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We consider extremal problems ‘of Turén type’ for r-uniform ordered hypergraphs, where
multiple oriented edges are permitted up to multiplicity q. With any such ‘(r, q)-graph’ G" we
associate an r-linear form whose maximum over the standard (n — 1)-simplex in R" is called the
(graph-) density g(G") of G". If ex(n, L) is the maximum number of oriented hyperedges in an
n-vertex (r, q)-graph not containing a member of L, lim,_,_, ex(n, L)/n" is called the extremal
density of L. Motivated, in part, from results for ordinary graphs, digraphs, and multigraphs, we
establish relations between these two notions.

1. Introduction

In this paper we shall investigate Turdn-type extremal problems for hyper-
graphs, and, more generally, for ‘r-uniform directed q-hypergraphs’; each
hyperedge contains r vertices, the same hyperedge may occur up to q times; even
more generally, the edges will usually be ordered r-tuples — to generalize extremal
problems for digraphs.

Given a family L of g-hypergraphs (which we call ‘prohibited’), ex(n, L) will
denote the maximum number of hyperedges (counted with multiplicity) an
ordered g-hypergraph may possess, under the condition that it contains no L €L.
Such problems are called ‘Turin-type’, in deference to the seminal work of
P. Turan [20], [21]. In [2], [5] and [6] the present authors and P. Erdds have
investigated extremal digraph problems, in [4] extremal multigraph problems. We
propose to generalize results of those papers to oriented hypergraphs. We shall
consider several different types of graph-theoretical objects:

e ordinary graphs without loops or multiple edges,

o multigraphs — where the multiplicity of each edge is bounded from above by a

fixed integer q,
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o digraphs — where the multiplicity of each arc (=oriented edge) is bounded
from above,
e hypergraphs — where multiple hyperedges of bounded multiplicity are
permitted,
and - most generally —
o ‘r-uniform directed g-hypergraphs’.

Definition 1. Let r and q be positive integers. An r-uniform directed q-hypergraph
H is a set V(H) of vertices, together with a family E(H) of ordered r-tuples of
elements of V(H); an r-tuple with a given order (=‘orientation’) may occur at
most q times. We shall assume that the r-tuples consist of r distinct vertices from
V(H), i.e. ‘loops are excluded’.

The Fundamental Problem. For positive integers r and q we restrict ourselves to
r-uniform directed g-hypergraphs. Given a family L of such hypergraphs and an
integer n, what is ex(n, L), the maximum number of oriented r-tuples a hyper-
graph on n vertices can have without containing a member of L (as an r-uniform
directed gq-hypergraph)?

Graphs, . . ., r-uniform directed g-hypergraphs will be denoted by capital Latin
letters, as G, H,...,S; or by G", H", ..., S", where an upper index will always
indicate the number of vertices.? Given a graph G, e(G) will denote the number
of edges, ordered r-tuples, etc., (counted with multiplicity, where applicable);
v(G) will denote the number of vertices. We streamline our language, where
possible: by graph we may mean any one of the objects: graph, digraph, ..., r-
uniform directed g-hypergraph, depending upon the context. Where the parame-
ters r, q, are needed, we may speak of an (r, q)-graph, or an (r, q)-digraph.
Similarly, the subobjects will usually be called subgraphs; and the word edge will
denote the appropriate type of subset, ordered where appropriate. The symbol
ex(n,L) will also have to be interpreted from the context. The set of extremal
graphs —having n vertices, exactly ex(n, L) edges, and no prohibited subgraph (in
L) - will be denoted® by EX(n, L). The requirement that multiplicities be bounded
is needed to ensure a finite maximum - to exclude trivial cases, as where all edges
are identically situated, and no ‘non-trivial’ subgraphs are present.

Ideally, for a given L, we wish to determine the structure of all extremal graphs
in EX(n,L). Usually this is unattainable, and we must content ourselves with
estimates of the asymptotic behavior of ex(n,L) as n — . In particular, we wish
to study the value* of

lim ex(n,L)/n". 1.1)

n—o

! But compare Section 9.

2 An exceptional use of the superscript occurs in Definition 8.

3When L ={L}, we may write ex(n, L) and EX(n, L) in place of ex(n,L) and EX(n,L).

