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SPANNING RETRACTS OF A PARTIALLY ORDERED SET
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Two general kinds of subsets of a partially ordered set P are always retracts of P: (1) every
maximal chain of P is a retract; (2) in P, every isometric, spanning subset of length one with no
crowns is a retract. It follows that in a partially ordered set P with the fixed pcint property,
every maximal chain of P is complete and every isometric, spanning fence of P is finite.

1. Introduction

It is a problem of long-standing to characterize those partially ordered sets P
with the fixed point property: every order-preserving map f of P to P has a fixed
puint, that is, f(a)=a for some a € P. Apart from the well-known result of A.
Tarski [14] (cf. [9]) and A.C. Davis [5] that a lattice has the fixed point property if
and only if it is complete, little is known. Efforts to solve the problem have, in the
past, invariably concerned partially ordered sets P zatisfying some ‘‘compiete-
ness”’ condition that requlres certain distinguished suhsets of P to have a
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supremum or infimum (cf. [1, 2,6, 8, 15]). Recent combinatorial i |vcat15auuua
I6,7,13] have hmhhahfpd the imnortance of retracts for the fixed noint nroblem
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a partzally ordered set P has the fixed point property if and only if each retract of P
has the fixed point property. (Recall, that a subset Q of P is called a retract of P if
there is an order-preserving map f of P to P such that f(P)=Q and f| Q is the
identity map of Q; in this case we call f a retraction of P onto Q.)

The purpose of this paper is to show that two kinds of subsets of a partially
ordered set are always retracts. This information we use to derive ‘some im-
mediate consequences for the fixed point problem.

Theorem. For any partially ordered set P

(1) every maximal chain of P is a retract and

(2) in P, every isometric, spanning subset of length one with no crowns is a retract.
Therefore, if P has the fixed point property, then every maximal chain of P is
complete and every isometric, spanning fence of P is finite.

2. Chains

In this section we shall establish
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Theorem 1. Every maximal chain of a partially ordered set P is a retract of P.

Preof. Let P be a partially ordered set and let C be a maximal chain of P. For
each xe€ P set

N, ={ce C| x is noncomparable with c}.

Evidently, N, =0 if x € C. Conversely, if N, =9, then CU{x} is a chain, whence
by the maximality of C, xe€ C.

Let a denote a well ordering of the set C. Define a map f of P to C by f(x)=x
f xeC and, if N,#9, f(x) is the least member of N, with respect to the
well ordering o. To verify that the map f establishes C as a retract of P we need
umy check that ] is Gruer-preserv.ug

Let u<vin P. If ueC and ve P—-C, then u<c for all ce N,; in particular,
f(uy= u=<f(v) since f(v)eN,. Similarly, f(u)<f(v) if ueP~C and veC. Let
uecP-C and veP-C. If f(u)<v, then f(u)<c for all ce N, so f(u)<f(v). If
u < fiv), then ¢ < f(v) for all ce N, so f(u)=< f(v). Therefore, we may assume that
fuye N,N N, and f(v)e N, N N,. If f(u) precedes f(v) with respect to a then f(v)
cannot be the least member of N, with respect to a. Similarly, f(v) cannot
precede f(u® with respect to a. It follows that f(u)=f(v).
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chain in Q, then C is a retract of P; in particular, if C is a maximal chain in an
interval [x, v] of P, then C is a retract of P.

3. Spanning retracts of length one

A fence F in a partially ordered set P is a subset {x,, X;, X5, . ..} of P in which
either

x0<xl9 Xy >x29 cecs Xom—1 >x2m’ X2m <x2m+l, s

XogZ Xy Xy <<Xzeeeos Xomo1 < Xaps Xam = Xomt1s - - -

are the only comparability relations. Cali P connected if for each x, y € P there is a
£
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ciice Cﬁutauuug both x and y, a 1d define the distance aput, y) from x to y

dplx, y)=inf(|F|~ 1| Fc P, F is a fence, and x, y e F).

Several facts concerning the distance function are obtained in [13]. We require
the following observation. Let P and Q be partially ordered sets and let f be an
order-preserving map of P onto Q. If x and y are ~ontained in a fence in P then
f(x) an' f(y} are contained in a fence in Q and do(f(x), f(y))=dz(x, y); in

nart;mti i, 1if P is connected, then Q is connected.
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It is natural to call a connected subset Q of P isometric in P if, for each x, y= Q,
do(x, y) = dp(x, y). The importance of this concept to the study of retracts stems
from the following observation: every connected retract of a partially ordered set F is
isometric in P.

A connected subset S of a pa:tially ordered set P is called spanning in P if
|S|>1 and if the maximal (minimal) elements of S are maximal (minimal)
elements of P. For instance, every maximal chain of P is spanning in P. Of
particular concern to us shall be spanning subsets of P of length one, that is,
connected subsets of P consisting only of maximal and minimal elements of P.

There is one final item of terminology: for n =4, cail a subset {c,, c,, ..., c,} of
a partially ordered set P a crown provided that c,<c, and c¢,<c,, ¢;>
C3yeves Crn>>Cpoy, €1 <, are tlie only comparability relations and, in the case
n =4, there is no ae P such that ¢, <a<c,, c;<a<c,.

Theorem 2. In a partially ordered set every isometric, spanning subset of length one
with no crowns is a retract.

