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EXTREMAL MULTIGRAPH AND DIGRAPH PROBLEMS

W. G. BROWN and M. SIMONOVITS

We survey work done jointly with P. Erdés — some not yet published — which
generalizes familiar “Turdn-type” extremal theorems to digraphs and multi-
graphs. Some of the phenomena encountered here are direct generalizations of
ordinary Turdn type extremal problems but most of them have no counterpart
in the theory for ordinary graphs. The second part, contains a short survey of
some related fields.

1. INTRODUCTION

The Universes: U, ﬁ, @

In this paper loops are always excluded! When speaking of an extremal
graph problem, we shall have several settings, in each of which a “uni-
verse” of graphs is fixed, like

U;: “simple graphs”: no loops, no multiple edges,
Uy: “multigraphs” with maximum edge-multiplicity g,
TD))S: “digraphs” with maximum arc-multiplicity s,

oriented graphs where between any two vertices there is at most
one arc (directed edge).

Qr,¢: r-uniform “directed multihypergraphs” with maximum multiplic-
ity q.
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Language

Speaking about multigraphs we shall use g to denote the maximum multi-
plicity of parallel edges.

Below, to avoid cumbersome expressions, like submultigraphs, directed
multihypergraphs, etc. we agree that sometimes we use the full, precise ex-
pression, but mostly we write subgraphs, “graphs”, etc. Sometimes directed
edges, hyperedges, directed hyperedges will be called arcs but often we will
speak of “edges” even if we speak of digraphs or hypergraphs, etc. However,
if multiplicities are involved, the “number of edges” will always refer to the
sum of multiplicities.

In each case we fix a universe U and a family of “excluded” objects
L C U and consider an “object” (“graph”) U, € U on n vertices, not
containing any L € L, and try to maximize the possible number of edges,
e(Un) — counted with multiplicities — under the conditions fixed. The
most important universes of this survey are Uy (where two vertices can be
joined by 0, 1, or 2 edges) and ﬁl (the class of digraphs where any two
vertices can be independent, or joined by one arc, or by two arcs of opposite
directions). These are the universes which are much more general than the
universe of simple graphs and yet many interesting results can be formulated
for them.

Notation. Given a graph, (digraph, multigraph, multidigraph, hyper-
graph), the first subscript usually denotes the number of vertices, e.g., Gy,
is always a graph (digraph, ...) on n vertices!. The number of vertices is
also denoted by v(G), the number of edges of G by e(G), where “edges”
may also mean arcs, hyperedges, or, for multigraphs, multihypergraphs, the
number of edges always with multiplicity. x(G) is the chromatic number
of G?. Given a multidigraph I, we call M its underlying graph if M is
obtained by forgetting the orientations?.

Given two multigraphs (or digraphs) G and H, we shall denote by GR H
the multigraph (digraph) created by joining each vertex in G to each one in
H by q edges (or s + s arcs of opposite directions).

! There will be two typical exceptions: if a set {L1,...,L¢} of forbidden graphs is
considered, and if a “structure” or a matrix generates a graph, say, a matrix A; generates
a graph Aj(n) that has n vertices.

2 We shall use the chromatic number only for graphs, digraphs and multigraphs,
without loops, so it is well defined.
3 The new multiplicity p(z,y) := w(@Y) + p(7d).
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We discuss mainly results of Paul Erdés and ourselves, — some not yet
published — which generalize “Turdn-type” extremal results from ordinary
graphs to digraphs and multigraphs. Other progress reports on these results
have appeared in [7], [68, §15], [66, §11]. The aim of this survey is to list the
most important results of the field, to give ample of background explanation
of what is going on in this area, and to connect this area to the surrounding,
strongly related fields. (A short but excellent description of the topic can
be found in the important paper of Sidorenko [64].)

Acknowledgements. We wish to express our thanks to Z. Furedi for his
valuable remarks.

1.1. Extremal problems

Much of graph theory can be described as extremal graph theory. We restrict
ourselves to Turdn type extremal graph problems where the general question
can be described as follows.

Definition 1.1 (Extremal problems). Fix a universe U and a family of
forbidden “graphs” £ C U.

e The maximum number of edges a “graph” G, € U on n vertices
can have without containing some L € L is denoted by ext (n, £),
(or, if we wish to emphasize the universe, we may write exty(n, £),
or in case of U; and Iy we may use exty(n, L) or as(n, L)).

e The “graphs” U, € U not containing any L € £ and attaining
this maximum are called extremal graphs for £, their family is
EXT (n, L).

e The extremal problem corresponding to £ is when the goal is to
determine or estimate ext (n, £).

These definitions include the directed case as well.

We will make ad hoc adjustments to these notations to simplify read-
ability* or to eliminate ambiguities.

4 We employ the usual “abuse of notation” when L consists of a single graph L, and
write ext (n, L) and EXT (n, L) rather than ext (n, {L}) and EXT (n, {L}) .
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1.1.1. Universe = Simple graphs. We shall call graphs without loops
and multiple edges simple graphs.

The root of multigraph/digraph extremal problems is Turdn’s theorem?®.

Let us restrict ourselves to simple graphs, U;. Let T;,, denote the simple
p-chromatic graph on n vertices with maximum number of edges. More
explicitly, we partition n vertices into p classes as uniformly as possible,
and join two vertices iff they belong to distinct classes. This is T, ;,, the
Turdn graph (on n vertices and p classes). The corresponding Turdn number
is tpp 1= e(Typ). Given a so called sample graph L, we shall call G,, L-free
if L Z G,,. More generally, G, is L-free if no L € L is a (not necessarily
induced) subgraph of G,,.

Theorem 1.2 (Turdn, 1940 [74]). Among all the K, -free simple graphs
G, on n vertices there is exactly one having the maximum number of edges,
namely, T, ;.

Clearly, T, — being p-chromatic — contains no Kpyi. The deep
part of this theorem asserts that if e(G,) > e(Ty ) and G, # Ty p, then
Kp+1 C Gy.

Some of the most important goals in extremal graph theory are to find

(a) the extremal graphs for a given family £ of forbidden graphs,

(b) good asymptotics for ext (n, L) where exact results are hopeless,

(c) interesting applications of extremal graph results.

When we generalize extremal graph problems and results from simple
graphs to digraphs, multigraphs, hypergraphs, etc, we seek to answer the
above questions, and to clarify the similarities and differences: to describe
the new phenomena.

1.1.2. Asymptotics for simple graphs. The asymptotic behavior of the
extremal function ext (n, £) is very simple for simple graphs. The extremal
numbers depend primarily on the minimum chromatic number in L.

Let us start with the Erdds—Stone theorem from 1946. Denote the
complete d-partite graph with n; vertices in its i*" class (i = 1,2,...,d), by
Kq(ny,...,nq)

5 To be precise, one should mention Mantel’s theorem and Erdds’ Cy-theorem as
well.
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Theorem 1.3 (Erdés—Stone [29]). For fixed positive integers m, p,
1
(1) ext(n,Kpi1(m,m,...,m)) = (1 — —) (Z) +o(n?) as n— oo.
p
This easily implies

Theorem 1.4 (Erdds—Simonovits [28]). For any L, if

(2) p=p(£) = minx(L) -1,
then
(3) ext (n, £) = (1 - %) (Z) Fo(n?) as n— oo,

The meaning of this theorem is that if the minimum chromatic number
in £ is at least 3, then the corresponding Turdn graph T, , is “asymptotically
extremal”® for £. The next Erd6s-Simonovits theorem asserts that for any
L the extremal graphs also are “very similar” to the Turdn graph.

Theorem 1.5 (Extremal graphs, [17, 18, 65]). If p = p(L) is defined by
(2) and (S,,) is a sequence of extremal graphs, then one can change o(n?)
edges in S;, to obtain 17, ;.

The almost extremal graphs are also “very near” in structure to T}, p.

Theorem 1.6 (Erdés—Simonovits, [18, 65]). If p = p(L) is defined by (2)
and (G,,) is a sequence of L-free graphs satisfying

e(Gyn) > ext (n, L) —o(n?), as n — oo,
then one can change o(n?) edges in G, to obtain T, .
One basic question in multigraph/digraph exztremal problems is

How do the above theorems generalize to multigraph extremal prob-
lems or digraph extremal problems?

