THE COLORING NUMBERS OF THE DIRECT PRODUCT OF TWO HYPERGRAPHS

C. Berge, University of Paris VI

M. Simonovits, Eotvos L. University, Budapest

1. Definitions. In the following, $H = (X, \mathcal{E})$ will denote a hypergraph with vertex set $X = \{x_1, x_2, \dots, x_n\}$, and edge family $\mathcal{E} = (E_i / i \in I)$. n(H) = n is the order of H, m(H) = |I| is the number of edges, and $r(H) = \max |E_i|$ is the rank of H. A set $S \subseteq X$ is said to be stable if it contains no edge; the maximum cardinal of a stable set is denoted by $\beta(H)$ and is called the stability number of H.

A set $T \subset X$ is said to be a <u>transversal</u> if it meets each edge; the minimum cardinal of a transversal of H is denoted by $\tau(H)$ and is called the <u>transversal number</u> of H . Other numbers can be associated with hypergraph H; for instance, $\nu(H)$ denotes the maximum number of pairwise disjoint edges; $\rho(H)$ denotes the minimum number of edges which together cover X; $\delta(H)$, the <u>maximum degree</u>, is the maximum number of edges which meet at the same vertex. $\chi(H)$, the <u>chromatic number</u>, is the least integer k for which there exists a partition of X into k stable sets.

It is well known that the following inequalities hold:

- (1) $\chi(H) \beta(H) > n(H)$
 - $(2) \quad \chi(H) + \beta(H) \leq n(H) + 1$
 - (3) $\beta(H) = n(H) \tau(H)$
 - (4) $\tau(H) \geq v(H)$
 - (5) $\tau(H) < r(H) \lor (H)$

(For a proof see [1]).

Given two hypergraphs $H=(X,\mathcal{S})$ and $H'=(Y,\mathcal{F})$, with $\mathcal{S}=(E_i/i\in I)$, $\mathcal{F}=(F_j/j\in J)$, their direct product is a hypergraph $H\times H'$ with vertex set $X\times Y$ and with edges $E_i\times F_j$ for $(i,j)\in I\times J$.

The aim of this paper is to find upper bounds and lower bounds for the

numbers associated with hypergraph $\mbox{H} \times \mbox{H}'$. These results can easily be extended to the direct product of more than two hypergraphs.

First, it should be noticed that we have:

(6)
$$r(H \times H') = r(H) r(H')$$

Moreover, some of the associated numbers of $H \times H'$ can be obtained from other coefficients by the duality principle, using the following result:

Proposition 1. $(H \times H')^* = H^* \times H'^*$

By definition of the dual, $(H \times H')^*$ has vertex set $\{(e_i, f_j) / i \in I, j \in J\}$; the edge corresponding to a vertex (x_p, y_q) of $H \times H'$ must contain all the (e_i, f_j) such that $E_i \ni x_p$ and $F_j \ni y_q$, and therefore is the set $X_p \times Y_q$. Here X_p is the set of e_i 's such that $E_i \ni x_p, x_q$ is similarly defined. Hence the edge family of $H \times H'$ is

$$\{(X_p, X_q) / 1 \le p \le m, 1 \le q \le h\}$$
.

The proposition follows.

2. <u>The Transversal Number</u>. Let H and H' be two hypergraphs of order m and n, respectively. From (3) we have

$$\beta(H \times H') = mn - \tau(H \times H')$$
.

So, the problem of finding a lower bound for $\,\beta\,$ is the same as the problem of finding an upper bound for $\,\tau\,$. This problem often occurs in Combinatorics.

Example 1. What is the least number of points in a mxn rectangular unit lattice (integer points of the plane), such that each square of side r has at least one of these points as a corner? The answer is $\tau(D_m^r \times D_n^r)$, where D_n^r is a simple graph with vertices 1,2,...,n, two vertices x,y being joined if |x-y|=r.

One can easily show that if r=1 and mn is even, we have $\tau(D_m^1\times D_n^1) = [m/2]^* \ [n/2]^* \ ,$

where $[x]^*$ denotes the smallest integer $\geq x$.