* That this limit exists is a consequence of Lemma 2 below, which generalizes, trivially, a theorem of
Katona, Nemetz, and Simonovits [15].
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Often even this goal is unrealizable, and only upper and lower bounds can be
determined. So-called ‘degenerate extremal problems’, where the limit in (1.1) is
zero, will not be discussed here.

Our object in the present paper is to generalize certain extremal results of the
present authors and P. Erdés. We believe that some of the generalizations which
we prove are conceptually simpler than the more specialized results: some of the
proofs given below are certainly simpler. Detailed motivation for the theorems
generalized herein will be found in the references cited. Section 2 contains
preliminaries. In Section 3 we prove a ‘continuity’ theorem, concerning approxi-
mation of families L by finite subfamilies, and state a stronger conjecture (cf. [5,
Section 9], [6]). In Section 4 we study graphs containing more then ex(n, L) edges
(cf. [12]). Section 5 is concerned with a general theorem of ‘Erdés-Stone’ type (cf.
[10]). Section 6 is devoted to an investigation of the set of limits of form (1.1), and
its relation to the set of ‘densities’ of graphs (cf. [6]). In Section 7 we prove an
‘approximation’ theorem, concerning the existence of asymptotically extremal
sequences of subgraphs ‘of simple structures’ (cf. [5], [6]). Most of our generaliza-
tions will be proved first for (r, g)-digraphs; in Section 8 we discuss a principle for
deriving corresponding unoriented results. In Section 9 we consider briefly
generalizations to hypergraphs with loops.

Multidigraphs have been considered by Katona in [24], where he was primarily
interested in continuous versions of Turidn-type extremal graph problems.

2. Preliminaries: extremal numbers ex(n, L); extremal (r, q)-graphs

When L is a family of ordinary graphs (without loops or multiple edges) the
limit in (1.1) is determined by the minimum of the chromatic numbers of the
graphs in L (cf. Erdés and Simonovits [11]). Specifically, if p denotes that
minimum, then

lim ex(n, L)/(n> =1 - as n—> oo, 2.1)
2 p—1

For the cases of digraphs with g =1 or multigraphs with q =2, the results of the
present authors and P. Erdos apply (see [2], [3], [5], [6]). But no specific limit
theorems similar to (2.1) are known in generality. For hypergraphs with g >2, the
situation is yet murkier! In the celebrated problem of Turdn [21] one considers
ordinary 3-uniform hypergraphs (i.e. r=3, g=1), and L has only one member:
the ‘complete’ 4-vertex graph with four 3-edges; that problem remains unsolved
(cf. Section 9).

Given a family L of prohibited graphs, what is the structure of the extremal
graphs? Certain specialized results are known, (for example, for digraphs with
q=1 [7]). Most of our results in this area are related to the somewhat broader
class of ‘almost extremal’ graphs, containing no prohibited graph and whose
number of edges is asymptotically ex(n, L). More precisely, we define
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Definition 2. For a given family L, an asymptotically extremal sequence’
{S"}.~12... (written briefly as {S"}) consists of graphs such that

(a) S™ contains no (prohibited) L in L; and

) e(S")=(1+0(1)) ex(n,L) as n —> oo,

In some cases we have succeeded in proving theorems of the following form:
for given L a certain fixed asymptotically extremal sequence {S"} ‘of very simple
structure’ has the property that every extremal graph U™ may be obtained from
S" by adjoining or deleting o(n") edges (cf. for example, the work of Erdés and
Simonovits [11] for graphs; and the papers of Brown, Erdos and Simonovits [5]
for multigraphs). A somewhat weaker general result of this type will be proved
below in Theorem 6.

