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A “hypergraph” is defined by a set of points called the “vertices” and a family
of subsets called the “edges® and generalizes the concept of “graph™. In this
paper, the transversal number and the chromatic number of a graph are ex-
tended to hypergraphs; the authors show that this generalization yields new
results for many combinatorial problems such as :

(1) The Zarankiewicz Problem : What is the least integer k such that
every subset of k points of an mx n rectangular lattice contains rs
points situated on the same r columns and the same s rows.

(2) The polarized partition problem : What is the least number of

colours required to colour the points of an m X n rectangular lattice so that
no rs points situated in r columns and s rows can have the same colour?

DEFINITIONS
In the following, H=(X, &) will denote a hypergraph with vertex set X={x,
Xs. ., Xn}, and edge family E=(Ei/i €]). n(H)=n1s the order of H, m(H)= | I |
is the number of edges, and r(H) = max | E; | is the rank of H.

A set SCX is said to be stable if it contains no edge; the maximum cardinal
of a stable set is denoted by B(H) and is called the stability number of H.

A set TC X is said to be a transversal if it meets each edge; the minimum cardinal
of a transversal of H is denoted by =(H) and is called the transversal number of H.
Other numbers can be associated with hypergraph H; for instance, y(H) denotes the
maximum number of pairwise disjoint edges; o(H) denotes the minimum number
of edges which together cover X; 8(H), the maximum degree, is the maximum
number of edges which meet at the same vertex. x(H), the chromatic number,
is the least integer k for which there exists a partition of X into k stable sets.

It is well known that the following inequalities hold :
() x(H) - pH)Zn(H)
2 WH) + pH)<n(H) + 1
(3) B8(H) = n(H)=(H)
4) <(H)>v(H)
(5) =(H)<r(H)v(H)
For a proof of the above Berge (1970) may be compared.
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Given two hypergraphs H = (X, 8) and H' = (Y, 1), with 3=(E;/i€),
v=(F; [JEJ), their direct product is a hypergraph Hx H' with vertex set XX Y
and with edges E; X F; for (i, j) € IxJ.

The aim of this paper is to find upper bounds and lower bounds for the numbers
associated with hypergraph H x H’. These results can easily be extended to the
direct product of more than two hypergraphs.

First, it should be noticed that we have :

(6) r(HxH') = r(H) x r(H’)

Moreover, some of the associated numbers of Hx H’ can be obtained from other
coefficients by the duality principle, using the following results:

Proposition: 1;: (HxH)* = H* x H*

By definition of the dual, (H x H')* has vertex set {(es, fj)/i€1, j&J}; the edge
corresponding to a vertex (xp, y,) of Hx H’ must contain all the (ei, fy) such that
E;Dxy, and F;3y, and therefore is the set X, X Y.

The proposition follows.

THE TRANSVERSAL NUMBER

Let H and H' be two hypergraphs of order m and n, respectively.
From (3) we have

BHxH') = mn — ~(HX H’'),

So, the problem of ﬁnding a lower bound for B is the same as the problem
of finding an upper bound for z. This problem often occurs in Combinatorics.

Example 1: What is the least number of points in a mXxn rectangular unit
Jattice (integer points of the plane), such that each square of side r has a least one

of these points as a corner? The answer is «:( D %D, ), where D! is a simple

graph with vertices 1, 2, ..n, two vertices x, y being joined if | x—y [ =r.
One can easily show that if r = 1 and mn is even, we have

<( D, x P} ) — [m)2]* [n/21*.

Example 2: The Zarankiewicz problem. Let 1< r<m, 1 < s<n
7arankiewicz has asked for the least integer k,, (m, n) such that every subset of
kr«(m, n) points of an mxn rectangular unit lattice should contain rs points situa-

ted in r columns and s rows. If K denotes the complete r-uniform hypergraph

on m points, we have

p( K K )zkrs o)
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An extensive literature exists on this problem (see Guy 1968, 1969). For the sake
of simplicity, consider first the case m=n. It is known (Kévary et al. 1954) that
if r<s, then

® ﬁ( K; X K° )Q Cry s TRV

where ¢,, ¢ is a constant. Furthermore, if r=s=2, (i) 18 sharp, that is if n—>oo,
we have

2 2
ﬁ(KﬂxK“)_)_l
n

It follows easily from (Brown 1966) that if s>>3, then

() ¢ nB< B( Ko x K )g A ke
Unfortunately, the lower bounds for the general case are far from the upper bound
given in (i).