We shall see in Section 3 that, for the simplest cases, Uy and TD)l, The-
orem 1.4 has a natural extension, but structural (asymptotic) uniqueness
of extremal graphs (Theorem 1.5) extends to multigraphs or digraphs only
under very strict extra conditions (which are natural and are necessary
and sufficient but yet very restrictive). Further, if we proceed to multigraphs
and ¢ > 3, then we have only conjectures (and some counterexamples), but
no real positive analogues of the above theorems.

6 For a precise definition see Section 1.6.
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1.2. Equivalence of digraph and multigraph problems

Claim 1.7 (Transfer Principle). For any family M C Uss of multigraphs,
define the family £ = L (M) C D, of forbidden digraphs by taking for
each M € M each orientation L of M belonging to IDs: with at most s
parallel arcs. Then ext (n, M) = ext (n, 3)7

Indeed,

(a) if @)n is an oriented graph and M, is obtained from an by sup-
pressing the orientation, then (), contains an i € L if and only
if M,, contains some M € M;

(b) clearly, by (a), M,, € EXT (n, M) iff Zjn c EXT (n, ?)

This is the sense in which the digraph extremal problems are more gen-
eral than the multigraph extremal problems. Yet, in practice, the extremal
problems for I and Usg are equivalent: mostly, if we can handle the multi-
graph problems, then we can handle the corresponding digraph problems as
well.

Hence we shall often formulate our results only either for digraphs
or only for multigraphs, when the corresponding other result immediately
follows from the above “transfer principle”.

1.3. Why do we need a bound on the multiplicities?

Consider the following generalization of T}, p:

Definition 1.8 (Generalized Turan graph). Ty is the multigraph obtained
by partitioning n vertices into p classes V; (i = 1,...,p), as equally as
possible, and joining two vertices by ¢ edges iff they belong to distinct
classes, by h edges iff they belong to the same class.

Given a forbidden multigraph L, if we have no restriction on the edge-
multiplicity, then an L-free M,, can have arbitrary many edges. So, e.g., if
p+1:=x(L) > 2, then L Z T and therefore

exty(n,L) > q-e(Tnp) - o0 as g — oo, even ifn is fixed.

7 Sometimes we use ext to emphasize that we speak of the directed case; on the
other hand, we often drop it.
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8 This is why to get a finite extremum, either explicitly or implicitly, we
have to assume that

a ¢ is fixed and between any two vertices z and y the number of
edges is bounded by gq.

1.4. The effect of the multiplicity bound

Here, for the sake of simplicity, we restrict ourselves to the case of multi-
graphs. The extremal numbers ext,(n, £) generally do depend on g as well:
let L be a multigraph with maximum edge-multiplicity x. Clearly, for ¢ < &,

exty(n,L) = g (Z)

On the other hand, if kK = 1, i.e., all the multiplicities are 0 or 1 in L, then

exty(n, L) = q - exti(n,L).

1.5. Some early results on multigraphs and digraphs

The systematic investigation of digraph and multigraph extremal problems
was initiated by Brown and Harary in [11]. In a first foray into this
territory Brown and Harary were able to determine the extremal numbers
and extremal digraphs for 3 cases:

(a) when T is a tournament (i.e., any orientation of Kp),

(b) if T = 31 ® ﬁg, direct sums of two tournaments, i.e., the digraph
obtained by joining each vertex of D; to each vertex of Do by two
arcs of opposite directions;

(c) for any T of at most 4 vertices where any two vertices are joined
by at least one arc. Their other results were mostly the multigraph
analogues of these cases.

These results were all “exact”, and all involved the “Turdn” numbers

tnp-

8 More generally, unless L is a multigraph where all the edges join two fixed vertices,
then exty(n,L) > q — co.
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Theorem 1.9 (Brown Harary, [11]). Let 83 be the cyclically oriented K3,
3Q C3. If 1 and 32 are two tournaments, L : 1 ® Dy and

T (f) > 5, but b # fl, then Tm, 1 is the (only) extremal graph

for

All of the extremal numbers found in [11] — even in the general cases
considered — were either of the forms 2¢,, + O(1) or () + tnp + 0(1),
because some of the extremal graphs were (basically) 7, 3 ; or Tp, 2, or some

directed versions of these graphs.

We shall not give here a detailed description of the Brown—Harary paper
but remark that it is a very long paper (more than 60 pages, though not too
densely printed) and contains all extremal multigraph and digraph results
where the forbidden graphs have at most 4 vertices and the underlying
graph is complete: any two of their vertices are joined by at least one edge.
The paper also contains a general result, and a complete description of the
non-uniqueness of extremal graphs for several sample graphs, see below in
Sections 7 and [10].

1.6. Multigraph and digraph extremal problems

Many results from extremal graph theory can easily be extended to such
other universes as multigraphs, weighted graphs, digraphs or to multidi-
graphs.

Most of our results were developed originally for Uy or ﬂl. We shall
mostly (but not always) confine our discussion to these two universes. Some
results generalize without difficulty to digraphs and multigraphs with higher
multiplicities of edges; or to hypergraphs, even “directed multihypergraphs”
(see Section 9 and [12]).

Definition 1.10 (Asymptotically extremal sequences). If the universe TD))
and ? are fixed and D, € D is a sequence of ? free digraphs and

e(ﬁn) > ext (n, 2) —o(n?) as n— oo,

then (D)n) is called an asymptotically extremal sequence for Z.

Basically there are two important reasons to speak of asymptotically
extremal sequences (instead of extremal sequences):
(a) Often we cannot determine the extremal graphs but we can find
asymptotically extremal graph sequences.
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(b) In some other cases we have a fairly good but rather complicated
description of the extremal graphs: they have complicated struc-
tures but they are obtained from some much simpler structures by
adding o(n?) edges.

Fundamental problem:
Can we provide asymptotically extremal sequences of fairly simple
structure for a given L7

1.7. Some motivation for multigraph/digraph extremal problems

Extremal graph theory being interesting on its own, yet it is worth remark-
ing that some of its roots are coming from applications. One of these roots
comes from [14] where Erdds solved the problem ext (n,Cy) to apply it in
number theory.?

As Turdn used to emphasize, the applicability of extremal graph theo-
rems derives from the fact that, in some sense, extremal graph results are
generalizations of the Pigeon Hole Principle’®. Ordinary extremal graph
results are applicable

e to distance distribution in geometry (Erdds, [15],..., see also the
book of Pach and Agarwal, [57])

e estimating convergence of some potential-like integrals in analysis,
Turédn [75], Erdés, Meir, T. Sés, Turdn [25]
e to Probability theory, (Katona, Sidorenko, [46],...)

1.7.1. Ramsey—Turdn theory. Sometimes applications of extremal graph
theory provide satisfactory results, but often they give only crude estimates.
This is why one has two distinct approaches to improve these results: either
one forgets extremal graph theory and attacks the problem in a completely
different way, or one improves the extremal graph theoretical tools: to get
tools more fitting to the given situation. This (improving the tools) hap-
pened, e.g., when Komlés, Pintz and Szemerédi disproved the old conjecture

9 For a more detailed description of the story, see [68]. For applications of extremal
graph theory in number theory see several papers of Erdds, and among the latest ones,
see [27] or the survey paper of V. T. S6s on the interaction between Graph Theory and
Number Theory, [71] in this volume.

10 Of course, Ramsey theorems are also generalizations of the Pigeon Hole Principle,
and very applicable but the two applications have different characters.
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on the Heilbronn problem [47]. Also this led to the Ramsey—Turdn theory.
For a longer survey on this topic see the paper of Simonovits and T. Sés [69].

This second approach: “improving the tools” is one of the main motiva-
tions to investigate Turdn type extremal graph results for weighted graphs
(which include multigraphs as well).

An important graph theoretical application of multigraph extremal the-
orems is a result of Erdds, Hajnal, Szemerédi and T. Sés, [24], on Ramsey—
Turdn problems. Let a(G},) denote the stability number, i.e., the cardinality
of the largest independent vertex set in G,,. Consider the following problem:

Problem 1.11 (Ramsey—Turdn problem, o(n) scope). Given a family of
forbidden graphs, £, and a sequence (G),) of (ordinary) graphs for which

(i) Gp, contains no L € L,
(ii) a(Gy) = o(n).

What is the maximum of e(G,) under these conditions?

In many important cases Ramsey—Turin theorems reduce to solving
some multigraph extremal problem described by Theorem 2.3 below. One
case reduced to extremal problems in Us is the following theorem of Erdds—
Hajnal-T. S6s—Szemerédi theorem on the Ramsey—Turan problem of K.

Theorem 1.12 (Erds—Hajnal-T. S6s—Szemerédi, [24]). If Koy € Gy, and
a(Gr) = o(n) then

136 5n2 + o(n?)