Example 2. The Zarankiewicz problem. Let $1 \le r \le m$, $1 \le s \le n$. Zarankiewicz has asked for the least integer $k_{rs}(m,n)$ such that every subset of $k_{rs}(m,n)$ points of an mxn rectangular unit lattice should contain rs points situated in r columns and s rows. If K_m^r denotes the complete r - uniform hypergraph on m points, we have

$$\beta(K_m^r \times K_n^s) = k_{rs}(m, n) - 1 .$$

An extensive literature exists on this problem (see Guy, [7], [8]). For the sake of simplicity, consider first the case m = n. It is known [9] that if $r \le s$, then

(i) $\beta\left(K_{n}^{r}\times K_{n}^{s}\right) \leq c_{r,s}^{2-1/r}$ where $c_{r,s}$ is a constant. Furthermore, if r=s=2, (i) is sharp, that is if $n + \infty$, we have $\beta\left(K_{n}^{2}\times K_{n}^{2}\right) \rightarrow 1$

It follows easily from [2] that if $s \ge 3$, then

(ii)
$$c_s^i n^{5/3} \le \beta (K_n^3 \times K_n^s) \le c_s^{ii} n^{5/3}$$

Unfortunately, the lower bounds for the general case are far from the upper bound given in (i).

Another simple case is when $\,n\,$ is much greater than $\,m\,$. Thus if $n \geq (s-1) \tbinom{m}{r} \,, \,\, \text{Culik [5] has determined the exact value:}$

$$\beta(K^r \times K_n^s) = (r-1)n + (s-1)\binom{m}{r}$$
.

For example, $\beta(K_4^2 \times K_6^2) = 6+6 = 12$, and a maximum stable set with 12 vertices is given by the ones in the following array:

$$n = 4 \begin{cases} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ \hline m & = 6 \end{cases}$$

Proposition 2. Let H and H' be two hypergraphs. Then

$$\tau (H \times H') < \tau (H) \tau (H')$$
.

Let $T \subset X$ and $T' \subset Y$ be two minimum transversals respectively for H and H'. Since $T \times T'$ is a transversal for $H \times H'$, we have

$$\tau (H \times H') \leq |T \times T'| = \tau (H) \tau (H')$$
.

Q.E.D.

Instead of showing that the inequality of Proposition 1 is the best possible, we shall show that a very large class of hypergraphs H satisfy

$$\tau(H \times H') = \tau(H) \tau(H')$$
 for all H'.

First, we shall prove two lemmas. In fact, these lemmas have been proved independently by L. Lovász and the authors and can be used for a different purpose (see [10]). Let s be a positive integer. Let $\phi(x)$ be an integer function on X; for $A \subset X$, let

$$\varphi(A) = \sum_{x \in A} \varphi(x)$$
.

If $\phi(E_i) \geq s$ for all $i \in I$, the function ϕ is said to be an <u>s-covering</u> for H . The minimum of $\phi(X)$ over all s-coverings ϕ will be denoted by $\tau_s(H)$. Clearly, $\tau(H) = \tau_1(H)$.

Now, let H be a hypergraph with vertices x_1 , x_2 ,..., x_n , with m(H) edges, and with maximum degree $\delta(H)$. Let α_1 , α_2 ,..., α_n be n non-negative real numbers. Let

$$\tau^*(H) = \min \left\{ \sum_{i=1}^{n} \alpha_i / \sum_{x_i \in E_j} \alpha_i \ge 1 \text{ for all } j \right\}$$

Lemma 1. Let H be a hypergraph. Then

$$\max\{v(H), \frac{m(H)}{\delta(H)}\} \le \tau^*(H) \le \frac{\tau_s(H)}{s} \le \tau(H)$$

We have $\tau_s(H) \leq s \tau(H)$, because if T is a minimum transversal set and if $\phi_T(X)$ is its characteristic function, then $s\phi_T$ is an s-covering, and, consequently,

$$\tau_{\mathbf{s}}(\mathbf{H}) \leq s\phi_{\mathbf{T}}(\mathbf{X}) = s \tau(\mathbf{H})$$
.

