assumptions we obtain 
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H(G) < 1-I H, T 2 n - Z rn, = H(T~(n)). 
~=x j<i / /  

IfHx has the strong T-property, then equality can hold only for G ~- T2(n). []  

Let Is denote the graph consisting of k independent edges, and let I~ denote the 
graph obtained from lk by adding an isolated vertex. 

Corollary 2.2. For every natural number k, the graphs Ik and I~ have the strong 
T-property. 

Proof. Turhn's theorem states that 11 has the strong T-property. The graph consisting 
of a single vertex obviously has the T-property. Hence we can apply the previous 
lemma. []  

In view of Lemma 2.1, it is sufficient to prove Theorem 1 in the special case when 
H is connected. Let G be any triangle-free graph with n vertices. 

Assume first that m = IV(n) l  = 2k, and let alb 1 . . . . .  akb ~ • E(H) be a perfect 
matching of H. According to Corollary 2.2, there are Ik(G) < lk(T2(n)) injections 
q~: {al,. . . ,ak, bl,. . . ,bk} ~ V(G) such that q~(a,)q~(bi) • E(G) for every i. Two such 
injections ¢#1 and ~o 2 are called equivalent, if 

(i) ~01(al)= ~02(al), and 

(ii) {qh(a,),tpl(b~)} = {tp2(ai),cp2(bi) } foreveryl  < i_< k. 

In every equivalence class there are exactly 2 k-1 elements. However, due to the fact 
that H is connected and G has no triangles, each class contains at most one 
embedding of H into G, i.e., one injection q~ satisfying 

Thus, 

q~(x)tp(y) • E(G) for every xy • E(H). 

H(G) < 21-klk(G ) < 21-klk(T2(n))= H(T2(n)). 

as required. Since Ik has the strong T-property, H(G) = H(T2(n)) if and only if 
G - r=(n). 

Suppose next that m = [ V(H)] = 2k + 1. Let {ao, a l , . . . ,  ak} and {bl . . . .  , kk} be 
the colour classes of H, and assume without loss of generality that aib~ • E(H) for 
every 1 _< i _< k. There are g ( G )  _< I~(T2(n)) injections ~p: {ao,.. . ,a~,bl . . . . .  bk} 
V(G) such that ~p(a,)~p(b~) • E(G) for every 1 _ i _< k. Two such injections ~p, and ep2 
are now called equivalent, if 

(i) ~Pl(ao)= ~p2(ao), and 

(ii) {tpl(a,),~ol(b,) } -- {q~:(a,),tp:(b,)} foreveryl  < i < k .  

Each equivalence class has 2 ~ elements, and it follows just like in the previous case 
that at most one of them can be an embedding of H into G, as a subgraph. Hence, 
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H(G) <_ 2-kI:(G) <_ 2-kl:(r2(n)) = H(rz(n)) 

with equality if and only if G - T2(n ). [] 

3. Proof of Theorem 3 

The proof is based on the symmetrization method of Zykov [10]. We split the proof 
into a series of steps. A graph G will be called extremal if K(G) = max K(G'), where 
the maximum is taken over all Kr-free graphs G' with n vertices. 

Lemma 3.1. There is a complete s-partite extremaI graph for some s <<. r - 1. 

Proof. Suppose that G is an extremal graph containing the maximum number of 
pairs {u,v} of nonadjacent vertices such that N(u) = N(v), where N(w) denotes the 
set of neighbours of w. We prove that G is a complete s-partite graph for some s, 
i.e., N(u) = N(v) for any nonadjacent vertices u, v. 

Assume that G contains some nonadjacent vertices x and y such that N(x) ~ N(y). 
Let a, b, c denote the number bf K's in G containing x and y, containing x but not 
containing y, containing y but not containing x, respectively. 

Suppose first that b # c, say, b > c. It is clear that deleting the edges incident to 
y and joining y to the neighbours of x, we obtain another Kr-free graph, a does not 
decrease and c increases by b - c > 0. Hence K(G) increases, contradicting the 
choice of G. 