<
e(Gn) < 5575

and this is sharp.

This deep theorem is highly nontrivial and even the simplest case of
K, was difficult to solve (see Szemerédi, [72], Bollobas—Erdé&s [4]) and after
that it took several years to settle the general case.

It uses the solution of a multigraph extremal problem in U, where, for
given t, we take £; consisting of those (forbidden) subgraphs L where, for
some 7 < t, we have a graph on uq,...,u;; the edge-multiplicities are 1 or
2 and the the multiplicity of w;u; is 2 iff 4,5 <t — 7.

For motivations, applications and further details on Ramsey—Turan
results, again, see the survey of Simonovits and V. T. Sés [69]. For some
further generalizations and details see also the papers of Erdds, Hajnal,
Simonovits, T. S6s and Szemerédi, [22, 23].
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1.7.2. An application to hypergraphs. There are not too many satis-
factory extremal hypergraph results. V. T. Sés asked the following question
[70]: if we restrict ourselves to 3-uniform hypergraphs and F7 is the Fano hy-
pergraph, i.e., the 3-uniform hypergraph defined on 7 points by the 7 triples
(=lines) of the Fano plane, what is the extremal function ext (n, F7)?

The hypergraph F7 is 3-chromatic but if we delete any triple from it,
we obtain a 2-colorable graph. This is one of the motivations of

Conjecture 1.13 (V. T. Sés). If we partition n > ng vertices into two
classes A and B and consider all the triplets containing at least one vertex
from both A and B, then the 3-uniform hypergraph obtained is extremal
for F7.

Recently de Caen and Fiiredi proved [13] that

Theorem 1.14. ;
ext (n, F7) = 7 (Z) + 0(n?).

The proof uses a corresponding Dirac type multigraph extremal theo-
rem:

Theorem 1.15 (Firedi-Kundgen, [33]). If M, is an arbitrary multigraph
(without restriction on the edge multiplicities, except that they are nonneg-
ative) and all the 4-vertex subgraphs of M,, have at most 20 edges, then

(M) < 3(7;) +O(n).

This is a very special case of a much more general theorem, see [33] and
also Section 10.

1.7.3. Codes and digraphs. Many combinatorial or algebraic conditions
can be expressed through excluding some subgraphs in digraphs. One such
example comes from Coding Theory. A paper of Ball and Cummings uses
extremal digraph theorems to estimate the maximum number of possible
“comma-free codewords” over a given alphabet [1]. Generally, a set C
consisting of sequences of length k is a comma-free code if whenever it
contains two sequences ai,...,a; and bq,...,bg, then it contains no other
k-segment of ajasg...agby ...bx. (This means that in a sequence of codes
one does not have to use commas to separate the codewords.) Being a
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comma-free code for £ = 2 means that if ab and cd are such words then
bc is not a codeword. Such a code describes a directed graph on n vertices
(the symbol alphabet), the codewords being the arcs. This graph contains
no directed path of length 3. The maximum possible number of codewords
is [n2/3]. (This is not so surprising: an even stronger Lemma states that
these digraphs are 3-colorable.) The authors describe how to construct all
graphs corresponding to maximal codes.

1.7.4. An application to geometry. Erdés, Harczos, and Pach [26],
investigating a distance distribution problem in R?, needed and proved the
following digraph extremal result. Let ?3(1, 3,3) denote the digraph on 7
vertices {x,y1,y2,Y3, 21, 22, 23}, and taking the 12 arcs of the form zy; and
A

YiZ;.-

Theorem 1.16 (Excluded ?3(1, 3,3), [26]). Ifthe outdegree of each vertex
of G is at least 2n*/® then K 3(1,3,3) C G .

Observe, that this is not a standard extremal graph theorem, here we
have a condition on the degrees, not on the number of edges. For ordinary
graphs this is a slim difference, here ext (n, ?3(1, 3, 3)) > \_";J , since the
appropriate orientation of Ty, o contains no K3(1,3,3).

(Some interesting related applications of graph theory to geometry can
be found in several papers of Erdds, and also in Firedi [31] and Fiiredi-
Hajnal [32].)

2. SOME IMPORTANT EXAMPLES

Here we restrict ourselves to Us.

Let K3 denote the multigraph on 3 vertices a, b, ¢ where a is joined to
b, ¢ by double edges and (b, c) is a single edge. One can learn much about
the multigraph extremal problems from the case of K3.

Theorem 2.1 (Brown-Harary).

2
ext (n, K3) = 2 HJ .

In the corresponding Figure 2 we see K3 for which Ts”g is one of the
extremal graphs, but the complete graphs, K,, also form an asymptotically



bxtremal Multigraph and Digraph rroblems

extremal graph sequence, and we can mix these two asymptotically extremal
graph sequences in infinitely many ways. A mixed sequence can be seen
on Figure 2: take £ copies of the double Turdn graph Tz”g in £ (possibly

different) sizes: H; = TZ;?Z, Hy = TZ;?Q,. .., H = Ti;?Q. Join each vertex
of H; to each vertex of H; for every 1 < 7 < j < /, by single edges.
The resulting graphs contain no K3 and are asymptotically extremal. This
shows that one cannot hope for structural uniqueness or stability of the

(asymptotically) extremal graph sequences, not even in the simplest cases.

Remark 2.2. (K,,) is not an extremal sequence for K3 but if we add to K,
[n/2] independent edges (to form [n/2] independent edges of multiplicity 2)
then we get extremal graphs. This is a subcase of the “mixing” described
above.

2.1. A general multigraph result

In this section we restrict ourselves to Us and D)l.u

Maximum multiplicity 2. For a given family M of multigraphs,
consider the largest p for which T,f,’g contains no M € M. Consider
also the largest p for which Tz,’; contains no M € M. Clearly,

(4) ext (n, M) > max { e(Tﬁ”I?), e(T2’1)} .

n,p

Question: for which families M is (4) sharp up to o(n?) (...or
sharp without any error-term?)?

Theorem 2.3 (Brown, Erdés, Simonovits, [7]). Consider Uy. If M is
complete (i.e., the multiplicities are 1 and 2), then (4) is sharp:

Let p = v(M) — 1 and p + 1 be the chromatic number of the graph
defined by the edges of multiplicity at least 2. Then

(5) ext (n, M) = max { e(Tnz,’I(,)), e(Ti’;)} + o(n?).

11 We have seen that these two cases are almost equivalent.
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3. THE MAIN THEOREM

In our investigations with Erdés, we soon found that the general case was
considerably more interesting and involved, even in the asymptotic behavior
of the extremal numbers. The situation can be described in terms of certain
matrices that we call “dense”. We formulate here and explain below the
main result of [6]:

For any family L, there exists an asymptotically extremal se-
quence of optimal matrix digraphs A(n) associated with a
dense matrix A.

The matrices are used here to encode some graph structures in a com-
pact form. Below we first formulate our results without matrices, then we
describe the encoding, and finally formulate some of our results in matrix-
encoded form.

3.1. Main Theorem without matrices

The main question in the asymptotic theory of multigraph and digraph
extremal problems is if, for every L, there is an asymptotically extremal
sequence (Z ) of digraphs/multigraphs that can be described in some sim-
ple way, by a small number of parameters. More explicitly, (restricting
ourselves, e.g., to digraphs),

Question:
For a given family ? of excluded digraphs, can one always find a sequence
(7n) of digraphs, not containing any L € L, with

e(Z,) = ext (n, L) + o(n?),

for which V(?n) can be partitioned into a bounded number of classes,
Vi,...,V; so that, if z € V; and y € V; then the direction and multiplicity
of an arc (x — y) depend only on (7,7)?

Perhaps (switching to multigraphs) the simplest such non-trivial struc-
tures are (Tﬁ,’ﬁ). Somewhat more complicated structures are described in
Figure 3. The “subdivided double Turan graph” is obtained from a Ti:g
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where we put some ordinary (simple) Turdn graphs in the classes of Tf’g
and then (perhaps) change the sizes of the classes. In the undirected version,
for given p1,...,pg, take a partition n =nj + ... + ng and let

Sy, = SPPk <y, Ly >i= Tn1,p1 R... ®Tnkapk'

Take a partition (ni,...,n,) for which e(SPbPk < ny, ... ,ng >) is the
maximum possible. This will be denoted by S, = SPbPk(n). In the
directed case, take any permitted orientation of this S,.