Definition 3. Let r and q be positive integers, and G an (r, q)-digraph with vertex
set V(G)={vy,v3,...,0,} Let x=(x,x,,...,x,) be a vector of non-negative
integers, and let X;,X,,...,X,, be disjoint sets containing respectively
X1, Xa, . . . s X Vertices. An (7, g)-digraph G{x)= G{xy, X,, ..., X,,» is obtained by
replacing each vertex v; by the set X; of vertices, and taking the corresponding
r-edges. More precisely,

V(Gx) = U X,

E(Gx)={(wy, Wz, ..., w):weX (i=1,2,...,1);
(V> Uy - - - 1) € E(G)}

where the multiplicity of (wy, w,, ..., w,) is defined to be that of (v;, v, ..., v;).
Definition 4. Let G™ be an (r, q)-digraph. Among all vectors x =(x;, X5, . .., X,
for which '
n=x;+tx;+--+x,
O0<x (i=12,...,m)

is a partition of n into non-negative integers, those for which the number of edges
of G(x) is maximized will be called the optimal vectors associated with the
corresponding optimal graph G{(x). Any such optimal graph may be denoted by
G(n).

Definition 5. Let m, r, q be positive integers, and G =G™ be an (r, g)-digraph.
Let the vector u = (uy, U, . . ., U,,) range over the standard (m — 1)-simplex in R™,
ie. ;=0 (i=1,2,...,m), ¥, u;, =1. We consider the real multilinear form

fow) =2 uu, - u,

5 The sequence is indexed by n, the number of vertices.
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summed over all (iy, iy, . . ., i) such that (v, v, . . ., v, ) is an edge of G, where the
multiplicity of a monomial in the sum is equal to the multiplicity of the corre-
sponding edge in the graph. The maximum of g (u) is called the graph-density or
simply the density of G, and denoted by g(G); a vector u for which f;(u) is
maximal is called an optimum vector. Where the maximum is attained only in the
interior of the (m —1)-simplex, i.e. with ;>0 (i=1,2,..., m), we say that G is
dense.

Remark. The variables in fg(u) are commutative. Thus the coefficient of
W, - - - u; is the sum of the multiplicities of all edges that are permutations of
{vi, v, ..., v }: it does not depend on the orientation.

Example. Let q=3, and let G be a 3-uniform hypergraph with V(G)=
{1,2, 3,4}, and E(G)={(123), (123), (213), (213), (213), (124)} (where multi-
plicities have been shown by repetition.) Then, with u = (u,, u,, us, uy), y; =0
(i=1,2,3,4), fo(u)=5uuus+uuu,. Since fo(u)<fg(uy, uy, us+uy,0), G is
not dense.

Lemma 1.° Let G be a fixed (r, q)-graph and let t be a positive integer.
(a) The number of edges of G{te) is t'e(G).

(b) As n—>x,
e(G(n)) ={g(G)+O(/n)}n". (2.2)
(c) There exists a constant ¢, = cy(r, q) such that
g(G)—ci/n<e(G(n))/n"<g(G). (2.3)

(d) For any vector x of positive integers, and any positive integer n, (G{x))(n) =
G(n). Moreover, g(G(x))=g(G).

(e) If H is a subgraph of G, then g(H)<g(G).

(f) Let G" be a digraph containing a subgraph H™ for which e(H™)=am". Then
g(G™)=a. In particular, if e(G")>an', then g(G")>a.

Proof. (b) Let u be an optimum vector for G = G", and define x by x; = |u;n] or
[un] (i=1,2,..., m) chosen’ in some way so that }; x; =n. Then

%%, % =] (g +(x, —wn)
=n"uu, - u +0(nY) as n—>oo.

Thus, as n — o, |n""e(G{x))— g(G)| = O(1/n). Conversely, given an optimal vec-
tor y=(y1,¥2...,Y¥m) realizing G(n), define a vector v by v;=y/n
(i=1,2,...,m). Then g(G)=fg(v)=n"e(G(y)).

6 We number the theorems and lemmas proved in the present paper using arabic numerals, and the

results quoted without proof from other sources with Latin letters.
7 |x) denotes the greatest integer in x, [x] denotes —|—x].
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(d) The first statement is trivial. The second statement follows from the first

by (b).
(f) Let t be any positive integer. Then

g(G)=g(H™)
=(mt)"e(H™ (mt))(1+0O(1/t))
=(mt)"e(H™(te))(1+ O(1/1))
=mTe(H™)(1+0O1/)=a(1+0(1/t)) as t—x,

Remarks. (1) This approach to extremal graph-theoretic problems via a quadra-
tic form associated with the adjacency matrix was pioneered by T. Motzkin and E.
Straus (cf. [16]). Straus® and others have considered possible extensions of the
technique to hypergraph extremal problems.