Another simple case is when is 7 much greater than m. Thus if n2>(s—1) ( :‘ )
Culik (1956) has determined the exact value:

[3( K, % K ): (r—1) rH—(s——I)( :‘) .

For example, B( K} &y ) = 6 + 6 = 12, and a maximum stable and set with
12 vertices is given by the ones in the following array :

il m ] e e D 50000 0L

0 0 1 1 1 0
n=4
1 0 0 0 1 1
AL 0 1 0 1 0 1__
m==6

Proposition 2: Let H and H' be two hypergraphs. Then
t(Hx H) ~(H) «(H)

Let TC X and T' C Y be two minimum transversals respectively for A and
H'. Since T x T’is a transversal for H x H', we have

t(HX HYS|T X T' | =« (H) «(H)
Q.E.D.

Instead of showing that the inequality of Proposition 2 is the best possible, we
shall show that a very large class of hypergraphs Hsatisfy

t(HxH') = < (H) « (H) for all H'.
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First, we shall prove the two lemmas. In fact, these lemmas have been proved
independently by L. Lovasz (1973) and the authors and can be used for a different
purpose.

— Let s be a positive integer.

— Let ¢ (x) be an integer function on X ; for ACX, let o(4)= z @ (x).
xed
If ¢ (Es) > s for all i € Z, the function ¢ is said to be an s-covering for H. The

minimum of ¢(x) over all s-coverings ¢ will be denoted by =, (H) . Clearly,
T (I{] == Tl(H).

Now, let H be a hypergraph with vertices Xx;, X,,...., Xn, with m (H) edges,
and with maximum degree 8 (). Let o, a,, ...., @y be »n non-negative real num-
bers. Let 1

[ & 1

* (H) = min -{ 2 2 for all j '}
|

l—l X.EEJ J

Lemma 1; Let H be a hypergraph. Then

max{ v (@), 28 ((g)) } < HH) < ;-3@ <)

We have .(H)<sw(H), because if T is a minimum transversal set and if ¢r (x)
is its characteristics function, then ser is an s-covering, and, consequently,

w(H)<ser(X) = s = (H)
We have %; s (H)>+* (H), because if ¢ is a minimum s-covering, then by putting

ai= }q:(x,:), we obtain

=

* (H) W= 1 s (H)

T
i=1

Now, we shall show that <* (H) > w— Consider » real numbers a; such that

S H
z wi > 1 for all j and such that zou =z ().

xick;
Denote by 3, (H) the degree of vertex x. We have

m(H)gzm 2 o gim 8., (H)<3(H) imma (H) =* (H)

J=1 xieE; 1=1 i—1
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Alse, i (ES By .o, E; )is a maximum matching of H, then
n v
SH) =D u> D > wa>rH)
=1 k=1 xieEr'

The first inequality follows.
Lemma 2: s-t~(H) tends to a limit, and

Lim =5 (H) o
—S"=T (H)

S—ro0

A well known theorem of Fekete states that if a sequence (ay) of positive numbers
is such that @msn < @m + dn, then the sequence ( %’1) tends to a limit.

Let @ be a minimum p-covering and ¢’ be a minimum g-covering. Then
o + ¢ is a (p+q)—covering, and therefore

e (H) < o(X) + ¢'(X) = w(H) + =(H).

T—’(Si) - E.

Hence, by Fekete’s theorem, there exists a number £ such that

By Lemma 1, £ > <* (H).
Furthermore, the a: whose sum is t*(H) are defined by a linear programming problem
with integral coefficients, and therefore, the «i are rational, and we can write :

'
o

, o'y and s integers.

o=

51 oy (H) g—j-- zm'i-: z w=1* (H)

This shows that & = «* (H).