These sequences (Sy,) still have a fairly transparent structure. There
are many much more involved ones. Figure 4 describes two structures that
are not covered by the above patterns, the “4-path” structure, P4(n) and
the “pentagon” structure Cs(n)'2.

The Main Theorem asserts that for Us or ﬁl, for any L, there exist
simple asymptotically extremal graph sequences.

Theorem 3.1 (Main Theorem). Consider ﬁ)l. For any excluded digraph
family T there exists a sequence (?n) of asymptotically extremal digraphs
for which V(S ;) can be partitioned into a fixed number r = r( L) of classes,
Vi,...,V, so that each V; spans either a transitive tournament or an empty
set and for each 1 <1i < j <r (depending on (i,j)) either each z € V; and
y € Vj are joined by two arcs of opposite directions or each x € V; is joined
to each y € V; by an arc directed toward V; or vice versa.

The case of independent z € V;, y € V; can be excluded, see Section 3.2.
This is what will be expressed below by saying that we may restrict ourselves
to dense matrices. We do not know Theorem 3.1 for higher multiplicities:
not even for Us, nor for TD))Q.

3.2. Encoding graph structures with matrices

These structures can be encoded by r x r matrices A = (a;;), where a;;
corresponds to the connection between V; and V. This is why we shall
introduce the matrix graphs and some related notions. This encoding can
be done in various ways and we shall choose one where the quadratic form,
xzAz* corresponds to the number of edges in the corresponding structure.!?

12 The names are invented just to make them easier to distinguish.

13 We use an asterisk to denote the transpose of a vector or matrix.
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Definition 3.2 (Matrix digraphs).!* Let A = (a;;) be an r x r matrix,

aij = 0or 2ifi# j,and a; = 0 or 1, x = (z1,...,2,) a vector with
nonnegative integer coordinates, and n = z1+...+ z,. We define a digraph
A(x) as follows: n vertices are divided into classes Vi, ..., V;, where the 't

class contains x; vertices, and for ¢ # j we join each vertex of V; to each
vertex of V; by %G/z’j arcs directed toward Vj. If a;; = 0, then the vertices of
V; are independent; if a;; = 1, then they form a transitive tournament.

Claim 3.3. For any r X r matrix A = (“ij)i,j:1,2,...,r’ and any vector
x = (%1, %9,...,%,) of non-negative integers,
1, 1
(6) e(A(x)) = §XAX 3 z;aiﬂz',
1=

Definition 3.4 (Density of matrices). Denote by A, the simplex

(7) {u:Zuizl, u120,...,ur20.}.
%

The density of an r X r matrix A is

— * 15
(8) g(A) = max uAu®.

The vectors u for which udu* = g(A) in (8) are called the optimum
vectors of A.'

The meaning of the next definition is that if we have a structure pro-
viding asymptotically extremal graphs but we can delete some classes of
this structure and still have an asymptotically extremal graph sequence,
then we delete these classes. Finally we obtain some minimal (i.e. simplest)
structures. These structures and the corresponding matrices will be called
dense.

14 19 introducing the analogous concept for multigraphs, the authors chose to sym-
metrize the matrices by; so the matrix we chose to use to represent the multigraph un-
derlying a digraph A(x) is the symmetric matrix %(A + A%).

15 Note that the value of uAu* depends only on A + A*.

16 Our approach to these Turdn-type problems by considering the quadratic forms
associated with an adjacency-type matrix was motivated, in part, by the work of Motzkin
and Straus [56], which is not unrelated to the methods of Zykov [78].
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Definition 3.5 (Dense matrices). A matrix A is dense if deleting any of
its rows and the corresponding columns yields an A’ with g(A’) < g(A).'”

The dense matrices play important role in our investigation. An r x r
integer matrix A is dense if the maximum in (8) is attained only at interior
points of the simplex A,. (For a dense A there is only one optimum vector,
by Lemma 3.9.)

Definition 3.6 (Optimal Matrix graph). A(n) is an optimal matrix graph
for a matrix A if e( A(n)) is the maximum for all A(z), when " z; = n.!8

Claim 3.7.

) o(40) =) () + Ot

3.3. Main Theorem with matrices

What we proved is the following:

Theorem 3.8 (Main Theorem, [6, Theorem 1]). Consider Uz or ﬁl. For
any finite or infinite family L there exists a dense matrix A such that (A(n))
is asymptotically extremal for L.

The matrix A is eztremal for the family £ if the sequence (A(n)) is
asymptotically extremal for L.

One of the lemmas we proved was

Lemma ([6, 9]). Let j=(1,...,1). If A is a dense matrix then
(a) ai; + aj; > aq; + ajj, fori #j.
(b) A is non-singular and Ax = j has only one solution, where each
z; > 0.
1

(c) For this unique solution of Ax =j, Y, z; = AT

The “normalized” vector u := g(A)x € A, is the “optimum vector”.

17 Equivalently, a matrix A is dense if no principal proper submatrix A is such that
the sequences (A(n)) and (A'(n)) have, asymptotically, numbers of edges which differ
by o(n?) as n — oco.

18 A(n) is not uniquely defined, we take one of the possible optimal graphs. By the
way, for a dense A there are only O4(1) optimal graphs.



W. G. brown and M. S1monovits

This lemma corresponds to the symmetrization method of Zykov [78].

A. Sidorenko extended our necessary conditions on a matrix to be dense
[6] [9]. He proved the following elegant characterization of dense matrices:

Theorem 3.10 ([64, Theorem 2]). Let e = (1,1,...,1). A matrix A is
dense iff both of the following conditions hold:

1. A is non-singular, and all components of the vector e A~! are posi-
tive.

2. A is “of negative type”, i.e., for any non-zero vector x for which
xe* = 0, xAx* < 0.

3.4. Examples: Directed case

Here we are working in ﬁl, but, as we have observed, this is just a minor
difference: most of the statements of this kind can easily be “translated”
into theorems in Us.

Consider the following simple examples:

We shall use below as forbidden graphs the 2-cycle, the 3-cycle and the
transitive triangle, shown on Figure 5.

Example 1. Clearly, ext (n,DKy) = (Z), and the extremal matrices are all
tournaments on n vertices. Further, any asymptotically extremal sequence
for DKy will consist of subdigraphs of tournaments containing almost all
edges. The (unique) asymptotically extremal matrix is A; = (1) here.
Indeed, this matrix is eztremal, in the sense that the sequence (Al(n))
consists exclusively of extremal graphs.!?

Example 2. Now exclude 7}3, ththransitive tournament on 3 vertices. As
shown in [11], ext (n, ?3) = 2{%J, and the extremal digraphs are the

digraphs T,i’g [11, (7.5)]. The only extremal matrix is Ay = (g g), the

only other dense matrix of density 1 is A;, and it is not asymptotically
extremal for T 3.

Example 3. In this case we “repeat” in matrix form what was already ex-
plained in Section 2 about mixing extremal structures for K3. ext (n, 83) =

19 But not all extremal graphs are of the form Aj(n).
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2{’2—2J , Ti’g is extremal, but there are other extremal digraphs. As seen

in [11],

(2 1)

are among the possible extremal matrices, where the 2 x 2 submatrices
along the main diagonal represent copies of Tjé?Q. The extremal digraphs
represented by these matrices are composed of copies of “double” Turdn
graphs, between any two of which all edges are present, all directed the
same way, so that the digraph has no cyclic triangle. But, in fact, there
are other extremal digraphs. Of the matrices listed above, only the first is
dense.

O OO O O
[eslen] fenllen] fanly )
S O O N
O OO NN N
N OIN NN N
O NN NN DN

3.5. Matrix coloring

For ordinary graphs the chromatic number of the excluded graph governs
the asymptotic structure of the extremal graphs. Several results concerning
this assertion can be generalized to U, and ID;. The first thing one has to
do is to generalize the chromatic number to multigraphs and multidigraphs.

Definition 3.11. Given a matrix A, with non-negative entries, we call the
multidigraph T A-colorable if U C A(m) for some sufficiently large m.

If we wish to generalize the chromatic number to I s, We can use

7(5}) := inf { g(A) : T is A-colorable} .

Or, if we use X(ﬁ) =1- 71—, then we get back the original chromatic
) Y (U)
number for ordinary graphs.

Now, many extremal graph results, connected to Erdés—Stone-Simono-
vits Theorem or its structural versions, can be generalized to U, and TD))l.
We skip the details.
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4. INVERSE THEOREMS

We speak of “inverse theorems” when we fix a sequence of graphs (digraphs,

..) (Sp) and try to find out if there are families £ for which these graphs
are the (asymptotically) extremal graphs. If yes, which are these £’s? The
meaning of the next inverse theorem is that the Main Theorem is sharp:
one cannot narrow the family of dense matrices.