(2) In our studies on digraphs and multigraphs ([2], [5], etc.) we approached
certain extremal problems using the vehicle of ‘canonical graph structures’:
sequences of graphs whose structure may be represented by a finite number of
integer-valued parameters. For a precise description the reader is referred to
Section 8 below; cf. also [2], [5]. .

Definition 6. For fixed r and q the set of attained densities will be denoted by &,

3. Infinite sets of prohibited graphs: continuity and compactness problems

The following result has been proved for ordinary graphs [11], digraphs with
q =1[6, Theorem 3], and multigraphs with g =2 [6, Corollary to Theorem 3]; we
conjecture that it holds in general.

Conjecture 1 (Compactness). Let r and q be positive integers, and L an arbitrary
family of (r, q)-graphs. There exists a finite subfamily L* =L such that
ex(n,L)—ex(n,L*)=0o(n") asn-—>w, (3.1

While Conjecture 1 remains open (with the exceptions mentioned), we are able
to prove the following weaker result.

Theorem 1 (Continuity). Let r and q be positive integers and L an arbitrary family
of (r,q)-graphs. To each £ >0 there exists a finite subfamily L, <L for which
ex(n,L)<ex(n,L.)<ex(n,L)+en" 3.2)

for n sufficiently large.

8 Oral communication, also [23).
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Remark. For ordinary graphs the truth of the conjecture is a consequence of the
Erdos-Stone-Simonovits theorem (2.1) cited above [11]. For digraphs Theorem 1
was proved in [5]; subsequently, the conjecture was proved [6] only for digraphs
with g = 1. The proof below is much shorter than our earlier proof of that special
case.

Definition 7. The edge-density of an (r, q)-graph G" is defined to be the ratio,
e(G")/n(n—1)---(n—r+1), ie. it is the average multiplicity of all possible
oriented edges.

We require the following lemma - using an argument of Katona, Nemetz, and
Simonovits [15, First Corollary to Theorem 1].

Lemma 2. (a) Let G" be an arbitrary graph, m=<n; let h=(). Denote by
H,, ..., H, all the spanned (= induced) subgraphs of G" having exactly m vertices.
Then

lz e(H,) _ e(G")
h S m(m—l)--'(m—r+1)_n(n—1)---(n—r+1)

(3.3)

or, equivalently,

() pelr) eon(l)”

In other words, the average of the edge-densities of the m-vertex subgraphs of G"
is equal to the edge-density of G".
(b) The ratio ex(n, L)/(}) decreases monotonely as n increases.

Proof. (a) Since each r-edge of G" is counted exactly (%2%) times,
% e()=(""")e(G". (3.5)
m-—r

Then (3.3) follows from the identity

() =G
r/’\m—r m/\r/’
(b) We apply (a). Let m <n. None of the m-vertex spanned subgraphs H; of an

extremal graph G" € EX(n,L) contains any L €L, so e(H;)<ex(m,L). The left
side of (3.4) is the average of terms, none of which exceeds ex(m, L)/(7).

Corollary 1 (to Lemma 2). The sequence {ex(n,L)/(})},-1... converges
(monotonely). The sequence {ex(n,L)/n"},_;, . converges.

Corollary 2 (to Lemma 2). Let m, r be positive integers, a>0. If L=
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{H™ | e(H™)>a(7)}, then

ex(n, L)< a(?) for all n=m.

Proof of Theorem 1. Let L be a family of graphs satisfying the hypotheses; for
each positive integer k let L, denote the family consisting of the members of L
having at most k vertices. Let

Ve = 31_12, ex(n, Lk)/(’:> (k=1,2,...)