We have $\frac{1}{s}\tau_s(H) \ge \tau^*(H)$, because if ϕ is a minimum s-covering, then by putting $\alpha_i = \frac{1}{s}\phi(x_i)$, we obtain

$$\tau^*(H) \leq \sum_{i=1}^{n} \alpha_i = \frac{1}{s} \tau_s(H)$$

Now, we shall show that $\tau^*(H) \geq \frac{m(H)}{\delta(H)}$. Consider n real numbers α_i such that $\sum_{\substack{X_i \in E_j}} \alpha_i \geq 1$ for all j and such that $\sum_{\substack{X_i \in E_j}} \tau^*(H)$. Denote by $\delta_X(H)$ the degree of vertex x. We have

$$\mathbf{m}(\mathbf{H}) \leq \sum_{j=1}^{m} \sum_{\mathbf{x}_{i} \in \mathbf{E}_{i}} \alpha_{i} \leq \sum_{i=1}^{n} \alpha_{i} \delta_{\mathbf{x}_{i}} \quad (\mathbf{H}) \leq \delta(\mathbf{H}) \sum_{i=1}^{n} \alpha_{i} = \delta(\mathbf{H}) \tau^{*}(\mathbf{H})$$

Also, if $(\mathbf{E}_1',\mathbf{E}_2',\ldots,\mathbf{E}_{\mathcal{V}}')$ is a maximum matching of H , then

$$\tau^*(H) = \sum_{k=1}^{n} \alpha_i \ge \sum_{k=1}^{\nu} \sum_{x_i \in E_k'} \alpha_i \ge \nu(H)$$

The first inequality follows.

Lemma 2. s⁻¹_{T_S}(H) tends to a limit, and

$$\lim_{S \to \infty} \frac{\tau_S(H)}{s} = \tau^*(H)$$

A well known theorem of Fekete states that if a sequence $\binom{a}{n}$ of positive numbers is such that $a_{m+n} \leq a_m^+ a_n$, then the sequence $(\frac{a}{n})$ tends to a limit. Let ϕ be a minimum p-covering and ϕ' be a minimum q-covering. Then $\phi + \phi'$ is a (p+q)-covering, and therefore

$$\tau_{p+q}(H) \le \varphi(X) + \varphi'(X) = \tau_{p}(H) + \tau_{q}(H) .$$

Hence, by Fekete's theorem, there exists a number ξ such that $\frac{\tau_s(H)}{s} \to \xi$. By Lemma 1, $\xi \ge \tau^*(H)$.

Furthermore, the α_i 's whose sum is $\tau^*(H)$ are defined by a linear programming problem with integral coefficients, and therefore, the α_i 's are rational, and we can write

$$\alpha_i = \frac{\alpha_i'}{s}$$
, α_i' and s integers.

Hence

$$\frac{\tau_{s}(H)}{s} \leq \frac{1}{s} \sum_{\alpha_{i}} = \sum_{\alpha_{i}} = \tau^{*}(H)$$

This shows that $\xi = \tau^*(H)$

Q.E.D.

Theorem 1. A necessary and sufficient condition for a hypergraph H to satisfy $\tau(H \times H') = \tau(H) \tau(H') \quad \text{for all } H' \quad \text{is that } \tau(H) = \tau^*(H) \text{ .}$

Necessity. Assume that $\tau(H) \neq \tau^*(H)$. Then, by Lemma 1, $\tau(H) > \tau^*(H)$ and by Lemma 2, there exists an integer s > 2 such that $\frac{\tau_s(H)}{s} < \tau(H)$. We shall show that there exists a hypergraph H' such that $\tau(H \times H') < \tau(H) \tau(H')$.

Let $\phi(x)$ be a minimal s-covering for H . Put $\phi(X)$ = $\tau_{_{\bf S}}(H)$ = t , Y = $\{1$,2 , ..., t $\}$.

It is always possible to associate with each $x \in X$ a set $A(x) \subset Y$ so that:

(1)
$$|A(x)| = \varphi(x)$$
 for all $x \in X$,

(2)
$$x \neq x'$$
 implies $A(x) \cap A(x') = \emptyset$.