Theorem 4.1 (Inverse Theorem [8, Theorem 1]). For every universe ]I_)))S
and for every dense matrix A (with entries described in Definition 3.2) there
exists a finite family f of digraphs such that

1. A is extremal for ?; moreover, EXT (n, L) = (A(n)) for all n.

2. For any asymptotically extremal sequence (G), G, may be ob-
tained from A(n) by adding/deleting/redirecting o(n?) edges as
n — 0.

3. A is unique with this property, up to like permutations of rows and
columns.

Of course, for different excluded families T we may have the same A.
Theorem 4.1 would be easy if we allowed infinite L’s.

Observe the gap: the inverse theorem is proved for all universes, the
Main Theorem only for Us and E))l.

For U; and ﬁl, if A is extremal for £, then

(10) o(A) = 2 Tim L)

n—00 n2

Thus the set of limits2? { lim “%W} is contained in the set of densities
n—odo

of dense matrices. And so, by virtue of Theorem 4.1, the two sets coincide.

4.1. One excluded graph

One could ask if the inverse extremal theorem changes when (instead of
excluding a finite family of graphs) we exclude just one L. We shall discuss
this case somewhere else. Here we mention just two results regarding the
simplest non-trivial cases.

20 known to exist, even without Theorem 3.8, by an argument of Katona, Nemetz
and Simonovits [45, Corollary to Theorem 1], [12, Lemma 2].



bxtremal Multigraph and Digraph rroblems

Theorem 4.2. Let W4 € Uy be the multigraph on {a,b,c,x} where az, bx
are the double edges and abc is a triangle of single edges, finally, cz is also
a single edge. Then S'2(n) is an asymptotically extremal sequence for Wj.

Theorem 4.3. Consider again Us. If the double edges form a connected
spanning subgraph of the sample graph L, then S'?(n) cannot be asymp-
totically extremal for L.

5. AUGMENTATION OF STRUCTURES

To prove our results, mostly we use a special procedure, called augmenta-
tion. This means (in a nutshell): “having a nice substructure of a graph
G, we build up an even nicer substructure . ..and we iterate this if needed”.
Here the “nice substructure” is a subgraph A(m) where g(A) large. Aug-
mentation has two forms: sometimes we think of augmenting a “structure”,
sometimes we encode this procedure and get “augmentation of matrices”.
Here, for the sake of clarity we shall be brief and restrict ourselves to the
matrices.

5.1. Augmentation of Matrices

First we describe the augmentation formally, then explain what is really

Definition 5.1. The (r + 1) x (r + 1) matrix B = (a;;)

. . N / i,j=1,2,.,r4+1 18 all
augmentation of its principal submatrix A = (a;j)

if A is dense,

1,J=1,2,...,r
having optimum vector u = (u1,us, ..., u,), and
1 T
(11) 7= 5 > (@jrs1 + argg)u; > g(A).
j=1

The next lemma, asserts that the augmented matrix is “better” than
the original.

Lemma 5.2. If A’ is an augmentation of A then g(A') > g(A).

Finally, the lemma below asserts that in an iterated augmentation the
densities tend to the density given on the LHS of (11).

Lemma 5.3. Let v* be fixed. If Ay, ..., A, ... is a sequence of dense ma-
trices where Ay is arbitrary and A, is obtained from A, by augmentation,
for every r > 0, and y > v* in (11), then lim,_, g(A4,) > v*.
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5.2. How do we augment?

We keep using the well-known technical lemma (deletion of small degrees):

Lemma 5.4. If € > 0 is fixed and G,, € Uy is a graph sequence with

(12) (6> (a+2)(3)
then there is an H,, C G,, with minimum degree

1
dmin(H,,) > (a + 56) v, where v, - 00 as n— oo.

Using the lemma, (and changing the notation) we may always replace
(12) by

(13) dmin(Gr) > (a + %e) n.

Consider Figure 5. We split G,, into A¢(my) and G, — A¢(my). By (13)

e(Ag(me), Gy — Ag(myg)) > (a + %6) me(n —mg) — e(Ag(my)) .

Therefore we may find a set W C G,, — Ag(my) joined to Ag(my) by
1
(14) 6(Ag(m¢), W) > (a + 58) mg|W|

edges, and in the same way: for each w € W, N(w) N Ay(my) is the same.
The vertices of W will correspond to the new row of the augmented matrix
and (14) ensures (11), the meaning of which is that the vertices of W are
joined with many edges to Ay(my).

We use this augmentation often with excluding some family £ of graphs
and whenever we get an augmentation B of a matrix A, we check if

“is B(n) always L-free?”

and if NO, then we discard this B since it is irrelevant in the extremal
problem of £. The real issue is to prove that in those cases when we use
this augmentation procedure, it stops in finitely many steps: after a while
we cannot get new, relevant matrices B. When the augmentation stops, we
have the extremal matrices. We skip the details, which can be found, e.g.,
in [9].2

21 We ignored here the serious issue of non-zero diagonal entries, see Section 8.
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5.3. Examples in Us

Here we shall discuss some examples on the asymptotic behavior of
extq(n, L), illustrating the augmentation.

Claim 5.5. For any fixed m,

1
extz(n,Té’g) = §n2 + o(n?).

Proof. (a) K, 2 Tﬁ;g. Hence

excto(n, T20) > (7;) »

(b) If Gy, € Uy and
1
e(Gp) > (5 + 8) n?,
then G, has more than en? edges of multiplicity 2. Applying the Kévari-

T. S6s—Turan theorem [48] to these edges we have that, for sufficiently large
2,0
n, T o CGn W

Surprisingly, the following stronger result also holds:

Claim 5.6.
1
exts (n, K1(m) ® Ko(m,m)) = §n2 + o(n?).

Here we can use S?!(u) instead of Ki(m) ® Ko(m,m), as well.

Proof. (a) Neither (K,) nor (Tz,’g) contains K;(m) ® Ko(m,m), showing
that

(15) exty (1, K1(m) ® Ko(m,m)) > =n® + O(1),

N | =

for any fixed m.

22 One can see that

exta(n, Tfn’g) > (Z) + ext; (n,K([m/2], [m/Z])) .
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(b) Take a graph sequence (G,) with
e(Gp) > %n2 + en?.
Applying Lemma, 5.4, we may assume that
dumin(Gr) > (1 +¢)n.
Put h = [%m-‘ ,and fix a H := T22;L?2 C Gy, for n > ng(m,e). Thus
e(H, Gy — H) > 2h(1 + €)n — e(H).

So, there exists a vertex set W C Gy, — H, with |W| > m, for which each
w € W is connected to H by more than (2 + %6)h edges, and in exactly the
same way. This yields a Ko(m,m) ® Ki(m) C Gy, if n is sufficiently large.
|

Similarly,

1
(16) exty (n, K3(m,m,m)) = 5712 +o(n?) as n— oo.

Equation (15) is an example of a result leading to a “jumping” constant,
see Section 6.1. The presence of (% + 6) n? edges in a 2-multigraph implies
the presence of K (3m)® K»(3m, 3m), which is a structure of density 7 > 1.

5.3.1. Degenerate multigraph problems. For simple graphs
ext (n, £) = o(n?)

iff £ contains a bipartite subgraph. These problems are called degenerate
and in some sense most extremal graph problems can be reduced to degen-
erate extremal graph problems [67] but most of the degenerate extremal
graph problems seem to be hopelessly difficult.

For multigraphs the problem of degenerate multigraph extremal prob-
lems seems to disappear. Indeed, if e.g., a forbidden multigraph L contains
at least one double edge, then L. & K,,:

ext (n,L) > e(K,) = (”)
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On the other hand, if L has no double edges, then all edges in the extremal
graphs are of multiplicity g:

exty(n, L) = q - exti(n, L),

showing that for multigraphs ext (n,L) = o(n?) occurs iff L is a simple
bipartite graph.

5.3.2. Complicated cases? Generally we have two approaches: either we
fix the class of forbidden graphs or we investigate the partial order of dense
matrices given by the augmentation where we write B > A if either B is
an augmentation of A or (building up the transitive closure) if there is a
sequence B = A, A, 1...,A2,A1 = A where A; is an augmentation of
Ai—l-

Above we considered the partial order, here we give two non-trivial
examples, showing how augmentation works.