Suppose next b = c. Now, let p and q denote the number of vertices v such that 
N(v) = N(x)and N(v) = N(y), respectively. Assume, say, p > q. It is clear again that 
deleting the edges incident to y and joining y to the neighbours of x, we obtain 
another K,-free graph, b = c does not change, a does not decrease (and cannot 
increase either by, the choice of G). However, the number of pairs {u, v} with 
N(u) = N(v)increases by p - q + 1 > 0, a contradiction. [] 

Lemma 3.2. There is no complete s-partite extremal graph with s < r - 1, provided 
n > max(m + 1, r - 1). 

Proof. We prove the statement by contradiction. Suppose that G is a complete 
s-partite extremal graph with classes 1,'1, V 2 . . . .  , Vs. Let H be a subgraph of G 
isomorphic to K. 

Suppose that there is a class V~ such that V(H) fl V~ ~ ~ ,  or V~. Let u e V(H) fl Vii, 
v ~ Vii - V(H) and let w be a neighbour ofu in H. Then, joining v to all the remaining 
n - 1 vertices, we obtain an s + 1-partite graph Go such that V(H) : {w} U {v} 
induces a copy of K containing the edge uv. Thus, K(Go) > K(G), a contradiction. 

If V(H) [3 Vi = ~J or V~ for i = 1 . . . . .  s, then one can choose i and j so that 
V(H)N Vii = V~, V(H)~ Vj = ~ and either I V~I > 2orlV~l > 2. Pick any vl e V~, vje V i. 
Then the vertex set (V(H) - {v,}) O {v~} induces a subgraph H with V(H) n V~ ~ ~ ,  
Irk for k = i orj .  [] 

Lemma 3.3. All extremal graphs are complete r - 1-partite graphs, provided n > 
max(m + 1, r -  1). 
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Proof. Suppose that  there is an extremal graph G* that  is not  a complete  r - 1- 
part i te  graph. The  p roo f  of  L e m m a  3.1 provides an algori thm to turn G* into a 
complete  s-parti te extremal  graph, where s = r - 1 by Lemma  3.2. Before the last 
step of  this algori thm, we have an  extremal graph G which is not  complete r - 1- 
partite, however,  appropr ia te ly  changing the ne ighbourhood  N(x) of some vertex 
x, we obtain a complete  r - 1-partite graph. We c l a imtha t  G is a proper  subgraph 
of a complete  r - 1-partite graph. 

If G - {x} is complete  r - 2-parti te with classes 111, II2, . . . .  V~_ 2, and x is joined 
to all the remaining n - 1 vertices, then G is complete r - 1-partite, a contradict ion.  
Thus, x is not  jo ined to all the remaining vertices, and G is a p roper  subgraph of  
the complete  r - 1-partite graph whose classes are 111, V2, . . . ,  1/,-2, V,_I = {x}. 

Suppose next  that  G - {x} is a complete  r - 1-partite graph with classes 111, 
V2,..., V,-1. I fN(x)  fl V~ # JZ for i = 1 . . . .  , r - 1, then G contains K ,  as a subgraph, 
a contradict ion.  So, we m a y  assume that,  say, N(x) fq V~ = ~ .  Then  G is a p roper  
subgraph of the complete r - 1-partite graph whose classes are 111 U {x}, 1/2 . . . . .  V,-1. 

Adding the missing edges (incident to x) to the graph G, we obtain a complete 
r -  1-partite graph G~, and K(G~)= K(G) by the extremali ty of  G. Thus, if 
xy e E(G1) --: E(G), say, then xy is not  contained in any copy of  K. Then, by 
symmetry,  no  edge joining the classes of  x and y is contained in any copy of K. 
Therefore,  deleting these edges, we obta in  a complete  r - 2-parti te extremal graph, 
contradict ing L e m m a  3.2. [ ]  
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