Let $H' = K_t^{t-s+1} = (Y, (F_j))$. We shall show that the direct product $H \times H'$ admits

$$T_0 = \{(x, y) / x \in X, y \in A(x)\}$$

as a transversal.

Clearly, $E_i \times Y$ contains at least s different elements of T_o . Since no two of them have the same projection on Y, $E_i \times F_j$ contains at least one element of T_o , for all i, j. Thus, T_o is a transversal of $H \times H'$. Moreover, $\tau(H') = s$. Hence

$$\tau\left(\mathbf{H}\times\mathbf{H'}\right)\leq\left|\mathbf{T}_{o}\right|=\tau_{s}\left(\mathbf{H}\right)<\,s\,\tau\left(\mathbf{H}\right)=\tau\left(\mathbf{H}\right)\,\tau\left(\mathbf{H'}\right)\ .$$

O.E.D.

Sufficiency. Let H be a hypergraph such that $\tau(H) = \tau^*(H)$. Then by Lemma 1, $\tau_s(H) = s\tau(H)$ for every integer s. Let $T_o \subset X \times Y$ be a minimum transversal of $H \times H'$. Let

$$\phi_{o}(x) = |\{y / (x, y) \in T_{o}, y \in Y\}|$$
.

Since the projection on Y of $(E_i \times Y) \cap T_o$ is a transversal of H',

$$\varphi_{\mathbf{O}}(\mathbf{E}_{\mathbf{i}}) = |(\mathbf{E}_{\mathbf{i}} \times \mathbf{Y}) \cap \mathbf{T}_{\mathbf{O}}| > \tau(\mathbf{H}')$$
.

Thus, φ is an s-covering for $s = \tau(H')$. Hence,

$$\tau(H \times H') = |T_0| = \phi_0(X) > \tau_s(H) = s\tau(H) = \tau(H')\tau(H)$$
.

Therefore, the equality holds.

Q.E.D.

Corollary 1. If H satisfies $\nu(H) = \tau(H)$ (and in particular if H is balanced)
then $\tau(H \times H') = \tau(H) \tau(H')$ for every H'.

This follows immediately from Lemma 1.

In particular, if H is balanced, i.e. if each odd cycle of H possesses an edge containing three vertices of the cycle, it is known ([1]) that $\nu(H)$ = $\tau(H)$, and consequently, the required equality holds.

Corollary 2. Let G be a graph. Then

$$\tau(G \times H') = \tau(G) \tau(H')$$

for every hypergraph H' if and only if

$$\tau(G) = \nu(G)$$

By a theorem of Lovasz [10], $\tau(G) = \tau^*(G)$ if and only if $\tau(G) = \nu(G)$. The proof follows.

Q. E. D.

Corollary 3. Let H be a hypergraph such that $m(H) = \tau(H) \delta(H)$. Then $\tau(H \times H') = \tau(H) \tau(H')$ for every hypergraph H'.

This follows immediately from Lemma 1.

Corollary 4. Let H and H' be two hypergraphs. Then $\rho\left(H\times H'\right)<\rho\left(H\right)\rho\left(H'\right)\;.$

Furthermore, if H is balanced, then $\rho(H \times H') = \rho(H) \rho(H')$ for every H'.

Clearly, if H' is the dual of H, then $\rho(H) = \tau(H')$. If H is balanced, then H' is also balanced.

Thus, the result follows immediately from Proposition 1, Proposition 2 and Corollary 1.

Corollary 5. Let H and H' be two hypergraphs. Then $\beta(H \times H') > \beta(H) n(H') + \beta(H') n(H) - \beta(H) \beta(H')$

Equality holds for every H' if and only if $\tau(H) = \tau^*(H)$.

We have

 $\beta(H \times H') = n(H \times H') - \tau(H \times H') \ge n(H) n(H') - \tau(H) \tau(H') = n(H) n(H')$ $- (n(H) - \beta(H)) (n(H') - \beta(H')) = \beta(H) n(H') + \beta(H') n(H) - \beta(H) \beta(H')$ The equality holds iff it holds in Theorem 1.

