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We consider extremal problems 'of Tur~ type' for r-uniform ordered hypergraphs, where 
multiple oriented edges are permitted up to multiplicity q. With any such '(r, q)-graph' G" we 
associate an r-linear form whose maximum over the standard (n - 1)-simplex in R" is called the 
(graph-) density g(G ") of G". If ex(n, L) is the maximum number of oriented hyperedges in an 
n-vertex (r, q)-graph not containing a member of L, l i r n ~  ex(n, L)/nr is called the examnal 
density of L. Motivated, in part, from results for ordinary graphs, digraphs, and multigraphs, we 
establish relations between these two notions. 

1. Introduction 

In  this pape r  we shall investigate Tur~m-type ext remal  problems for  hyper -  

graphs,  and,  m o r e  generally,  for  ' r - un i fo rm directed q -hype rg raphs ' ;  each 

hyperedge  contains  r vertices, the  same hyperedge  may  occur  up to  q t imes; even 

m o r e  generally,  the  edges will usually be ordered r - t u p l e s -  to  general ize extremal  
problems for  digraphs.  

Given  a family L of  q -hype rg raphs  (which we call 'prohibi ted ' ) ,  ex(n, L) will 

deno te  the m a x i m u m  n u m b e r  of  hyperedges  (counted  with multiplicity) an 

o rde red  q -hype rg raph  m a y  possess, unde r  the condi t ion that  it contains no L ~ L.  

Such problems are called ' T u r i n - t y p e ' ,  in defe rence  to  the seminal  work  of  
P. T u r i n  [20], [21]. In  [2], [5] and  [6] the  present  authors  and  P. Erd6s  have  

investigated extremal  digraph problems,  in [4] extremal  mul t igraph problems.  W e  

p ropose  to  generalize results of  those papers  to or ien ted  hypergraphs .  W e  shall 
consider  several different types of  graph- theore t ica l  objects :  

• o rd inary  graphs wi thout  loops o r  multiple edges, 

• mult igraphs - w h e r e  the multiplicity of  each edge is b o u n d e d  f rom above  by  a 
fixed integer  q, 
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• d i g r a p h s - w h e r e  the multiplicity of each arc ( =  oriented edge) is bounded 

f rom above,  
• h y p e r g r a p h s - w h e r e  multiple hyperedges of bounded multiplicity are 

permitted,  
and - most generally - 

• ' r -uni form directed q-hypergraphs ' .  

Definition 1. Let  r and q be  positive integers. An r-uniform directed q-hypergraph 
H is a set V(H)  of vertices, together  with a family E ( H )  of ordered r-tuples of 
elements of V(H) ;  an r-tuple with a given order  (= 'or ien ta t ion ' )  may occur at 
most q times. We  shall assume that the r-tuples consist of r distinct vertices f rom 
V(H),  i.e. ' loops are excluded'.  1 

' I 'ae  Fundamental  Problem.  For  positive integers r and q we restrict ourselves to 
r-uniform directed q-hypergraphs.  Given a family L of such hypergraphs and an 
integer n, what is ex(n, L), the maximum number  of oriented r-tuples a hyper-  
graph on n vertices can have without containing a m e m b e r  of L (as an r-uniform 
directed q-hypergraph)? 

Graphs  . . . . .  r -uniform directed q-hypergraphs  will be  denoted by capital Latin 
letters, as G, H, . . . .  S; or by G",  H "  . . . . .  S", where an upper  index will always 
indicate the number  of vertices. 2 Given a graph G, e(G) will denote  the number  
of edges, ordered r-tuples, etc., (counted with multiplicity, where applicable); 
v(G) will denote  the number  of vertices. We streamline our  language, where 
possible: by graph we may mean any one of the objects: graph, digraph . . . .  , r- 
uniform directed q-hypergraph,  depending upon the context. Where  the pa rame-  
ters r, q, are needed, we may speak of an (r, q)-graph, or an (r, q)-digraph. 
Similarly, the subobjects will usually be  called subgraphs; and the word edge will 
denote the appropriate  type of subset, ordered where appropriate .  The  symbol 
ex(n, I.) will also have to be  interpreted f rom the context. The  set of extremal 
graphs- having n vertices, exactly ex(n, L) edges, and no prohibited subgraph (in 
L) - will be denoted 3 by EX(n, L). The  requirement  that multiplicities be  bounded 
is needed to ensure a finite maximum - to exclude trivial cases, as where all edges 
are identically situated, and no 'non-trivial '  subgraphs are present.  