Let Wy € Uz be the multigraph, where the double edges form a path of
5 vertices, P5 on azbyc, abc is a triangle of single edges and the other pairs
are independent. Let Z4 = Ky ® K.

Claim 5.7. exta(n, Ws) = 3n? + o(n?).
Claim 5.8. ext; (n, {Ws, Z1}) = 2n? + o(n?).

Proof of Claims 5.7, 5.8. (a) Observe, that W5 € S?2(n). Further,
denote the 4-path structure (on Figure 4) by P*(n). Then P4(n) C S22(2n)
does not contain Z4 either. These graph sequences yield the lower bounds.

(b) To prove the upper bounds, observe first that if
4 2
e(Up) > 7h + en?,

then U, contains an S'2(y), assumed that n > ng(e,u), by Claim 5.6.
By the augmentation procedure we also have some augmentation of this
structure S'2(u). Since the “double triangle” structure, T32 11?3 (identical with
SH11(3u)) contains all the 3-chromatic graphs and x(Ws) = 3, therefore the
double triangle is excluded in our augmentations. It is not too difficult to
see that we have 3 possibilities: either we get the P*(m)-structure, or the
S22(m) structure, or S¥3(m). The last structure contains Ws. In case of
Claim 5.8 (by Z; C S?2(4)) S%?(m) is also excluded. So we get the P*(m)-
structure in Claim 5.8, and the S%?(m) structure, in Claim 5.7.
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(c) We still have to check the augmentations of the remaining structures:
in principle, some augmentations could be better and still L-free. One can
easily see that all the augmentations of P4(m) and all the augmentations of
S22 contain W5. m

5.4. Examples: directed case

The augmentation “does not feel” the orientations. Therefore, speaking of
the general theory, we do not see too much difference between the directed
and undirected cases. If A is a matrix corresponding to a directed structure,
%(A + A*) will correspond to the multigraph case and this “mapping”
A~ %(A + A*) sends dense matrices into dense matrices and if B is an
augmentation of A then %(B + B*) is an augmentation of %(A + A%).

So, e.g., (15) and (16) can be shown to imply analogous results for
digraphs.

5.4.1. Degenerate directed problems, Consider TD>>1. First we answer
the following question: when is ext (n, f)) = o(n?)? If x(L) > 3 then
ext (n, f) > [”TZJ . So we may assume that X(T:’) = 2. If in all 2-colorings
of L there are arcs in both directions between the color classes, then taking
the bipartite graph T}, o and orienting all the edges from the first class
towards the second class we see that

2

ext (n,T) > V—J

4

(This is the case, e.g., if T contains a directed path of 3 vertices.) On the
other hand, if I has a 2-coloring where all the arcs go from the first class
to the second one, then (using the Kévari-T. Sés-Turdn theorem, [48]) one
can easily see that

ext (n, L) = O(n?©),

for some ¢ > 0 depending only on v(f)

5.5. The algorithmic solution
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Theorem 5.9 (Approximation [8, Theorem 2]). For any universe U, or I s
every family L, and every € > 0, there exists a finite subfamily L* C L for
which, for n sufficiently large,

(17) ext (n, L) < ext (n, L*) < ext (n, L) + en’.

For Uy and ﬁl the Approximation Theorem was superseded?® by

Theorem 5.10 (Compactness [9, Theorem 3]). For Us (or ﬁl) for every
infinite family L of forbidden subdigraphs there exists a finite subfamily
L* C L for which

ext (n, L) = ext (n,L*) +o(n?) as n — oo,

and such that any dense matrix A is asymptotically extremal for L iff it is
asymptotically extremal for L*.

Eventually we developed an algorithm to find, for any such family, all
dense matrices A that are asymptotically extremal for L:

Theorem 5.11 (Algorithmic solution [9, Theorem 4]). Consider the uni-
verse Uy or 1. Given a subroutine (“oracle”) for deciding, for a given
family £ and any dense matrix A, whether some A(n) contains some L € L,
there exists a finite algorithm (independent of L except that it uses the
subroutine) that determines all dense matrices A that are asymptotically
extremal for L.

The set of attainable densities is interesting in itself. We proved

Theorem 5.12 ([9, Theorem 1]). Consider the universe Uy or ﬁl. For any
v > 0 there exist only finitely many dense matrices A such that g(A) =+,

and

Theorem 5.13 ([9, Theorem 2]). The set of attained densities is well
ordered under the usual ordering of the reals.

However, the order type of the set of densities of matrices?* is definitely
not that of the natural numbers.

23 However, Theorem 5.9 was proved for all multiplicities, while Theorem 5.10 is
known only for digraphs of multiplicity 1.

24 of the type investigated in this paper: with off-diagonal entries 0 or 2, and main
diagonal entries 0 or 1.
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6. SIDORENKO’S SOLUTION

We conjectured [6] that if A is an extremal matrix for T then its size can
be bounded by some function of the graphs in f Sidorenko proved this
for Uy and ;. This immediately gave a new, much simpler algorithm for
solving the extremal problem: the entries of A are bounded, so if one has
a bound on the size, then one can list the (boundedly many) matrices A
for which it has to be checked if A(n) contains forbidden subgraphs: then
we take those matrices which have maximum density among the remaining
ones. That provides a complete solution.

Theorem 6.1 (Sidorenko, [64]). Consider Us. Let R(k,£) be the Ramsey
number for (k,£).2% Put k = minyc, v(L) and k' = maxpeccv(L). Then any
dense extremal matrix A for L has at most R(k,k+6)—1)(k' —1) rows (and
columns).

Before continuing, let us introduce the notion of a dense multigraph.
If G is a multigraph (or digraph) and A := A(G) is its adjacency matrix,
we shall call G dense if A is dense. Sidorenko also disproved some of our
conjectures, by

Construction (Sidorenko). Let G be a connected, q — 1-regular simple
graph and join any two vertices of G by q — 1 additional (parallel) edges.
The obtained G? € U, is a dense g-multigraph and g(G?) = q — 1.

This shows that (already) for ¢ = 3 there are infinitely many dense
matrices of density 2.

6.1. The “jumping constants”

We conjectured that the set D, of the densities of multigraphs in U, is
well-ordered: there are neither densities of infinite multiplicity, nor a
sequence of strictly decreasing densities. The “infinite multiplicity” part
of this conjecture was disproved by Sidorenko, [64] and the “decreasing
densities” part, for ¢ > 4 by Ro6dl and Sidorenko, [62].

Let us explain some details about this phenomenon. For ¢ = 1 the
conjecture follows easily from the Erd6és—Stone—Simonovits theorem. It was

25 j.e. the maximum order of a graph not containing a complete k-graph, neither an

independent {-tuple.
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proved for ¢ = 2 in [9] and is still open for ¢ = 3. (For hypergraphs it was
a famous conjecture of Erdés and disproved in some sense®, by Frankl and
Rodl, [30].)

The meaning of this conjecture would have been that for each v > 0 it
asserts the existence of a v* > «y for which for each sequence of multigraphs
G, with

(G > (r+2)(; )

there is a sequence H,, C G, with m = m,, — oo and

e(Hp) > 7" (’;)

Then we could have said: the constant jumped up from v to v*. This
“jumping” for v = 0 follows from a theorem of Erdés, [16].

One can easily see that (in any universe) the “Jumping Constant” con-
jecture and the Approximation theorem imply the “Compactness theorem?”.

7. EXTREMAL DIGRAPHS AND MULTIGRAPHS:
THE PROBLEM OF UNIQUENESS

More difficult than the asymptotic determination of the extremal numbers is
the determination of the structure of the extremal digraphs and multigraphs
for a given family £ of forbidden subgraphs. We have seen that even in very
simple cases — for example where £ consists only of the cyclic triangle —
it can happen that, as n — oo, there will exist extremal digraphs differing
from one another in more than cn? edges [11]. We do have in preparation
a paper which characterizes situations where this cannot happen [10]; i.e.
where two “almost” extremal digraphs with n vertices will differ from one
another by o(n?) directed edges as n — co. Below we formulate the main
result of this paper. We also characterized the extremal multigraphs in
certain general situations [7], [10].

26 They disproved what Erdés asked but not what Erdds really meant: Erdds wanted
to know if the smallest possible density % is a jumping constant or not?
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7.1. Weak maximality condition, WMC

We have seen in connection with Theorem 2.1 that even in the simplest cases
there may be many different extremal graphs that cannot be transformed
into each other just by changing o(n?) edges: this happens even for U and
K3. The reason of this phenomenon is that various extremal structures
can be combined into new extremal structures. If we exclude the simplest
combination of extremal structures than all the extremal structures will be
asymptotically the same. This is the meaning of the theorem below. To
formulate it we need some definitions.