Theorem 2. Let H and H' be two hypergraphs. Then $\tau({\rm H}\times{\rm H}')>\tau({\rm H})+\tau({\rm H}')-1$

A hypergraph $H = (E_i / i \in I)$ satisfies $\tau(H \times H') = \tau(H) + \tau(H') - 1$ for every H' if and only if $\bigcap_{i \in I} E_i \neq \emptyset$.

1. Let H and H' be two hypergraphs on X and Y respectively. Let T o be a minimum transversal of H \times H', and for $x \in X$, let

$$\varphi_{o}(x) = |\{y / (x, y) \in T_{o}, y \in Y\}|$$

Clearly, ϕ_0 is an s-covering of H for s = $\tau(H')$. Let $T_1 \subset X \times Y$ be obtained from T_0 , by removing exactly s-1 vertices, and let

$$\phi_1(x) = |\{y / (x, y) \in T_1, y \in Y\}|$$

We have, for all edges E of H,

$$\varphi_1(E_i) \ge \varphi_o(E_i) - (s - 1) \ge 1$$

Hence, ϕ_1 is a 1-covering of H , and therefore $\phi_1(X) \geq \tau(H)$. Hence $\tau(H \times H') = \phi_0(X) = \phi_1(X) + (s-1) \geq \tau(H) + \tau(H') - 1 .$

2. Now, consider a hypergraph H = (E / i \in I) such that \bigcap E \neq \emptyset . Then τ (H) = 1 .

Let $x_0 \in \cap E_i$. Clearly, $H \times H'$ has a transversal $T_0 \subset \{x_0\} \times Y$ such that

$$|T_0| = \tau(H^*) = \tau(H) + \tau(H^*) - 1$$

Hence, by part 1 of the theorem, T $_{O}$ is a minimum transversal of H \times H', and $\tau (\rm H \times \rm H') \, = \, \left| T_{O} \right| \, = \, \tau (\rm H) \, + \tau (\rm H') \, - \, 1$

Since this equality holds for every H', the second part of the theorem is proved.

3. It remains to show that if $\tau(H) > 1$, there exists a hypergraph H' such that $\tau(H \times H') > \tau(H) + \tau(H') - 1$. Take any balanced hypergraph H' with $\tau(H') = s \ge 2$. By Corollary 1 to Theorem 1, we have

$$\tau(H \times H') = s \tau(H) > \tau(H) + (s - 1) = \tau(H) + \tau(H') - 1$$

The required inequality follows.

Q.E.D.

Remark. Proposition 2 shows that, for all p ,q ,

(1)
$$\max\{\tau(H \times H') / \tau(H) = p, \tau(H') = q\} = pq$$

However, Theorem 2 shows only that

(2)
$$\min\{\tau(H \times H') / \tau(H) = p, \tau(H') = q\} = p + q - 1$$

holds for p = 1 (or q = 1). However, it is easy to show that (2) holds for all pq.

Put $H = K_{p+q-1}^q$, $H' = K_{p+q-1}^p$ (the complete hypergraphs on p+q-1 vertices with ranks respectively q and p). Clearly, $\tau(H) = p$, $\tau(H') = q$. If the vertex set of H is $\{x_1, \dots, x_{p+q-1}\}$ and the vertex set of H' is $\{y_1, \dots, y_{p+q-1}\}$, then $T_o = \{(x_1, y_1), (x_2, y_2), \dots, (x_{p+q-1}, y_{p+q-1})\}$ is a transversal of $H \times H'$ because otherwise there exists an edge E_i of H and an edge F_j of H' such that $(E_i \times F_j) \cap T_o = \emptyset$, which contradicts that $|E_i| + |F_j| = p+q$. Thus, (2) follows from Theorem 2.