Ideally, for a given L, we wish to determine the structure of all extremal  graphs 
in EX(n, L). Usually this is unattainable, and we must content ourselves with 
estimates of the asymptotic behavior  of ex(n, L) as n --> oo. In particular, we wish 
to study the value 4 of 

lim ex(n, L)/n r. (1.1) 
r t  . - . . e ~  

1 But  compare Section 9. 
2 A n  exceptional use of the superscript occurs in Definition 8. 
a When  I. = {L}, we may write ex(n, L) and EX(n,  L) in place of ex(n, L) and EX(n,  L). 
a Tha t  this limit exists is a consequence of I . emma 2 below, which generalizes, trivially, a theorem of 

Katona,  Nemetz,  and Simonovits [15]. 
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Often even this goal is unrealizable, and only upper and lower bounds can be 
determined. So-called 'degenerate extremal problems', where the limit in (1.1) is 
zero, will not be discussed here. 

Our object in the present paper is to generalize certain extremal results of the 
present authors and P. ErdSs. We believe that some of the generalizations which 
we prove are conceptually simpler than the more specialized results: some of the 
proofs given below are certainly simpler. Detailed motivation for the theorems 
generalized herein will be found in the references cited. Section 2 contains 
preliminaries. In Section 3 we prove a 'continuity' theorem, concerning approxi- 
mation of families L by finite subfamilies, and state a stronger conjecture (cf. [5, 
Section 9], [6]). In Section 4 we study graphs containing more then ex(n, L) edges 
(cf. [12]). Section 5 is concerned with a general theorem of 'Erd6s-Stone'  type (cf. 
[10]). Section 6 is devoted to an investigation of the set of limits of form (1.1), and 
its relation to the set of ~densities' of graphs (cf. [6]). In Section 7 we prove an 
'approximation' theorem, concerning the existence of asymptotically extremal 
sequences of subgraphs 'of simple structures' (cf. [5], [6]). Most of our generaliza- 
tions will be proved first for (r, q)-digraphs; in Section 8 we discuss a principle for 
deriving corresponding unoriented results. In Section 9 we consider briefly 
generalizations to hypergraphs with loops. 

Multidigraphs have been considered by Katona in [24], where he was primarily 
interested in continuous versions of Turin- type extremal graph problems. 

2. Preliminaries: exttemal numbers ex(n, L); extremal (r, q)-graphs 

When L is a family of ordinary graphs (without loops or multiple edges) the 
limit in (1.1) is determined by the minimum of the chromatic numbers of the 
graphs in L (cf. ErdSs and Simonovits [11]). Specifically, if p denotes that 
minimum, then 

lim ex(n, L ) / ( ; )  = 1 1 p - 1  as n--~oo. (2.1) 

For the cases of digraphs with q = 1 or multigraphs with q = 2, the results of the 
present authors and P. Erd6s apply (see [2], [3], [5], [6]). But no specific limit 
theorems similar to (2.1) are known in generality. For hypergraphs with q > 2, the 
situation is yet murkier! In the celebrated problem of Tur~in [21] one considers 
ordinary 3-uniform hypergraphs (i.e. r = 3, q = 1), and L has only one member: 
the 'complete' 4-vertex graph with four 3-edges; that problem remains unsolved 
(cf. Section 9). 

Given a family L of prohibited graphs, what is the structure of the extremal 

graphs? Certain specialized results are known, (for example, for digraphs with 
q -- 1 [7]). Most of our results in this area are related to the somewhat broader 
class of 'almost extremal' graphs, containing no prohibited graph and whose 
number of edges is asymptotically ex(n, L). More precisely, we define 
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Definition 2. For  a given family L, an asymptotically extremal 

{S"},~1.2 .... (written briefly as {S"}) consists of graphs such that  
(a) S" contains no (prohibited) L in L;  and 
(b) e(S ") = (1+0(1))  ex(n, L) as n ---~ oo. 

sequence 5 

In some cases we have succeeded in proving theorems of the following form: 

for given L a certain fixed asymptotically extremal  sequence {S "} 'of  very simple 
structure'  has the proper ty  that every extremal  graph U" may be obtained f rom 
S" by adjoining or deleting o (n ' )  edges (cf. for example,  the work of Erd/Ss and 
Simonovits [11] for  graphs; and the papers  of Brown, Erd~Ss and Simonovits [5] 
for multigraphs). A somewhat  weaker  general result of this type will be  proved 
below in Theorem 6. 

Definition 3. Let  r and q be positive integers, and G an (r, q)-digraph with vertex 
set V ( G ) = { v l ,  v 2 , . . . ,  vm}. Let  x = (xl, x2 . . . . .  x~) be  a vector  of non-negat ive 
integers, and let XI,  X2 . . . . .  X, ,  be  disjoint sets containing respectively 
xl,  x2 . . . . .  x~ vertices. An (r, q)-digraph G(x} = G(Xl, x2 . . . . .  x, ,)  is obtained by 
replacing each vertex vi by the set Xi of vertices, and taking the corresponding 
r-edges. More  precisely, 

v(o(x)) :  U x,, 
i 

E(G(x ) )  ={(wl,  w2 . . . . .  w,): wl • X  h (i = 1, 2 . . . . .  r); 

(v h, vi2 . . . . .  vi,) • E(G)}  

where the multiplicity of (wl, w2 . . . .  , w,) is defined to be that of (vi,, vi2 . . . . .  v~,). 