7= pm ety /()

Assume that, for some € >0, vy, >+vy+¢€ for all k; (since L, €L, v, =+ for all k).
Let S; be an extremal graph in EX(n,L,). By Lemma 2,

e(Sp) =ex(n,Ly)

and

= W(r:) >(y+ e)(n) for every n, k. (3..6)
r

In particular, taking k = n, we have
e(SY)>(y+ e)(:‘> for all n. 3.7)

The graph S}, contains no subgraphs from L, ; as it has exactly n vertices, it can
contain no member of L either! Thus

ex(n, L)=e (S7)>(y+ e)("> (3.8)

.-
In the limit as n—~ we obtain a contradiction to our definition of y. We
conclude that lim vy, =y as k — oo,

4. ‘Supersaturated’ graphs

A graph G™ may be considered ‘saturated’ with respect to a given family L of
prohibited subgraphs if it contains no member of L, but has the maximum number
of edges among graphs with that property —i.e. if it is extremal. When the number
of edges exceeds ex(n, L), we may ask how many distinct copies of members of L
are present in G". (Of course, the graph must not necessarily be thought of as
having been built up from a member of EX(n, L) through the addition of edges.)
A corpus of results on ‘supsersaturated’ graphs exists for ordinary graphs [18].
Erdos and Simonovits [12], also Simonovits [18], have investigated properties of



Extremal problems and densities 155

‘supersaturated’ hypergraphs. The main theorem below — which will be applied in
our proof of Theorem 3 —is in that genre.

Theorem 2. Let L be an arbitrary family of (r, q)-hypergraphs, and let v=
lim ex(n, L)/n" as n > . Let € >0. There exists a constant ¢, = ¢,(L, €) such that,
if e(G™)>(y+¢€)n" and if n is sufficiently large, then there exists some L' €L such
that G" contains at least c,n' copies of L'.

Proof. (This theorem was proved for one undirected r-uniform [-hypergraph by
Erdés and Simonovits [12].) Assume v+ & <q. By Theorem 1 there exists a finite
subfamily L*=L_; <L such that

ex(m, L¥)<(y+3e)m"+o(m") as m-—>ow.
Thus '
ex(mL*)<(y+ieym(m—-1)---(m—-r+1) if m>m,.

Assume that e(G™)>(y+¢€)n". Let a(m,n) be the number of spanned sub-
graphs H™ of G" on exactly m vertices and such that e(H™)>
(y+3eym(m—1) - - (m—r+1). We may apply (3.4), where no summand on the
left exceeds gr!, to show that a(m, n)>csn™ for some c¢;=c3(m)>0 and for n
sufficiently large (with respect to m). Now fix m >m,: then at least c;n™ of the
H™ must each contain an L eL*, though not necessarily the same L. The
finiteness of L* ensures that some one L' is contained in at least c,n™ of these
subgraphs. None of these copies of L' could be counted more than (%7} times.
Thus the number of distinct copies of L' in G" is at least

cn >cyn.
m—1

5. A theorem of ‘Erdiés-Stone’ type

A celebrated theorem of Erdds and Stone [8], subsequently refined by many
authors, relates the extremal numbers of (ordinary) complete k-graphs K to
those of K, (te) for positive integers t. In general, one may consider, for any graph
G and positive integer t, the graph G(te) obtained through replacement of each
vertex by t independent vertices. The Erdés-Stone Theorem [8] states that, for
any t,

ex(n, K. (te)) =ex(n, K, )+o(n?) as n-»>»,
This surprising result implies the ‘ErdSs-Stone-Simonovits’ Theorem [10], of
wide applicability.

Erdds generalized the Erdds-Stone Theorem in two stages, Theorem A and
Theorem B below. We shall continue the generalization — to (r, q)-hypergraphs.
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Definition 8. Let 7, k, t be positive integers. K{” will denote the unoriented (sic)
‘complete’ r-uniform? hypergraph having k vertices and, as edges, all (¥) possible
r-tuples of those vertices. By K{, we shall denote the r-graph K{ ((te))=
K{(t,1t,...,t) having kt vertices in k classes of t: the edges are all (¥)¢" selections
of one vertex from each of the k classes. (The superscript © may be suppressed.)

Theorem A° [9, Theorem 1]. Let n, r, t be positive integers. There exists a constant ¢
(independent of n, r, t) such that

nT T <ex(n, KO)=snU

This he subsequently generalized in

Theorem B [10]. Let k, r, t be fixed positive integers. Then

ex(n, K{) =ex(n, K{P)+o(n") as n—.

We shall apply these results and our Theorem 2 to prove the following
generalization of the preceding to (7, g)-graphs.