Sometimes we may have many different extremal matrices, say, Aq,...,
Ay, for an £ and they can be combined into some further extremal patterns,
(matrices that are not dense!). So next we introduce a condition that rules
out the possibility of combining different extremal structures derived from
dense matrix graphs.

Definition 7.1 (Equivalent matrices). The matrices A and B are called
equivalent if {A(ml, e ,:ca)} and {B(yl, .. ,yb)} coincide.?”

There are two basic examples of this: (a) if B is obtained by permuting
the rows and columns of A in the same way, or (b) if we split each class
Vi of (A(z1,...,%,)) into two classes V' and V” and B describes the “cor-
responding structure”: that does not changes the graph but it changes the
representation.

Definition 7.2 (Weak maximality condition WMC). Given a family £ of
forbidden subgraphs, we shall say that £ satisfies the weak maximality
condition, if there are only finitely many extremal matrices Ay, ..., A and

for every 4 and j if s(A4;) = a; and s(A;) = aj, then choosing the a; x a;
matrix @) and the a; x a; matrix R (with the appropriate entries) arbitrarily,
the (a; + a;) % (a; + aj) matrix

(4 9)

satisfies one of the following conditions:

(i) B is forbidden in the sense that if A is sufficiently large, then B(he)
contains some L € L.

2 i.e., the sets of A-colorable graphs and B-colorable graphs coincide.
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(ii) if v; and v; are the optimum vectors of A; and A; and w is obtained
by concatenating v; to v;, then

(19) wBw* < 4¢(4;),

or

(iii) B is equivalent to A (as described in Definition 7.1).

(Clearly, (i) asserts that B cannot be extremal, since the B-structures
contain some forbidden subgraphs; (ii) says that g(B) is small for B to be
extremal and (iii) says that we did not really obtain new structures.)

Theorem 7.3 (Uniqueness, multigraphs). Assume that for £ Aq,..., A
are the extremal matrices, and there are no other ones. Then the
following statements are equivalent:

(#) L satisfies the weak maximality condition,

(##) For any asymptotically extremal multigraph sequence (U,), for
every n > 0 for some i = i, one can change o(n?) edges of U,
to get A;(n).

Remark 7.4. For a finite £ one can check the WMC-condition by a
polynomial algorithm.

Watch out: (##) excludes all extremal graphs “far from the listed
dense matrix graphs”: not only those obtained from some dense or not
necessarily dense matrices. For digraphs the assertion is slightly more
complicated because of the transitive tournaments corresponding to the
diagonal elements a; > 0 of the matrices.

8. DIFFICULTIES IN THE GENERAL CASE, OR:
WHY 1S THE CASE ¢ = 2 SIMPLER?

One of the question is, why is the case of Us simpler than the case of U,
for ¢ > 3. There is a simple answer for this. Namely, most of the problems
in our proofs are created by the positive diagonal matrix-entries: by classes
of the structures forming complete graphs. Generally, by Lemma 3.9, if we
have a dense structure H, where in some classes V1, ..., Vy any two vertices
are joined by ¢ — 1 edges, then H = Tgl’,qd_l ® H* for some H* having
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maximum diagonal elements < g — 2. For ¢ = 2 the diagonal elements of
H* can be only 0, there are no middle elements between 0 and g — 1: this
makes the difference.

9. THE “MoOST GENERAL CASE”

A universe of graphs where Turdn type extremal problems do make sense
is the class of directed multihypergraphs. This means that r and ¢ are
fixed, a set of vertices V is given and a family F of some subsequences
(a1,...,a;) € V" with multiplicity u(a1,...,a,) < ¢g. The triple (V,F,u)
can be regarded as a directed r-uniform g-multihypergraph. Loops are
excluded: a; # a; if i # j.%8

The extremal problems, numbers and the extremal directed multihyper-
graphs can be defined in the obvious ways and many general results from
ordinary extremal graph theory can be generalized to this universe.

We were discussing such problems in [12]. Below we shall give some
illustrations of these results.

The basic “extremal graph problem” immediately can be generalized to
these objects. The Katona—Nemetz—Simonovits observation [45] that

ext (n, L)
(7)
T
(i.e., this ratio is monotone decreasing and therefore converges to some

constant c¢z) also easily generalizes to this case. To describe another general
principle, take the simplest case, when £ = {L}.

N\ cc

Definition 9.1 (Blown-up directed g-multihypergraph). Given L and an
integer ¢, L(t) has ¢ - v(L) vertices: each vertex z € V(L) is replaced by a
t-tuple T'(x), and these t-tuples are disjoint. The ordered r-tuple

(Z1,.-., %) Zi€T(x;) for i=1,...,r

is an ordered hyperedge of L(t) of multiplicity v iff (z1,...,z,) has multi-
plicity v in L.

28 With multiplicity functions we always have two choices: either we take all the
r-sequences and allow y = 0 or we take only some of them and assume that p € [1,q]:
this ambiguity does not really matter.
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Erdés has proved [19] that if K ér) is the r-uniform complete graph on
£ vertices and t is arbitrary, then

(20) ext (n, Kér) (t)) — ext (n, Kér)) = o(n"),

i.e. the extremal edge density does not change if we blow up K y). (This is
a generalization of the ErdGs—Stone theorem.) We observed [12] that Erdés’
original theorem extends to any directed multihypergraph:

ext (n, AR (t)) —ext (n, z)(T)) = o(n").

We also proved

Theorem 9.2 (Brown-Simonovits, [12]). In the above setting, let

. ext (n, L)
L S

For every € > 0 there exists a cr,(¢) > 0 such that if
n
e(t1) > o +2) (")

then H, contains at least cr,(¢) - n?E) copies of L.

By the Erd8s hypergraph theorem [16] this second assertion immedi-
ately implies (20), (see Brown-Simonovits, [12] for more details).

10. “ExXcLUDED DENSITY” PROBLEMS

Here we consider the following problem:

Fix two integers k,£. Given a multigraph M,,, how many edges
can it have without containing k vertices and £ edges (counted with
multiplicities) among these k vertices.

Obviously, this is a Turdn type extremal graph problem. For some
related ordinary extremal graph problems see e.g., Griggs, Simonovits and
Thomas, [36]. Here we do not assume that the multiplicities are bounded
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by some ¢, yet, if there is just one edge with multiplicity > ¢ then we have
a forbidden subgraph. So we could say that

|The multiplicities are implicitly bounded by £ — 1.|

Well, this is only more or less so. This problem has two versions. In the
first version we assume that the multiplicities are nonnegative, in the second
one we allow negative multiplicities as well. That means that if, e.g., we
have an M,, where one edge has multiplicity 100 and all the other edges have
multiplicities —1, then the resulting graph has an edge of high multiplicity,
yet it has no 20-vertex subgraph with at least one edge, assumed that the
number of edges is calculated by adding up the multiplicities.

OK, one could say, forget about the negative multiplicities. Again, this
is not so simple, since the solution of the case of non-negative weights very
strongly depends on the solution of the case of the negative weights.

For multigraphs this field was (perhaps) started by Bondy and Tuza,
[5] and in some sense completely solved by Firedi and Kiindgen [33].

A weighting of a graph G is a function w : E(G) — Z that assigns an
integer weight to each edge. The weight of a subgraph H of G is just the
total weight of its edges, w(H) := Y. {w(e) : e € E(H)}. The weight of a
vertez set A is the weight of the subgraph induced by A, w(4) := w(G|,).
A weighted graph (G, w) is (k,r)-dense if every set of k vertices has weight
at most r. In this language we define the weighted Turan numbers as

extz(n, k,r) := max {w(G) : ‘V(G)| =n, (G,w) is (k,r) -dense} .

Since every non-edge can be considered to be an edge of weight 0, it will
suffice to consider G = K,,. We can refer to a graph by the corresponding
{0, 1}-weighting, where edges are weight 1 and non-edges are weight 0.
Multigraphs can also be viewed as weightings of K.

By [45], exty(n,k,r)/ (Z) is a monotone non-increasing sequence in n.
Therefore the asymptotic density

alk,r) = lbm ethE:,),k,r)
n—oo 2

exists for all k and r > 0. Fiiredi and Kiindgen gave a simple method 2°
to find a(k,r) for all (k,r). Furthermore, they gave an exact answer for

29 but we skip it here.
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extz(n,k,r) for “at least half the pairs” (k,r) for all n 3°. Surprisingly,
here the error term is always only O(n):

exty(n, k,r) = a(k,r) (’;) +O(n).