Definition 4. Let  G m be an (r, q)-digraph. Among  all vectors x = (xl, x2 . . . . .  x~) 
for which 

n = Xl+X2+" • "+Xm, 

0~x~ ( i = 1 , 2 , . . . ,  m) 

is a partition of n into non-negat ive integers, those for which the number  of edges 
of G(x)  is maximized will be  called the optimal vectors associated with the 
corresponding optimal graph G(x).  A n y  such optimal graph may be denoted by 
G(n).  

Definition $. Let  m, r, q be positive integers, and G = G m be an (r, q)-digraph. 

Let  the vector u = (Ul, u2 . . . .  , urn) range over  the standard (m - 1)-simplex in R ' ,  
i.e. u~/>0 (i = 1, 2 . . . . .  m), ~ u~ = 1. We  consider the real multilinear form 

5 The sequence is indexed by n, the number of vertices. 
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summed over  all ( i l ,  i 2 . . . . .  /r) such that (vi,, v~ . . . . .  vg) is an edge of G, where the 
multiplicity of a monomial in the sum is equal to the multiplicity of the corre- 
sponding edge in the graph. The  maximum of gG(U) is called the graph-density or 
simply the density of G, and denoted by g(G);  a vector u for which [6(u) is 
maximal is called an optimum vector. Where the maximum is attained only in the 
interior of the (m - 1)-simplex, i.e. with t~ > 0 (i = 1, 2 . . . . .  m), we say that G is 
dense. 

Remark.  The variables in fG(u) are commutative. Thus the coefficient of 
u~ u~. • • u~ is the sum of the multiplicities of all edges that are permutations of 
{v~,, v~ 2 . . . .  , v~}: it does not depend on the orientation. 

Example.  Let  q =3 ,  and let G be a 3-uniform hypergraph with V ( G ) =  
{1,2 ,3 ,4},  and E (G)={(123) ,  (123), (213), (213), (213), (124)} (where multi- 
plicities have been shown by repetition.) Then,  with u =(u~, u2, u3, u4), u~ ~>0 

(i = 1, 2, 3, 4), fG(u) = 5UlU2U3+ UlU2U4- Since fG(U)<-f6(ul, U2, U3+ U4, 0), G is 
not dense. 

[ ,emma 1. 6 Let G be a ftxed (r, q)-graph and let t be a positive integer. 
(a) The number of edges of G(te) is t 'e(G). 
(b) As  n --->0% 

e(G(n)) = {g(G) + O(1/n)}n'. (2.2) 

(c) There exists a constant Cl = cl(r, q) such that 

g ( G ) -  cl/n < e(G(n)) /n ~ <~ g(G). (2.3) 

(d) For any vector x of positive integers, and any positive integer 11, (G(x))(n) = 
G(n). Moreover, g ( G(x ) )=  g(G). 

(e) I f  H is a subgraph of G, then g(H) ~< g(G).  
(f) Let G" be a digraph containing a subgraph I -~  for which e(IT")>.--am ". Then 

g(G")  >~ a. In particular, if e(G") > an', then g(G")  > a. 

Proof .  (b) Let  u be an optimum vector for G = G",  and define x by xi = Lu~nJ or 
[u~n] (i = 1, 2 . . . . .  m) chosen 7 in some way so that ~ x~ = n. Then 

~ x~2. • • x~ = r I  (u~n + ( x ~ -  u~n)) 
i 

= n ' u i u h . - . ~ + O ( n  "-1) as n--->oo. 

Thus, as n--->oo, [n - ' e (G(x ) ) -g (G) l - -O(1 /n ) .  Conversely, given an optimal vec- 
tor  y = ( y l ,  y2 . . . . .  y,,) realizing O(n) ,  define a vector v by vi=y.,/n 
(i = 1, 2 . . . . .  m). Then g(O)>~fo(v) = n- 'e(G(y)) .  

6 We number the theorems and lemmas proved in the present paper using arabic numerals, and the 
results quoted without proof from other sources with Latin letters. 

[xJ denotes the greatest integer in x, Ix] denotes - [ - x J .  
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(d) The first statement is trivial. The second statement follows from the first 
by (b). 

(f) Let t be any positive integer. Then 

g(G) >/g(H m) 

= (mt)-re  (I--I ~ (rot))(1 + O(1/t)) 

>I ( m t ) - ' e ( H " ( t e ) ) ( 1  + O(1/0) 

= m - r e ( H ~ ) ( l + O ( 1 / t ) ) > l a ( l + O ( 1 / t ) )  as t---~oo. 

Remarks. (1) This approach to extremal graph-theoretic problems via a quadra- 
tic form associated with the adjacency matrix was pioneered by T. Motzkin and E. 
Straus (cf. [16]). Straus s and others have considered possible extensions of the 
technique to hypergraph extremal problems. 