Theorem 3. Let L be an arbitrary family of ‘prohibited’ graphs, and f:L—N a
mapping into the natural numbers. Let Lf ={L(f(L)e): L €L}. Then

ex(n, LN =ex(n,L)+0o(n") as n— o,

Proof. Since L = L(te) for each L €L and any positive integer ¢,

lim ex(n, L)< lim ex(u, Lf).

We proceed to prove the opposite inequality. Define y =lim,,_, ex(n,L)/n". Let
£ >0 be given. By Theorem 1 there exists a finite subfamily L* <L such that

ex(n, L*)<(y+ie)n"+o(n") as n—owo,

Let t =Max{f(L):L €L*}, and let G" be given, with e(G")>(y+¢)n". Then, by
Theorem 2, G" contains at least c,(L*, €)n' copies of some L'eL*. Define an
unordered (sic) l-uniform [-hypergraph M on the vertex set V(G"): the edges are
precisely the vertex sets of the copies of L. For n sufficiently large® with respect
to T, &, Theorem A ensures the existence of ! disjoint sets each of T vertices,
Ay, A,, ..., A, such that G™ contains all T' graphs of structure L each having
precisely one vertex in each of A,, A,,..., A. Let v, v,, ..., 1 be some enume-
ration of the vertices of L'. The T' embeddings of these vertices into distinct A,
(i=1,2,...,1) induce permutations of {1,2,...,[}. Some permutation occurs at
least T'/1! times: we now consider the [-uniform ordered hypergraph defined on
the IT vertices of |; A; by the copies of L associated with this permutation. For T

71t suffices to take log T>21"log I and n>c,(L*, &) T"".
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sufficiently large® with respect to | and t, a second application of Theorem A
shows that there must exist an L'(te), hence an L'(f(L')e). Thus
L
lim sup%r)s .

n—»o

6. The set of attained densities

For ordinary graphs the possible densities are of the form 3(1—1/p), (p=
1,2,...) [16]. The set of these values coincides with the set of limits of form (1.1)
[11] with r = 2. For digraphs with q = 1 we have investigated properties of the sets
of these densities and limits and have proved [6] (cf. [2, Conjecture 2*]), that the
densities form a well-ordered set, but a number of questions remain even for
digraphs with q>1; an analogous situation holds for multigraphs. We prove
below a general inclusion theorem for (r, q)-hypergraphs, then state a conjecture,
and show (in Theorem 5) that it has several equivalent forms.

Definition 9. For any family L, lim ex(n, L)/n" as n — is called an extremal®
density. The set of extremal densities (for a fixed class of objects, and fixed r and
q), will be denoted by @,. (Compare Definition 6.)

Theorem 4. &,< .. Moreover, D, is dense in D..

Our proof of Theorem 4 will require the following lemma, which we state
without proof.

Lemma 3. Let vy be a positive real number, 0 <+vy =<gq, and let m be a positive integer.
Define

L,.,={L=L™:e(L™)>ym(m—1)---(m—r+1)}. (6.1)
Then
@) ex(n, L, )<yn(n—1)---(n—r+1)<syn" foralln=m.
(i) limex(n, L, )/n"<y asn—wx,

(i) For any L€eL,,,, g(L)>ym(m—-1)---(m—r+1)/m".

Proof of Theorem 4. (A) Let y € 9,. There exists a graph G for which v = g(G).
Let L be the family of all graphs H for which g(H)>vy. We propose to prove that
ex(n,L)/n" — v as n — . For any vector x, G(x) cannot contain a subgraph of
density greater than y (Lemma 1); hence

ex(n,L)=e(G(n))=(1+0(1/n))n"'y as n—>x,

10We have thus introduced three ‘densities’ the graph-density (Definition 5), the edge-density
(Definition 7), and the extremal density (of a family, Definition 9). Compare [24, Lemma 2].
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Suppose now that H" e EX(n,L), (n=1,2,...). Then, since H*¢L, g(H")<+~.
Applying Lemma 1(f), we may conclude that e(H")=<+vyn', i.e. ex(n,L)<+". Thus
lim,_...ex(n,L)/n"=v, so ye%P..