Hence

Q.E.D.

Theorem 1: A necessary and sufficient condition for a hypergraph H to satisfy
«(Hx H'Y=<(H) <(H') for all H' is that <(H) = =* (H).
Necessity: Assume that =(H) 7 «*(H). Then by Lemma I, «(H)>*(H) and

by Lemma 2, there axists an integer s > 2 such that—'r—”‘gﬂ <<(H). We shall show
that there exists a hypergraph H’ such that «(H x H')<<(H) <(H').

Let ¢(x) be a minimal s-covering for H. Put ¢(X) = =(H) = ¢, ya=l s e
It is always possible to associate with each x e X a set A(x)CY so that :

(1) | A) | = ¢(x) for all xeX
(2) x 7 x’ implies A(x)NAKX) = ¢
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Let H' = K=+ = [Y, (F;)]. We shall show that the direct product Hx H’
admits
Ty = {(x, y)/x e X, y € A(x)}
as a transversal.

Clearly, Ei X Y contains at least s different elements of 7;. Since no two of
them have the same projection on Y, E; X F; contains at least one element of
T,, for all i, j. Thus, T, is a transversal of Hx H’'. Moreover, ©(H') = s.

Hence,
(HXH) | Ty | = 7 (H) < st(H)=+(H) ~(H').
Q.E.D.
Sufficiency: Let H be a hypergraph such that «(H) = +*(H) . Then, by
Lemma 1, we have t(H) = st(H) for every integer s. Let 7,C X X Y be a minimum
transversal of HxX H’'. Let

9o(¥) = | {¥/(x,¥) e To, y € Y} |
Since the projection on ¥ of (E;xY) N T, is a transversal of H’,

elE) = | (B X Y) N Ty | 2 (H).

Thus, ¢, is an s-covering for s = <(H’).
Hence,

(HXH) = | Ty | = 9X)>=(H) = s «(H) = «(H’) «(H)
Therefore, the equality holds.

Q.E.D.

Corollary 1: If H satisfies W(H) = =(H) (and in particular if H is balanced)
then «(Hx H"Y=<(H) ~(H") for every H'.

This follows immediately from Lemma 1.

In particular, if H is balanced, i.e., if each odd cycle of H possesses an edge

containing three vertices of the cycle, it is known (Berge 1970) that w(H) = «(H),
and consequently, the required equality holds.

Corollary 2: Let G be a graph, Then
W(GX H') = «(G) «(H") for every hypergraph H' if and only if =(G) = v(G).
By a theorem of Lovasz (1973), ©(G) = <*(G) if and only if ©(G) = w(G). The proof
follows.
Q.E.D.

Corollary 3: Let H be a hypergraph such that m(H) = «(H) 8(H). Then
W(HXH') = «(H) «(H') for every hypergraph H'.
This follows immediately from lemma 1.
Corollary 4: Let H and H' be two hypergraphs. Then
o(H x H')<p(H) po(H')

Furthermore, if H is balanced, then o(Hx H')=p(H) o(H') for every H'.
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Clearly, if H* is the dual of H, then p(H) = <(H™).
If H is balanced, then H* is also balanced.
Thus, the result follows immediately from Proposition 1, Proposition 2 and

Corollary 1.
Corollary 5: Let H and H' be two hypergraphs. Then

B(H x H')SB(H) n(H") + B(H') n(H) — B(H) B(H")
Equality holds for every H' if and only if «(H = *(H).
We have '
BHXH') = n(HxH') — ~(H x H)Y>n(H) n(H")—(H) «(H") = n(H) n(H’)
—(n(H) —8(H) (n(H') — B(H')} = B(H) n(H") + B(H") n(H)—B(H) B(H")
The equality holds if it holds in Theorem 1.
Theorem 2: Let H and H' be two hypergraphs, Then
W(Hx H') > ~(H) + «(H') —1
A hypergraph H = (E: [ i € I) satisfies ©(HxXH Y = «(H) 4+ ~(H') — 1 for every H'
if and only z'fQIEi =& o,