(2) In our studies on digraphs and multigraphs ([2], [5], etc.) we approached 
certain extremal problems using the vehicle of 'canonical graph structures': 
sequences of graphs whose structure may be represented by a finite number of 
integer-valued parameters. For a precise description the reader is referred to 
Section 8 below; cf. also [2], [5]. 

Def~if ion 6. For fixed r and q the set of attained densities will be denoted by ~g. 

3. Infinite sets of prolfibited graphs: continuity and compactness problems 

The following result has been proved for ordinary graphs [11], digraphs with 
q = 1 [6, Theorem 3], and multigraphs with q = 2 [6, Corollary to Theorem 3]; we 
conjecture that it holds in general. 

Conjecture 1 (Compactness). Let r and q be positive integers, and L an arbitrary 
family of (r, q)-graphs. There exists a finite subfamily L* _ L such that 

ex(n, L ) -  ex(n, L*) = o(n r) as n --~ oo. (3.1) 

While Conjecture 1 remains open (with the exceptions mentioned), we are able 
to prove the following weaker result. 

Theorem 1 (Continuity). Let  r and  q be positive integers and L an arbitrary fami ly  

o f  (r, q)-graphs. To  each e > 0  there exists a finite subfami ly  L ,  ~_L for which  

ex(n, L) ~< ex(n, L~) < ex(n, L) + en r (3.2) 

for n sufficiently large. 

s Oral communication, also 123]. 
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Remark.  For ordinary graphs the truth of the conjecture is a consequence of the 
Erd6s-Stone-Simonovits  theorem (2.1) cited above [11]. For digraphs Theorem 1 
was proved in I-5]; subsequently, the conjecture was proved [6] only for digraphs 
with q = 1. The proof below is much shorter than our earlier proof of that special 
case. 

Definition 7. The edge-density of an (r, q)-graph G" is defined to be  the ratio, 
e ( G " ) / n ( n - 1 )  . .  - ( n - r + l ) ,  i.e. it is the average multiplicity of all possible 
oriented edges. 

We  require the following l e m m a -  using an argument of Katona, Nemetz, and 
Simonovits [15, First Corollary to Theorem 1]. 

[ ,emma 2. (a) Let G" be an arbitrary graph, m <~ n; let h = (2,). Denote by 
HI  . . . . .  H ,  all the spanned (= induced) subgraphs of G" having exactly m vertices. 
Then 

1 " e(Hi) e (G")  
-h , ~  m ( m - 1 ) -  : - - ( m - r +  l ) - n ( n - 1 ) - - - ~ - r +  l )  (3.3) 

or, equivalently, 

(~)--1 i ( 7 )  -1 e(Gn) (~)  -1 . e ( N )  = (3.4) 

In other words, the average of the edge-densities of the m-vertex subgraphs of G" 
is equal to the edge-density of G". 

(b) The ratio ex(n, L)/(,") decreases monotonely as n increases. 

Proot .  (a) Since each r-edge of G" is counted exactly (2"-r) times, 

~ , e ( H i ) = ( n - _ ~ ) e ( G " ) .  (3.5) 
i 

Then (3.3) follows from the identity 

( 7 ) ( 2 - ; ) - - ( 2 ) ( 7 ) "  

(b) We apply (a). Let m < n. None of the m-vertex spanned subgraphs Hi of an 
extremal graph G " e E X ( n , L )  contains any L ~ L ,  so e(/-/~)<~ex(m,L). The left 
side of (3.4) is the average of terms, none of which exceeds ex(m, L)/('~). 

Corollary 1 (to Lemma 2). The sequence {ex(n,L)/(7)}.=l.2 .... converges 
( monotonely ). The sequence {ex(n, L ) / n " }, = l.2 .... converges. 

Corollary 2 (to Lemma 2). Let m, r be positive integers, a > 0 .  I[ L =  



1 5 4  W.G.  Brown, M. Simonovits 

{H" [ e(H") > a('~)}, then 

e x ( n , L ) ~ a ( r  n)  [or alln>-m. 

lh~mt ot Theorem 1. Let  L be a family of graphs satisfying the hypotheses; for 
each positive integer k let Lk denote the family consisting of the members of L 
having at most k vertices. Let 

3"k = lirnn~.~ ex(n, L k ) , / ( 7 )  ( k =  1 ,2  . . . .  ) 

and 

3, = ,--,~lim ex(n, L ) / ( 7  ) 

Assume that, for some e > 0, 3"k > 3" + e for all k; (since Lk ~-- L, 3"k ~ 3" for all k). 
Let S~ be an extremal graph in EX(n, ILk). By I_emma 2, 

e(S'~) = ex(n, ILk) 

[ ~ [n\ n 
(~.6) ~3"kkr]>(3"+e)kr] for every n, k. 

In particular, taking k = n, we have 

e(S'~)>(3"+e)(n) for al ln.  (3.7) 

The graph S.  ~ contains no subgraphs from IL.; as it has exactly n vertices, it can 
contain no member of L either! Thus 

/ \  
n r l  ex(n, L)~>e (S~) > (3" + e )~r ) .  (3.8) 

In the limit as n ~ oo we obtain a contradiction to our definition of 3". We 
conclude that lira 3'k = 3" as k ~ oo. 