In fact, we can have a better inequality by using the number τ . We have

Theorem 3. Let H and H' be two hypergraphs. Then
$$\tau(H \times H') > \max\{\tau^*(H) \tau(H'), \tau(H) \tau^*(H')\} .$$

Let T_0 be a minimum transversal of $H \times H'$, and let

$$\phi_{O}(x) = |\{y / (x, y) \in T_{O}, y \in Y\}|$$

 φ_0 is an s-covering of H for s = $\tau(H')$. Hence, by Lemma 1,

$$\tau(H \times H') = |T_0| = \phi_0(X) \ge \tau_s(H) \ge s \tau^*(H) = \tau(H') \tau^*(H)$$
.

The required inequality follows.

- Corollary 1. $\tau(H \times H') \ge \max \left\{ \frac{m(H)}{\delta(H)} \ \tau(H') \ , \ \frac{m(H')}{\delta(H')} \ \tau(H) \right\}$ This follows immediately from Lemma 1.
- Corollary 2. $\tau(H \times H') \ge \max \{ \nu(H) \tau(H'), \nu(H') \tau(H) \}$ This follows immediately from Lemma 1.
- 3. The Chromatic Number. We shall now consider the chromatic number of the direct product $H \times H'$.
- Example. (Polarized partition relations among cardinal numbers, [6], [4]). What is the least number of colors required to color the points of an mxn rectangle unit lattice so that rs points situated in r columns and s rows cannot have the same color? Clearly, this number is $\chi(K_m^r \times K_n^s)$.

For instance, $\chi(K_5^2 \times K_4^2) = 2$, and a bicoloring of the 6×4 rectangle unit lattice is shown in Example 2, Section 2.

Also, we have

$$\chi(\kappa_5^2 \times \kappa_5^2) = 3$$

Otherwise, there exists a bicoloring of the 5×5 matrix $((a_j^i))$ where the 0's denote the points of the first color and the 1's the points of the second color. Since the first column $(a_1^1, a_1^2, a_1^3, a_1^4, a_1^5)$ necessarily has three entries of equal value, suppose $a_1^1 = a_1^2 = a_1^3 = 0$.

The first two rows have, in each column, one of the combinations 00,11, 01,10, and there exist two columns with the same combination (because $2^2 < 5$). Since this repeated combination cannot be 00 nor 11, we may assume

$$a_2^1 = a_3^1 = 0$$

$$a_2^2 = a_3^2 = 1$$
.

None of a_2^3 , a_3^3 can be zero; hence

$$a_2^3 = a_3^3 = 1$$
.

Since the submatrix

$$\begin{pmatrix}
a_2^2 & a_3^2 \\
a_3^3 & a_3^3
\end{pmatrix}$$

has only ones , the 0's and 1's in ((a $_j^i)$) do not define a bicoloring of $K_5^2\times K_5^2$.

Q.E.D.

This argument has been extended by Chvatal [3], [4], who showed that

(A)
$$c_1^{1/r} \leq \chi(K_n^r \times K_n^r) \leq c_2^{1/r}$$

In fact, the lower bound also follows from a result of Kövary, Sos, Turán [9], while the upper bound was obtained by so-called probabilistic methods. Moreover, replacing the probabilistic method by a finite geometrical construction, one can show that

(B)
$$\chi(K_n^2 \times K_n^2) / n^{1/2} \rightarrow 1$$

Finally, Sterboul [11] showed that in some cases, the same kind of arguments gives the exact value of $\chi(K_m^2\,x\,K_n^2)$.

The problem of finding a lower bound for $\chi(H \times H')$ was also considered by Chvatal [3], who gave the two following inequalities:

$$\chi(H \times H') \ge \min \{ \chi(H), \chi(H')^{1/n(H)} \},$$
 $\chi(H \times H') \ge \min \{ \chi(H), m(H)^{-1} \chi(H') \}.$

An obvious result is:

Proposition 3. $\chi(H \times H') \leq \min \{\chi(H), \chi(H')\}$

Assume that $\chi(H) \leq \chi(H')$, and let g(x) be a coloring of H in $p = \chi(H)$ colors. Then h(x,y) = g(x) is a coloring of $H \times H'$ in p colors. Hence $\chi(H \times H') < \chi(H)$.

Q.E.D.