Let H and H' be two hypergraphs on X and Y respectively.
Let T, be a minimum transversal of HxH’, and for x e X, let

eo(¥) = | ¥/ (x,») e T,y e Y} |
Clearly, ¢, is an s-covering of H for s = «(H'). Let T;CX X Y be obtained
from T, be removing exactly s—1 vertices, and let
e1(x) = | {(¥/(x, ¥) € T, y € ¥} |
We have, for all edge E; of H,
e1(E0) 2 do(E)—(s—1) 2> 1
Hence, ¢, is a covering of H, and therefore ¢,(X y2o(H).

Hence
W(HXH') = ¢f(X) = o:1(X) + (s—1)>+(H) + «(H)—1.
Now, consider a hypergraph H = (Eifie I) such that N E; F=¢.
Then <(H) = 1.
Let xo ¢ N Ei . Clearly, HxH' has a transversal ToC {xo} X ¥ such that

| Ty | = «(H') = «(H) + «(H) — 1
Hence, by Part 1 of the theorem, 7, is a minimum transversal of Hx H’, and
WHXH) = | Ty| = «(H) + «(H') — 1 |
Since this equality holds for every H’, the second part of the theorem is proved.

It remains to show that if =(H)>1, there exists a hypergraph H’ such that
«(Hx H')> «(H)+<(H’)—1. Take any balanced hypergraph H’ with =(H')=s22.
By Corollary 1 to Theorem I, we have
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T(HXH'") = s ©(H)> «(H) + (s—1)==(H)+<(H")—1
The required inequality follows. '
Q.E.D.
Remark: Proposition 2 shows that, for all p, g,
(1)  max {~«(HxH') /| «(H = p, «(H') = q} = pq
However, Theorem II shows only that
(2) min {{(HXH)«(H) =p,«(H)=q} =p+qg—1
holds forp = 1(or ¢ = 1). However, it is easy to show that (2) holds for all p, g.
Put H = K%p,q,, H' = KPp ., (the complete hypergraph on p+¢g—1 vertices
with ranks respectively ¢ and p). Clearly, ©(H) = p, ©«(H') = ¢q. If the vertex
set of H is {x,.., X»ie—} and the vertex set of H' is {y,,.., yo,q.4}, then Ty=
{(x15 Y1)s (X325 Yo)se o os (Xpra—y, Vpra—1)} 1S @ transversal of H x H’, because, otherwise

there exists an edge E; of H and an edge F, of H' such that (Ei x F;) N T, = ¢,
which contradicts that | £s | 4+ | F;| =p + ¢q.

Thus, (2) follows from Theorem 2.

In fact, we can have a better inequality by using the number z*. We have
Theorem 3: Let H and H' be two hypergraphs. Then
w(Hx H') > max {<*(H) ~(H’), ~(H) =*(H")}.

Let 7, be a minimum transversal of Hx H’, and let
Po(x) = | {V/(x,¥) e T, y e Y} |

@, is an s-covering of H for s = v (H’) . Hence by Lemma 1,
(HXH) = | Ty | = () >(H)>s <* (H) = <(H') w*(H).

The required inequality follows.

Corollary 1: <(Hx H') > max { ?((g)) T (H); ngg:; T (H)}

This follows immediately from Lemma 1.
Corollary 2: ~(HxH') > max {y(H) =(H'), (H') ©(H)}
This follows immediately from Lemma 1.

THE CHROMATIC NUMBER

We shall now consider the chromatic number of the direct product H X H'.

Example: Polarized partition relations among cardinal numbers (Erdés &
Rado 1956; and Chvatal 1969). What is the least number of colors required
to color the points of a mXxn rectangle unit lattice so that rs points situated in r
columns and s rows cannot have the same color? Clearly, this number is

L XK )
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For instance, X (K2 x K} ) = 2, and a bicoloring of the 6 x4 rectangle unit lattice

is shown in example 2, the Zarankiewicz Problem, in the section under “Trans-
versal Number.”