4. 'Supersaturated' graphs 

A graph G" may be considered 'saturated' with respect to a given family L of 
prohibited subgraphs if it contains no member of L, but has the maximum number 
of edges among graphs with that property - i.e. if it is extremai. When the number 
of edges exceeds ex(n, L), we may ask how many distinct copies of members of L 
are present in G". (Of course, the graph must not necessarily be thought of as 
having been built up from a member of EX(n, L) through the addition of edges.) 
A corpus of results on 'supsersaturated' graphs exists for ordinary graphs [18]. 
Erd6s and Simonovits [12], also Simonovits [18], have investigated properties of 
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'supersaturated'  hypergraphs. The main theorem b e l o w - w h i c h  will be applied in 
our  proof of Theorem 3 -  is in that genre. 

Theorem 2, Let  L be an arbitrary fami l y  o f  (r, q)-hypergraphs,  and  let 7 = 

lira ex(n, L )/n" as n ~ oo. Le t  e > O. There exists a constant  c2 = c2(L, e) such that, 

i f  e ( G  ~) > (~ + e)n" and if  n is su]:]iciently large, then there exists some L z e L  such 
that G "  contains at least c2n z copies o f  L I. 

Proof .  (This theorem was proved for one undirected r-uniform l-hypergraph by 
Erd6s and Simonovits [12].) Assume V + e < q. By Theorem 1 there exists a finite 
subfamily L* = Le/3 ~ L such that 

e x ( m , L * ) < ( 7 + ½ e ) m "  + o ( m ' )  as m---~oo. 

Thus 

e x ( m , L * ) < ( 7 + ½ e ) m ( m - 1 )  . . " ( m - r +  l)  if m > m o .  

Assume that e ( G ' ) > ( v + e ) n  r. L e t  a ( m , n )  be the number of spanned sub- 
graphs H r~ of G"  on exactly m vertices and such that e ( / - /~ )>  
(7 + ½ e ) m ( m -  1 ) "  - ( m - r  + 1). We may apply (3.4), where no summand on the 
left exceeds qr!, to show that a(m,  n ) > c 3 n  m for s o m e  c3=c3(m)>0 and for n 
sufficiently large (with respect to m). Now ftx m > m0: then at least c a n "  of the 
H "  must each contain an L eL* ,  though not necessarily the same L. The 
finiteness of L* ensures that some one L ~ is contained in at least c2n m of these 
subgraphs. None  of these copies of L z could be counted more than (~--~t) times. 
Thus the number  of distinct copies of L I in G"  is at least 

5. A theorem of 'Erd6s-Stone' type 

A celebrated theorem of Erd6s and Stone [8], subsequently refined by many 
authors, relates the extremal numbers of (ordinary) complete k-graphs Kk to 
those of Kk(te) for positive integers t. In general, one may consider, for any  graph 
G and positive integer t, the graph G(te )  obtained through replacement of each 
vertex by t independent vertices. The  Erd6s-Stone Theorem [8] states that, for  

any t, 

ex(n, Kk(te))  =ex(n,  Kk)+o (n  2) as n---~oo. 

This surprising result implies the 'Erd6s-Stone-Simonovits '  Theorem [10], of 
wide applicability. 

Erd6s generalized the Erd/Ss-Stone Theorem in two stages, Theorem A and 
Theorem B below. We shall continue the general izat ion-  to (r, q)-hypergraphs. 
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Delinition 8. Let  r, k, t be positive integers. K~[ ~ will denote  the unoriented (sic) 
'complete' r-uniform 2 hypergraph having k vertices and, as edges, all (~) possible 

K T ( r )  r-tuples of those vertices. By -',k.t we shall denote  the r-graph K(k ~ ((te))= 
K(r)~- k ~r, t . . . . .  t) having kt vertices in k classes of t: the edges are all (~)t ~ selections 
of one vertex from each of the k classes. (The superscript ~'~ may be suppressed.) 

Theorem A 6 [9, Theorem 1]. Let n, r, t be positive integers. There exists a constant c 
(independent of n, r, t) such that 

n ~ . .  ~A~k r l ,  ~ l ~ . l l ,  t ] ~ i'~ . 

This he subsequently generalized in 

Theorem B [10]. Let k, r, t be fixed positive integers. Then 

ex(n, K~.~) =ex(n,  K~'~)+o(n ") as n --,oo. 

We shall apply these results and our  Theorem 2 to prove the following 
generalization of the preceding to (r, g)-graphs. 

Theorem 3. Let L be an arbitrary family of 'prohibited' graphs, and [ : L  ~ M a 
mapping into the natural numbers. Let L f=  {L (f(L )e) : L eL}.  Then 

ex(n, L f ) = e x ( n , L ) + o ( n  r) as n--->oo. 