(B) Let L be a family of prohibited graphs such that ex(n,L)/n" — vy as n — .
We shall prove that v is the limit of a sequence of graph densities. (By virtue of
Conjecture 2 below, we seek a sequence of graphs whose densities approach vy
from below.) Let {S™} be a sequence of extremal digraphs for L (n=1,2,...). Let
€>0 be given, sufficiently small, and let m be an integer such that m(m—
1)+ (m—r+1)/m">1-e. We consider the family L'=L,, . of Lemma 3,
and apply Theorem 3 with the constant function f,(L)=¢ for all LeL'. For n
sufficiently large, all $™ will have e(S")=vy(1—3e)n” and will contain L{te) for
some L eL’. The preceding is true for any t. Hence some L, in L’ has the property
that L,(t)= S" for arbitrary large t and n = n(t). Since $" contains no L in L,
e(L.(t))<ex(t,L) for all t. Hence, by (2.2), g(L,)<vy. But g{L)=v(1—¢), (by
definition). It follows that <y is the limit of a sequence'' of graph densities.

Conjecture 2. (a) &, is well ordered (under the usual ordering of the reals).

(b) @, is well ordered (under the usual ordering of the reals).

(c) (Compactness) For every infinite family L there exists a finite subfamily
L*cL for which

ex(n,L*)—ex(n,LY=0o(n") as n—om. , (6.2)

Theorem S. For fixed r and q, conditions (a), (b), and (c) of Conjecture 2 are
equivalent.

Remark. It has been shown in [6] that digraphs with q =1 have properties (a),
(b), (c) above.

Proof of Theorem 5. (A) By Theorem 4, 9, is contained in 9, and dense in 9.:
(a) and (b) are equivalent.

(B) Let us assume that 9, and P, are well ordered. Let L be an arbitrary
family of prohibited graphs. As in the proof of Theorem 1, we denote by L, the
subfamily of graphs in L having at most k vertices; and by v, and vy the limits of
ex(n, L)/(7) and ex(n,L)/(}) as n—o, (k=1,2,...). The sequence v, is
monotonely decreasing since ex(n, L) is monotonely decreasing in k. Further-
more, Theorem 1 ensures that y, —>+vy as n—>x. As the set {y,:keN} is
well ordered, v, =y for k sufficiently large. With such a k take L*=L,. Thus (a)
implies (c).

(C) Assume now that (c) holds, but that (a) does not. Let {G};-;,.. be a
sequence of graphs such that

g(G)>y  (k=1,2,..) (6.3)

' We do not claim that it is the limit point of the set @,,. It may be an isolated point in D, as well.
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and
g(G)—y asi—o (6.9)

Define L to be the family of all graphs having density greater than vy (thus G; L
for all i), and let y*=1lim,_.ex(n,L)/n". We prove that y*<+y. If S" is an
extremal graph in EX(n, L), then, by Lemma 1(f), g(S")=e(S$")/n" =ex(n,L)/n";
in the limit, y=+v™*. If (c) is true, there exists a finite subfamily L* of L such that
(6.2) holds. Take a G, ¢L*. By (6.3) and Lemma 1, for sufficiently large n, G(n)
must contain some L; in L*. Hence, by Lemma 1,

g(G) = g(Gi(n))=g(L) > . 6.5

Since L* is finite, there is some i for which (6.5) holds for infinitely many k.
Hence vy =g(G;)> v, which is a contradiction. We conclude that (c) implies (a).

Remark. In the cases of ordinary graphs [11], and of oriented (2, 1)-graphs and
unoriented (2, 2)-graphs [6], we know that &, =9,. The general question, how-
ever, remains open.

7. An ‘approximation’ theorem

For a given family L of prohibited graphs, our ideal objective would be to
determine the family EX(n,L) of extremal graphs. That being usually unattain-
able, we enquire as to the structure of asymptotically extremal sequences. For
graphs, digraphs with q =1, and multigraphs with q =2, we have proved the
existence (cf. Section 9 below) of asymptotically extremal sequences of an ‘easily
describable structure’, ([2, Theorem 1]). For (r, q)-graphs in general we prove
below a somewhat weaker theorem.