10.1. The Haggkvist—Thomassen theorem

Below we list a few digraph results, not in our main scope, yet connected
to it.

Beside the Brown—Harary paper and the first Brown—FErdés—Simonovits
paper, one of the first important papers on digraph extremal problems
is that of Haggkvist and Thomassen [37] on “Pancyclic digraphs”. (A
graph/digraph is pancyclic if it contains cycles of all possible lengths.) Let

p,p denote the digraph obtained from L := K, , by replacing each edge of
L by two arcs of opposite directions.

Theorem 10.1 (R. Higgkvist—-C. Thomassen [37]). If l_))n is a strongly
connected digraph with minimum degree®' > n, then Bn is pancyclic, unless
it is a Kp,.

The paper contains many further results that guarantee that if e(Bn)
is sufficiently large, then the oriented cycle ﬁk C D,. There are two
important differences between the corresponding simple graph problem and
the digraph problem:

(a) Since the transitive tournament ?n contains no directed cycle, our
conditions on D, have to eliminate somehow D, = T ,. Mostly Haggkvist
and Thomassen assume also that D,, is strongly connected.

(b) The other difference is that while in the Erdés—Gallai theorem for
simple graphs the extremal graphs have O(n) edges, here the extremal
numbers are always around (72‘) if £ is small and we wish to ensure a ﬁk in

D,

We again skip the details.

30 Speaking of countably many cases, the expression “at least half the pairs” needs
some clarification.

31 Here degree = the sum of indegree and outdegree.
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10.2. A “path”-problem strongly related to Turdn’s theorem

Let G be the set of oriented graphs, i.e. digraphs with no 2-cycles and no
loops, such that for any two vertices  and y there are at most k directed
paths from z to y. Howalla, Dabboucy, and Tout [40, 41] determined the
maximum size of D, € G, for kK = 1,2,3, and characterized the extremal
graphs. For k = 1 this coincides with ext;(n, K3).

10.3. Directed Trees

For simple graphs, if T is a tree, then ext (n,T) = O(n). For directed
graphs, P. Erd8s conjectured and R. L. Graham proved [35] that if T isa
tree without directed path of length 2, then

(21) ext (n, T') = O(n).

It is worth noting that this is among the early digraph extremal theorem.
We have seen that the assumption that contains no directed path of
length > 2 is necessary for (21).

10.4. Hamiltonicity and extremal graph problems

We do not know of too many early results on digraph extremal problems.
Let us mention yet some nice early ones.

For ordinary graphs the important extremal graph theorem of Erdés and
Gallai [21] on paths and cycles has an important subcase, namely, Dirac’s
theorem, on the Hamiltonicity of graphs under certain degree conditions.

For digraphs, in some sense, the generalization of this Erdés—Gallai
theorem is missing, yet, there are many results connected to Hamiltonicity
of digraphs.

We have already mentioned the Haggkvist-Thomassen theorem. We
should mention here (among others) some results of Bondy, Ghouila-Houri,
Meyniel and Woodall. For the sake of brevity, we shall not formulate all of
them. Let us start with a result of Woodall [77], who proved, among others,
a strengthening of a theorem of Ghouila—Houri [34]:

Theorem 10.2 (Woodall). If D is a directed graph on n vertices in which
Pout(a) + pin(b) > n, for every pair of distinct vertices a and b such that a
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is not joined to b (by an edge of B), then D has a (directed) Hamiltonian
circuit.

A strengthening of this is

Theorem 10.3 (M. Meyniel [55]). If Disa strongly connected directed
graph on n vertices in which p(a)+p(b) > 2n—1 for every pair of nonadjacent
vertices a and b, then D has a directed Hamiltonian circuit.

Another result, of extremal character is the theorem of Heydemann,
Sotteau, and Thomassen [39], proving a conjecture of A. Benhocine and
A. P. Wojda:

Theorem 10.4. If D, isa digraph with at least (n—1)(n—2)+3 directed
edges, then Bn contains all the orientations of C,, but the directed circuit
n, assuming that D has no parallel arcs.

There are many results connected with the existence of even directed
cycles in digraphs, see, e.g.,

Theorem 10.5 (Thomassen [73]). If Disa strongly connected digraph of
minimum in- and outdegree at least 3 then D contains a directed cycle of
even length.
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10.5. Unavoidable Subgraphs

Linial, Saks, and T. Sés [49] called a digraph T n-unavoidable if every
tournament 7', contains L. Why does the description of unavoidable
graphs fit into our survey? The universe @ of oriented graphs, i.e., where
between any two vertices there is at most one arc, is a subuniverse of ID;:
considering problems in TD>>1 where DK is also excluded, we get problems
on

One could ask the following “inverse extremal problem”: For which fk

is it true that .
ext (n, {]DKQ, fk}) = (2) ?

In other words, which are those k-vertex digraphs that occur in each k-
vertex tournament?

Linial, Saks, and T. Sés investigated (among others) how large e(fk)
can be if L is unavoidable. Denote the maximum by f(n).

Theorem 10.6 (Linial, Saks, and T. S6s). There exist positive constants
c1 and ¢y such that for all positive integers n,

nlog,n —cin > f(k) > nlogyn — conloglogn.

Some classical examples of n-unavoidable digraphs include Hamiltonian
paths, [58], anti-directed Hamiltonian paths [59] and more.

Saks and T. Sés also proved [60] that if » > 2 then every tournament

n contains a rooted directed tree T, in which every branch is a path.

Further, they proved that every tournament D, contains a rooted directed
tree T',, of height at most 3.

Again, we cut this part short and refer the reader (among others) to
the papers of Bloom and Burr, [2], Xiaoyun Lu [50] (on unavoidable rooted
2-trees), Petrovic, [61] (completely forgetting about the strongly related
undirected case).
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10.6. Topological Subgraphs

If A is a topological subgraph of B, we shall use the notation A < B.
Motivated partly by Kuratowski theorem, partly by other results, one
may ask for ordinary graphs:
e How many edges ensure L < G,,7
e How many edges ensure a subcontraction of L in G,,?

An important result of Mader [51] shows that for every p there exists a
constant ¢, such that

e(Gp) > cpn and n > ny

imply that K, < Gy,
The above results can be asked for digraphs as well.
A subdivision of a digraph D arises from D by subdividing any arc of
by an arbitrary number of distinct new vertices.
Given a digraph T?), let Top (B) denote the family of digraphs formed

by subdividing the arcs of B, or, in other words, by replacing each arc by
a directed path in the same direction.

Theorem 10.7 (Mader, [52]). Every finite digraph of minimum outdegree
3 contains a subdivision of the transitive tournament on 4 vertices.

For some related results see, e.g., the survey of W. Mader, [53], primarily
on undirected problems but also touching on the directed graph variants.

In a series of 3 papers, [42,43,44] Chris Jagger proved results concerning
both earlier results of Bollobas and Thomason and also some others, related
to the directed extremal graph problem where the excluded graphs are either
the topological versions of some complete digraphs (£ = Top (K})) or (in
the other case) those digraphs that can be subcontracted onto K.
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10.7. Some further problems, results

As ordinary extremal graph theory has many less well known branches, the
theory digraph extremal problems also has many generalizations of these
problems. Many of these problems are connected to some posets, ....
Without going into details, we just mention some papers related to such
problems.

There are many papers on the “competition graphs”, introduced by J. E.
Cohen. A related notion, the competition number k(G) of an undirected
graph G was introduced by Roberts: this is the minimum number of isolated
vertices to be added to G to obtain a competition graph of an acyclic
directed graph. In [38] Harary, Kim and Roberts prove k(G,,) < |n?/4] —
n+ 2. They also prove that there are exactly two graphs whose competition
numbers achieve this bound. This is a generalization of Turdn’s theorem.

The paper of Schelp and Thomason [63] is connected, e.g., with some
subgraphs of the n-dimensional cube.

A paper of Maurer, Rabinovitch and Trotter [54] considers the sub-
graphs D,, of a transitive tournament 7', defined on V(T',,) = {1,...,n}
and satisfying the following condition: for any m consecutive integers,
M = {h,h+1,...,h + m — 1}, for any two vertices =,y € M, the in-
duced subgraph T))[M | has at most one directed path joining z to y. What
is the maximum of e(D,) under this condition? This problem is again,
related to Turdn’s theorem.
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