Proof .  Since L ~ L(te) for each L e L and any positive integer t, 

lira ex(n, L) ~< lira ex(u, Lf). 
l a  .--~oo r l  co  

We proceed to prove the opposite inequality. Define 3' = lim,__~ ex(n, L)/n r. Let  
e > 0 be given. By Theorem 1 there exists a finite subfamily L * ~  L such that 

ex(n,L*)<(3"+½e)n" +o(n r) as n--->oo. 

Let  t = Max{f (L) :L  eL*}, and let G"  be given, with e ( G " ) >  (3" + e)n'. Then, by 
Theorem 2, G"  contains at least c2(L*, e)n ~ copies of some L ~ eL* .  Define an 
unordered (sic) l -uni form/-hypergraph M on the vertex set V(G"):  the edges are 
precisely the vertex sets of the copies of L ~. For  n sufficiently large 9 with respect 
to T, e, Theorem A ensures the existence of l disjoint sets each of T vertices, 
A1, A2 . . . . .  A~, such that G"  contains all T ~ graphs of structure L each having 
precisely one vertex in each of A x ,  A2 . . . . .  A~. Let  vx, v2, • • •, v~ be some enume- 
ration of the vertices of L ~. The T ~ embeddings of these vertices into distinct Ai 
(i = 1, 2 . . . . .  l) induce permutations of {1, 2 , . . . ,  l}. Some permutat ion occurs at 
least T~/l! times: we now consider the /-uniform ordered hypergraph defined on 
the lT vertices of I..ll Ai by the copies of L associated with this permutation. For  T 

9 It suffices to take log T>2P' log I and n > c2(L* , e) -Tt-I. 
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sufficiently large 9 with respect to l and t, a second application of T h e o r e m  A 
shows that there must  exist an Ll(te),  hence an L~(f(Ll)e).  Thus 

ex(n, L t) 
lim sup - -  ~< 3". 

n ---~oo n r 

6. The set of attained densities 

For ordinary graphs the possible densities are of the form ½ ( 1 - I / p ) ,  (p = 
1, 2 . . . .  ) [16]. The  set of these values coincides with the set of limits of form (1.1) 
[11] with r = 2. For  digraphs with q = 1 we have investigated propert ies  of the sets 
of these densities and limits and have proved I-6] (cf. I'2, Conjecture  2"]), that the 
densities form a well-ordered set, but a number  of questions remain even for 
digraphs with q > 1; an analogous situation holds for  multigraphs. We  prove  
below a general inclusion theorem for (r, q)-hypergraphs,  then state a conjecture, 
and show (in Theo re m  5) that it has several equivalent forms. 

Def ln~on  9. For  any family L, lim ex(n, L)/n" as n----> oo is called an extremal 1° 

density. The  set of extremal  densities (for a fixed class of objects, and fixed r and 
q), will be denoted by ~¢. (Compare  Definition 6.) 

Theorem 4. ~g___ ~e. Moreover, ~ is dense in ~ .  

Our  proof  of Theo rem  4 will require the following lemma,  which we state 

without proof.  

L e m m a  3. Let  3" be a positive real number, 0 < 3" ~ q, and let m be a positive integer. 

Define 

Lm.v = {L = L m : e(L  m) > 3"m (m - 1 ) . .  • (m - r + 1)}. (6.1) 

Then 

(i) ex(n, Lm.~)<~7n(n-1)  . . .  ( n - r +  l)~3"n" for all n>~m. 

(ii) l imex(n ,  Lm.v)/n" ~3" as n--->oo. 

(iii) For any LeLm.v ,  g ( L ) > 3 " m ( m - 1 ) . . .  ( m - r +  l ) /m  r. 

Proof  of Theo rem 4. (A) Let  ~/~ ~g. There  exists a graph G for which 3' = g(G).  
Let  L be the family of all graphs H for which g(H)  > 7- We  propose  to prove  that 
ex(n, L)/n'----> 3" as n---> oo. For  any vector x, G(x )  cannot contain a subgraph of 

density greater  than 3" (Lemma 1); hence 

ex(n, L) ~ e(G(n))  = (1 + O(1/n))n'3" as n ----> oo. 

1°We have thus introduced three 'densities' the graph-density (Definition 5), the edge-density 
(Definition 7), and the extremal density (of a family, Definition 9). Compare [24, Lemma 2]. 
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Suppose now that H"  ~EX(n ,L) ,  (n = 1,2 . . . .  ). Then,  since / - / ~ L ,  g(/-/")---<3". 
Applying Lemma l(f), we may conclude that e(/-P)~< 3"n r, i.e. ex(n, L)<~T r. Thus 

lim,__~ ex(n, L)/n" = 3", so 3" e @~. 
(B) Let  L be a family of prohibited graphs such that ex(n, L)/n r ~ 3" as n ~ oo. 