The proof of Theorem 2 rests on a graph-theoretic result due to R. Now-
akowski an d I. Rival [12, Theorem 5]:

Let G=(V,U V,, E) be a bipartite graph and let H=(W,U W,, F) be a con-
nected, isometric subgraph of G without cycles satisfying Wy V,,, W, V,, and
|WoU W,|>1. Then H is a retract of G. Moreover, there is a rewraction f [edge-
preserving] of the vertices of G to the vertices of H satisfying f(V,)< W, and
f(Vhe W,

With a partially ordered set P of length one we may associate a bipartite graph
G =(V,UV,, E) whose vertices V= V,U YV, coasist of the elements of P, V,
corresponding to the maximal elements of P and V, to the remaining elements,
and, in which vertices x and y are adjacent if x <y or x>y. It is now immediate
that if P is a connected partially ordered set of length one and if R is an isomeiric,
spanning subset of P without crowns, then there is a retraction map f of P onto R
such that f(max(P)) = max(R) and f(min(P)) < min(R).

Proof of Theorem 2. Let P be a partially ordered set and let R be an isometric,
spanning subset of P which is of length one and which contains no crowns. Let us
assume that P and (hence) R are connected.
Since R is isometric in P, R is isometric in max(P)Umin(P); thzrefore, there is
a retraction f of max(P)Umin(P) onto R such that f(max(P))<max(R) and
f(min(P)) < min(R). For each x € P set
U, ={ueP|uemax(P), u=x},

L, ={veP|vemin(P), v<x}.
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Assume that for each xe P, U,#@# L,: the extension of f to P is accomplished
easily. As ueU,, vel, imply that f(u)>f(v) in R and R contains no four-
crowns, either |[f(U,)]=1 or |f(L,)|=1. Define a map f' of P onto R by

f(x) if x e max(P)Umin(P),
f(x)=4 f(u) if|f(U)|=1 and uel,
f(v) if|f(U)|>1 and velL,

for x € P. It is straightforward to verify that f' is a retraction of P onto R.
We miust deal with the possibility that U, =@ or L, =@ for some xe P—R. A
simple artifice resolves ine difficulty.

With each element x of P— R associate a pair of distinct elemen

the aim of adjoining x4, x* to P prescribing x,<x<x*. More precisely, let
P*={x"|xe P-R}, and Py ={xy|x e P-- R} where PNP*, PN Py, P*N P, are
empty and x4, x*, yg, y* are pairwise distinct for x#y in P—R. Let P'=
PUP,U P* be partially ordered by P and the comparabilities induced by the
requiremen. x,<x<x* Note that R is isometric and spanning in P’, and for
each xe P, {ue P'|uemax(P'), u=x}+# 90+ {ve P | vemin(P’), v=<x}. Hence, as
above, R is a retract of P'. A fortiori, R is a retract of P.

Since the preceding argument can be applied to each connected component of
P, there was no loss ins zenerality in taking P to be connected.

Which partially ordered sets R satisfy the following “‘universal” retract prop-
erty?

If R is isomorphic to a subset of a partially ordered set P, then R is a retract of P.
In fact, the answer is well-known: R satisfies this “‘universal” retract property if
and only if R is a complete lattice [4] (cf. [3], [6]). Theorem 2 sugg:sts a related
question:

For which p-utially ordered sets R of length one is it true that R is a retract of P
whenever R i jmorphic to an isometric, spanning subset of P?

The answer is close at hand: precisely those partially ordered sets R which
contain no crowns. It shall suffice to illustrate this fact by some examples. In Fig. 1
we have illustrated the case in which R={c,,c,,...,c,} is a crown; in each
instance, R is not a retract.

4. Fixed points

Theorems 1 and 2 yield necessary conditions for the fixed point property in an
arbitrary partially ordered set.

Theor: m 3. Let P be a partially ordered set with the fixed point property. Then every
max nial chain of P is complete and every isometric, spanning fence of P is finite.
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Proof. Every maximal chain of 2 and every isometric, spanning fence of P is a
retract of P; thereforc, each must have the fixed point property. As chains are
lattices, chains with the fixcd point property are complete. It is easily seen that
infinite fences have fixed point free maps, hence, every isometric, spanning fence
of P is finite.
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Fig. 2.

Most fixed point theorems have furnished sufficient conditions for the fixed
point property (cf. [1, 2, 8, 10, 14]). Theorem 3 supplies two interesting necessary
conditions, although it does not provide a solution to the fixed point problem. For
instance, ‘et us consider the partially ordered set P consisting of elements a; and
b, where i=1,2,...,j=1,2,..., and i<j, with comparabilities prescribed by
a;> by, if either i=j or i>j and i=k (its diagram is illustrated schematically in
Fig. 2). Then P has length one (so every maximal chain is complete) and P does
contain infinite spanning fences, yet none that is isometric. In fact, the largest
isometric spanning fence has only four elements. Moreover, it is easy to construct
an order-preserving map of this partially ordered set to itself which fixes no
clement.

The partially ordered set P depicted in Fig. 3 displays an additional complica-
tion. Every maximal chain of P is complete, every isometric, spanning fence of P
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is finite, every finite retract ¢cf P has the fixed point property and, yet, P is fixed
point free. While an approach to the fixed point problem that is based on a
“compactness” result (reducing the problem to its finite case) seems plausible,
such a result would not likely be an easy extension of Theorem 3.
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