Theorem 6 (Approximation Theorem). Let L be a given family of prohibited
graphs, and let € >0. There must exist a graph G such that G(n) contains no LeL
and e(G(n))>ex(n,L)—en" for every n sufficiently large.

Proof. Let lim, _,..ex(n,L)=1. Let {S"} be an extremal sequence for L. As in
paragraph (B) of the proof of Theorem 4, there exists, for m sufficiently large,
GeL,, - for which G(n)cS™ for infinitely many n and n'=n'(n). G(n)
contains no LeL and g(G)>vy—3e¢.

Example. Let H consist of all members of a sequence of unoriented 3-graphs
{H"}, defined recursively as follows: H', H?, H? all have no triples. If H" has
been defined for all n <N, H" is fomed by taking three disjoint 3-graphs, HIN),
HIN+DB (N3] and adjoining as new edges all triples having precisely one
vertex in each of the three ‘summands’. Then it can be seen that
lim,,_,.. e(H")/n®=1/24. There exists no graph G such that H" = G(n) for all
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large n. (For, in such sequences of optimal G-graphs the ratio |maximum
independent set of vertices|/n tends to a positive limit, whereas in the present case
it tends to zero.) Nor could the sequence {H"} be obtained from a sequence
{G(n)} by adding or deleting o(n®) edges. However, it can be shown that these
graphs are extremal for some family L. For such an L and £ >0, there exists an
integer k such that G = H* satisfies the conditions of Theorem 6.

8. Unoriented r-uniform q-hypergraphs

Let the set-valued operator © applied to an unoriented (r, q)-graph map it onto
the set of all oriented r-uniform g-hypergraphs obtainable through independent
orientations of each of its r-edges. Then we have the following

Lemma 4 (‘Transfer Principle’). Let M be an arbitrary family of r-uniform
unoriented q-hypergraphs. Then DEX(n, M) = EX(n, ®M).

This permits the passage from the results of this paper, stated for the oriented
case, to the unoriented. In certain cases (e.g. proof of theorem 1) the steps in the
proof themselves have to be checked to determine whether the family L,
constructed is ‘symmetric’, i.e. whether it is the image under ® of a family of
multigraphs. The proofs of Theorem 1 through Theorem 6 can all be seen to have
this property.

9. (r, g)-graphs with loops permitted

Portions of the theory of this paper carry over without significant change when
we permit loops to occur. An ‘edge’ of such a general (r, g)-graph G" will be any
one of the n" points in the cartesian product (V(G))". It is particularly useful to
permit such loops if we wish to obtain extremal sequences or asymptotically
extremal sequences of form {G(n)},: by excluding loops we would have to
exclude many important cases. We may generalize Definition 3 and Definition 4
in the obvious way to define for any (r, q)-graph G" with loops permitted and any
non-negative integer vector x =(xy, x5, ..., X,) a graph G(x). The orientation of
edges is well defined in terms of that of the edges of G, except insofar as edges
having more than one vertex from the same class X,. This construction is also
meaningful when G is unoriented.

We may also wish to permit loops in G but not in the graphs G(x). We have
the following familiar example.

Example. Let G be the unoriented (3, 1)-graph defined on the set {u, v, w}
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with edgeset'? {uuv, vow, wwu, uow}. Turdn conjectured that the graphs G(n)
(without loops) are extremal for the 3-uniform complete 4-graph, K9, (that is,
the complete unoriented (3, 1)-graph with V(K{)={a, b, ¢, d}, and E(K)=
{abc, abd, acd, bcd}. (Other graphs G’ are known [1] such that e(G'(n)) = e(G(n))
where G'(n) does not contain K9.)

A sequence {S™} of digraphs which may be interpreted as being of form G{x)
for fixed G may be called canonical. This concept bears fruit particularly where
the graph G is permitted to have loops. In our papers on digraphs and multi-
graphs [2], {5], [6], we exploited a restriction of this concept in matrix digraphs,
which are canonical sequences of optimal graphs G(n) where a particular orienta-
tion is placed on the edges connecting more than one (i.e. two) vertices of a class
X;. For such matrix digraphs we have been able to prove an ‘inverse’ theorem to
Theorem 6 [5, Theorem 1, Theorem 3].
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