We shall prove that 3" is the limit of a sequence of graph densities. (By virtue of 
Conjecture 2 below, we seek a sequence of graphs whose densities approach 3" 
from below.) Let  {S"} be a sequence of extremal digraphs for L (n = 1, 2 . . . .  ). Let  
e > 0  be given, sufficiently small, and let m be an integer such that r e ( m -  
1 ) . . .  ( m - r + l ) / r n ' > l - e .  We consider the family L'=Lm.v(1-~) of Lemma 3, 
and apply Theorem 3 with the constant function f , ( L ) = t  for all L e L ' .  For  n 
sufficiently large, all S" will have e(S")>~3"(1-½e)n" and will contain L(te) for 
some L ~ L'. The  preceding is true for any t. Hence some L1 in L' has the property 
that L~( t )c  S" for arbitrary large t and n = n(t). Since S n contains no L in L, 
e(Ll(t))<<-ex(t,L) for all t. Hence,  by (2.2), g(L1)<~3". But g (L0~>3"(1-e) ,  (by 
definition). It follows that 3' is the limit of a sequence 1~ of graph densities. 

Conjecture 2. (a) @e is well ordered (under the usual ordering of the reals). 
(b) @g is well ordered (under the usual ordering of the reals). 
(c) (Compactness) For  every infinite family L there exists a finite subfar0ily 

L* c__L for which 

e x ( n , L * ) - e x ( n , L ) = o ( n ' )  as n---~oo. (6.2) 

Theorem $, For fixed r and q, conditions (a), (b), and (c) of Conjecture 2 are 
equivalent. 

Remark. It has been shown in [6] that digraphs with q = 1 have properties (a), 
(b), (c) above. 

Proof  o |  Theorem 5. (A) By Theorem 4, @g is contained in ~ and dense in ~e: 
(a) and (b) are equivalent. 

(B) Let  us assume that ~g and ~e are well ordered.  Let  L be an arbitrary 
family of prohibited graphs. As in the proof of Theorem 1, we denote  by Lk the 
subfamily of graphs in L having at most k vertices; and by 3"k and 3" the limits of 
ex(n, Lk)[('~) and ex(n,L)/('~) as n-.-->oo, ( k = l ,  2 . . . .  ). The  sequence 3"k is 
monotonely decreasing since ex(n, Lk) is monotonely decreasing in k. Further- 
more, Theorem 1 ensures that 3"k ~ 3' as n---~oo. As the set {3"u:k ~N} is 
well ordered, Vk = 3" for k sufficiently large. With such a k take L* = Lk. Thus (a) 
implies (c). 

(C) Assume now that (c) holds, but that (a) does not. Let  {Gk}u=l,2 .... be a 
sequence of graphs such that 

g(Gk) > 3' (k = 1, 2 . . . .  ) (6.3) 

tl We do not claim that it is the limit point of the set @g. It may be an isolated point in @g as well. 
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and 
g(G,)--->3" as i---->oo. (6.4) 

Define L to be the family of all graphs having density greater than 3' (thus Gi ~ L 
for all i), and let 3"* = l im ,~=ex(n ,L) /n ' .  We prove that 3"*~<T- If S" is an 
extremal graph in EX(n, L), then, by Lemma l(f), g(S") >/e(S")/n" = ex(n, L) /n ' ;  
in the limit, 3" t> T*. If (c) is true, there exists a finite subfamily L* of L such that 
(6.2) holds. Take a Gk~L*. By (6.3) and Lemma 1, for sufficiently large n, Gk(n) 
must contain some L~ in L*. Hence, by Lemma 1, 

g(Gk) = g(Gk (n)) ~ g(/~.) > 3". (6.5) 

Since L* is finite, there is some i for which (6.5) holds for infinitely many k. 
Hence 3' I> g(Gi)>  % which is a contradiction. We conclude that (c) implies (a). 

Remark.  In the cases of ordinary graphs l11], and of oriented (2, 1)-graphs and 
unoriented (2, 2)-graphs [6], we know that ~g = ~e- The general question, how- 
ever, remains open. 

7. An 'appro~naation' theorem 

For a given family L of prohibited graphs, our ideal objective would be to 
determine the family EX(n, L) of extremal graphs. That being usually unattain- 
able, we enquire as to the structure of asymptotically extremal sequences. For 
graphs, digraphs with q = 1, and multigraphs with q = 2, we have proved the 
existence (cf. Section 9 below) of asymptotically extremal sequences of an 'easily 
describable structure', ([2, Theorem 1]). For (r, q)-graphs in general we prove 
below a somewhat weaker theorem. 

Theorem 6 (Approximation Theorem). Let L be a given family of prohibited 
graphs, and let e > 0 .  There must exist a graph G such that G(n) contains no L e L  
and e(G(n))> ex(n, L ) - e n  r for every n sufficiently large. 

Proof. Let lim,_~o ex(n, L ) =  3". Let {S"} be an extremal sequence for L. As in 
paragraph (B) of the proof of Theorem 4, there exists, for m sufficiently large, 
GeLm.v-~/2 for which G ( n ) ~ S " '  for infinitely many n and n'=n'(n) .  G(n) 
contains no L e L and g(G) > 3" -½e. 