Also, we have

Y(K: x Ky )=3

Otherwise, there exists a bicoloring of the 5% 5 matrix (a: ) where the 0 denote
the points of the first color and the 1 the points of the second color.

The first column (@' , @® , & , a} , a}) having necessarily three entries of equal

values, suppose @} = a; =d =0.

The first two rows have, in each column, one of the combinations 00, 11, 01, 10,
and there exist two columns with the same combination (because 22<5).
Since this repeated combination cannot be 00 nor 11, we may assume

1 1 :
az_as — 0
2 2

@ =a =1

None of @i , aj can be zero; hence

3 3
a =a;, =1
2 2
a, 4 _
The submatrix having only ones, the 0 and 1 in |: a: :Idonot :
a® ad
2 3

define a bicoloring of K} x K
Q.E.D.

This type of reasoning has been extended by Chvatal (1969, 1970), who showed that
(4) entlt S X (KL x K] )<en'r

In fact, the lower bound also follows from a result of Kévary et al. (1954), while
the upper bound was obtained by so-called probabilistic methods. Moreover, replac-

ing the probabilistic method by a finite geometrical construction, Chvatal showed that

(B) X (K2 X K% )/n*—>1
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Later, (B) and the upper bound in (4) were also obtained by Sterboul and the authors
of this paper, independently. Finally, Sterboul (1973) showed that in some cases, the

same kind of arguments gives the exact value of X ( Ki X K: ).
The problem of finding a lower bound for X(H X H') was also considered by Chvatal
(1970), who gave the two following inequalities :
X(Hx H') 2> min {X (H), X (H')/n(H@}
% (Hx H') > min {X (H), m(H)> L(H')}
An obvious result is :
Proposition 3: MHx H') < min {X (H), X (H')}

Assume that X(H) < %(H’), and let g (x) be a coloring of H in p=X(H) colors.
Then 4 (x, y) = g (x) is a coloring of H x H'in p colors. Hence X(Hx H') < X(H)
Q.E.D.

Equality is obtained in some degenerated cases, for example when % (H) = 2.
However in general, Proposition 3 is far from being best possible.

Theorem 4: Max {X (Hx H')/X (H) = p, % (H') = q} = %(K> x K} ).

. We have only to show that if # and H’ are two hypergraphs with X (H) =
p, % (H') = g then

X(HXH)< LK X KI)
Consider a coloring ¢ (x) of H with P symbols a,, a,, ..., ap, and a coloring ¢'(y)

of H' with g symbols b,, b,, ..., b,. Consider a complete graph K i with vertex set
{a,, a,, .. .,ap} and a complete graph K} with vertex set [b;, b,, ..., b]. Let g (as, by)

be a coloring of K2 x K} in t=XK] X K? ) colors. Now, put

h(x, y) = g (c(x), ¢' (¥))
To show that 4 (x, ) is a coloring of H x H’, consider an edge E X Fof H x H’.
E contains two vertices x, and x, with ¢ (x;) 7% ¢ (x;), and F contains two vertices

y, and y, with ¢’ (y;) # ¢’ (o).

Since {c (x,), ¢ (%)} X {c’ (3,), ¢’ (y,)}is an edge of Ki ij , it contains two

points, say {c(xs), ¢’ (ys)} and {c(xy) ¢'(yq)}, With

g{c (x3), ¢'(¥a)} # gle(xs), ¢ (Va)}

Hence, £ x F contains two vertices (xs,)s) and (x,, ya) with A (x5, ya) 5= h (x4, ya)-
This shows that 4 is a coloring of H x H'.
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Hence,
X(H X H)<t=X (K XK )
QB
The problem of finding a good estimate for
S (p, @) = min {X. (HXH') [ X(H) = p, X (H') = ¢}

seems to be difficult. In particular, we can ask if it is true that, when p and q tend to
infinity, f (p, q) also tends to infinity.
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