Equality is obtained in some degenerate cases, for example when $\chi(H)$ = 2. However, in general, Proposition 3 is far from being best possible. A better estimation for $\chi(H \times H')$, knowing $\chi(H)$ = p and $\chi(H')$ = q, is:

Theorem 4. $\max \{\chi(H \times H') / \chi(H) = p, \chi(H') = q\} = \chi(K_p^2 \times K_q^2)$

We have only to show that if H and H' are two hypergraphs with $\chi(H)$ = p , $\chi(H')$ = q , then

$$\chi(H \times H') \leq \chi(K_p^2 \times K_q^2)$$

Consider a coloring c(x) of H with p symbols a_1, a_2, \ldots, a_p , and a coloring c'(y) of H' with q symbols b_1, b_2, \ldots, b_q . Consider a complete graph K_p^2 with vertex set $\{a_1, a_2, \ldots, a_p\}$ and a complete graph K_q^2 with vertex set $\{b_1, b_2, \ldots, b_q\}$. Let $g(a_i, b_j)$ be a coloring of $K_p^2 \times K_q^2$ in $t = \chi(K_p^2 \times K_q^2)$ colors. Now, put

$$h(x, y) = g(e(x), c'(y))$$

To show that h(x,y) is a coloring of $H \times H'$, consider an edge $E \times F$ of $H \times H'$. E contains two vertices x_1 and x_2 with $c(x_1) \neq c'(x_2)$, and F contains two vertices y_1 and y_2 with $c'(y_1) \neq c'(y_2)$. Since $\{c(x_1),c(x_2)\} \times \{c'(y_1),c'(y_2)\}$ is an edge of $K_p^2 \times K_q^2$, it contains two points, say $(c(x_3),c'(y_3))$ and $(c(x_4),c'(y_4))$, with

$$g(c(x_3), c'(y_3)) \neq g(c(x_4), c'(y_4))$$

Hence, ExF contains two vertices (x_3, y_3) and (x_4, y_4) with $h(x_3, y_3) \neq h(x_4, y_4)$. This shows that h(x, y) is a t-coloring of $H \times H'$. Hence $\chi(H \times H') \leq t = \chi(K_p^2 \times K_q^2)$.

Q.E.D.

The problem of finding a good estimate for

$$f(p, q) = \min \{ \chi(H \times H') / \chi(H) = p, \chi(H') = q \}$$

seems to be difficult. In particular, we can ask if as $\,p\,$ and $\,q\,$ tend to infinity, $\,f(p\,,q)\,$ tends to infinity.

REFERENCES

- 1. Berge, C., Graphes et Hypergraphes, Dunod, Paris 1970.
- 2. Brown, W. G., On graphs which do not contain a Thomsen graph, Canad. Math. Bull. 9, 1966, 281-285.
- 3. Chvatal, V., Hypergraphs and Ramseyian theorems, Thesis, Univ. of Waterloo, 1970.
- 4. Chvatal, V., On finite polarized partition relations, Canad. Math. Bull. 12, 1969, 321-326.
- 5. Culik, K., Teilweise Losung eines verallgemeinerten Problems von K. Zarankiewicz, Ann. Polon. Math. 3, 1956, 165-168.
- 6. Erdős, P., and Rado, R., A partition calculus in set theory, <u>Bull. A.M.S.</u> 62, 1956, 427-489.
- 7. Guy, R. K., A problem of Zarankiewicz in Theory of Graphs, Akadémiai Kiadó, Budapest, 1968, 119-150.
- Guy, R. K., A many-facetted problem of Zarankiewicz, in <u>The many Facets of Graph Theory</u>, Lecture Notes 110, Springer Verlag, Berlin 1969, 129-148.
- 9. Kövary, T., Sós, V., and Turán, P., On a problem of Zarankiewicz, Colloq. Math. 3, 1954, 50-57.
- 10. Lovász, L., Minimax theorems for hypergraphs, in Hypergraph Seminar, Lecture Notes, Springer Verlag, Berlin 1974.
- Sterboul, F., On the chromatic number of the direct product of two hypergraphs, this volume, p.173.