Example. Let H consist of all members of a sequence of unoriented 3-graphs 
{H"}, defined recursively as follows: H 1, H 2, H 3 all have no triples. I f / - ~  has 
been defined for all n < N, H N is fomed by taking three disjoint 3-graphs, /_/tN/3], 
H teN÷l)/31, H teN+2)/31, and adjoining as new edges all triples having precisely one 
vertex in each of the three 'summands'. Then it can be seen that 
lim,__..o e(I-~)/n 3= 1/24. There exists no graph G such that ~ = G(n) for all 
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large n. (For, in such sequences of optimal G-graphs the ratio Imaximum 
independent set of verticesl/n tends to a positive limit, whereas in the present case 
it tends to zero.) Nor could the sequence {/-/"} be obtained from a sequence 
{G(n)} by adding or deleting o(n 3) edges. However ,  it can be shown that these 
graphs are extremal for some family L. For  such an L and e > 0, there exists an 
integer k such that G = H 3k satisfies the conditions of Theorem 6. 

8. Unoriented r-uniform q-hypergraphs 

Let  the set-valued operator  ~ applied to an unoriented (r, q)-graph map it onto 
the set of all oriented r-uniform q-hypergraphs obtainable through independent 
orientations of each of its r-edges. Then we have the following 

Lemmm 4 ( 'Transfer Principle'). Let M be an arbitrary family of r-uniform 
unoriented q-hypergraphs. Then ~ E X ( n ,  M) = EX(n, ~ M ) .  

This permits the passage from the results of this paper, stated for the oriented 
case, to the unoriented. In certain cases (e.g. proof of theorem 1) the steps in the 
proof themselves have to be checked to determine whether  the family L~ 
constructed is 'symmetric' ,  i.e. whether  it is the image under ~) of a family of 
multigraphs. The proofs of Theorem 1 through Theorem 6 can all be seen to have 
this property. 

9. (r, q)-graphs with loops permitted 

Portions of the theory of this paper  carry over without significant change when 
we permit loops to occur. An 'edge'  of such a general (r, q)-graph G n will be any 
one of the n r points in the cartesian product (V(G))  r. It is particularly useful to 
permit such loops ff we wish to obtain extremal sequences or asymptotically 
extremai sequences of form {G(n)},: by excluding loops we would have to 
exclude many important cases. We may generalize Definition 3 and Definition 4 
in the obvious way to define for any (r, q)-graph G" with loops permitted and any 
non-negative integer vector x = (xx, x2 . . . . .  x~) a graph G(x). The orientation of 
edges is well defined in terms of that of the edges of G, except insofar as edges 
having more than one vertex from the same class Xi. This construction is also 
meaningful when G is unoriented. 

We may also wish to permit loops in G but not in the graphs G(x). We have 
the following familiar example. 

Example. Let  G be the unoriented (3, 1)-graph defined on the set {u, v, w} 
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wi th  edgese t  12 {uuv, w w ,  wwu, uvw}. T u r i n  c o n j e c t u r e d  tha t  the  g raphs  G(n) 
(wi thout  loops)  a re  e x t r e m a l  for  the  3 - u n i f o r m  c o m p l e t e  4 -g raph ,  KC4 a), ( that  is, 

t he  c o m p l e t e  u n o r i e n t e d  (3, 1 ) -g raph  with  V(K~ a)) = { a ,  b, c, d}, and  E(Kt43)) = 

{abc, abd, acd, bcd}. ( O t h e r  g raphs  G '  a re  k n o w n  I-1] such tha t  e(G'(n)) = e(G(n)) 
w h e r e  G'(n) does  no t  con ta in  KC43).) 

A s e q u e n c e  {S"} of  d ig raphs  which  m a y  b e  i n t e r p r e t e d  as be ing  of  f o r m  G(x)  
for  f ixed G m a y  b e  ca l led  canonical. This  concep t  bea r s  f rui t  pa r t i cu l a r ly  w h e r e  

t he  g raph  G is p e r m i t t e d  to  h a v e  loops .  In  o u r  p a p e r s  on  d ig raphs  and  mul t i -  

g raphs  [2], [5], [6], we  e x p l o i t e d  a res t r i c t ion  of  this  c onc e p t  in matrix digraphs, 
which  a re  canon ica l  s equences  of  o p t i m a l  g raphs  G(n) w h e r e  a pa r t i c u l a r  o r i e n t a -  

t ion  is p l a c e d  on  the  edges  connec t ing  m o r e  t han  o n e  (i.e. two) ver t ices  of  a class 

X~. F o r  such ma t r i x  d ig raphs  we have  b e e n  ab le  to  p r o v e  an ' i nve r se '  t h e o r e m  to  

T h e o r e m  6 I-5, T h e o r e m  1, T h e o r e m  3]. 
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