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1. Definitions. 1In the following, H = (X, &) will denote a hypergraph with vertex
set X=[x1,x2,...,xn} , and edge family & = (Ei/iEI) . n(H)=n 1is the
order of H , m(H) = III is the number of edges, and r(H) = maxlEiI is the
rank of H . A set SEX is said to be stable if it contains no edge; the
maximum carc_l:i.nal of a stable set is denoted by p@B(H) and is called the sta=-

bility number of H .

A set TCX 1is said to be a transversal if it meets each edge; the minimum
cardinal of a transversal of H is denoted by T(H) and is called the trans-

versal number of H . Other numbers can be associated with hypergraph H ; for

instance, v(H) denotes the maximum number of pairwise disjoint edges; p (H)
denotes the minimum number of edges which together cover X ; 8§(H) , the maxi-

mum degree, is the maximum number of edges which meet at the same vertex. y(H),

the chromatic number, is the least integer k for which there exists a parti-

tion of X into k stable sets,
It is well known that the following inequalities hold:
(1) x(H) B(H) >n(H)
(2) x@) + B(H) <n(H) +1
(3) B@H) = nH) -1
(4) T(H) >v(H)
(5) (@) <r(H) v(H)
(For a proof see [1]).
Given two hypergraphs H = (X,8) and H' = (Y ,F) , with & = (Ei [ 1ET),
3 = (Fj / §€J) , their direct product is a hypergraph Hx H' with vertex set

XXxY and with edges EiXFj fors (15 4) € Lxd &

The aim of this paper is to find upper bounds and lower bounds for the



numbers associated with hypergraph Hx H' . These results can easily be ex-
tended to the direct product of more than two hypergraphs.
First, it should be noticed that we have:
(6) r(HxH') = r(H) r(H")
Moreover, some of the associated numbers of HxH' can be obtained from other

coefficients by the duality principle, using the following result:

s % % *
Proposition 1. (HxH') = H x H'

*
By definition of the dual, (Hx H') has vertex set [(ei 5 fj) fd T eyl
the edge corresponding to a vertex (xp »Y ) of HxH' must contain all the

(e

i fj) such that Eiaxp and Fj ayq , and therefore is the set XpXY

q
Here Xp is the set of e,'s such that Eiaxp . xq is similarly defined.
b &
Hence the edge family of HXxH' is
{(xp,xq)/15 p <m il Siq Shlv,

The proposition follows.

2. The Transversal Number. Let H and H' be two hypergraphs of order m and

n , respectively. From (3) we have
PB(HXH') =mn-7(HxH') .
So, the problem of finding a lower bound for B is the same as the problem of

finding an upper bound for t . This problem often occurs in Combinatorics.

Example 1. What is the least number of points in a mx n rectangular unit lattice
(integer points of the plane), such that each square of side r has at least
one of these points as a corner? The answer is "I'(D;X DE) , Where DE is a
simple graph with vertices 1 ,2,...,n , two vertices x ¥ being joined if
lx=y| =t
One can easily show that if r =1 and mn is even, we have

r@LxD) = [m/21* [(n/21*
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where [x]" denotes the smallest integer > x .

Example 2. The Zarankiewicz problem. Let 1 <r<m,1 <s <n . Zarankiewicz has
asked for the least integer krs(m , n) such that every subset of krs(m )
points of an mxn rectangular unit lattice should contain rs points situated
in r columns and s rows. If K; denotes the complete r - uniform hypergraph
on m points, we have

BK. xK) =k _(m,m)-1 .
An extensive literature exists on this problem (see Guy, [7], [8]). For the
sake of simplicity, consider first the case m = n . It is known [9] that if

r <s, then

]

2 r s 2-1/r
(1) B(K xK)S e ozn

where c is a constant, Furthermore, if r =s =2 , (i) is sharp, that is
3

if n*+ o, we have 5 9

6(KnxKn)+

372 1
n

It follows easily from [2] that if s> 3, then
(ii) ¢! e ﬁ(Kix Kiy<ict e
Unfortunately, the lower bounds for the general case are far from the upper
bound given in (i).
Another simple case is when n is much greater than m . Thus if
n>(s= 1)(?), Culik (5] has determined the exact value:
BE XKD = (x-Dn+(s-1() -
For example, B(KZ;(KE) =6+6 = 12 , and a maximum stable set with 12 vertices

is given by the ones in the following array:

151411000
001110
100011
gt 1oL

m=6

n==4
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Proposition 2. Let H and H' be two hypergraphs. Then

T(HXH')S T(H)TH') .
Let TCX and T'CY be two minimum transversals respectively for H and H'.
Since TxT' 1is a transversal for HxH' , we have
T (HxHY) LlTx 1| = c@r@E') .
I Q.E.D.
Instead of showing that the inequality of Proposition 1 is the best possi-
ble, we shall show that a very large class of hypergraphs H satisfy
T(HxH') = 7(H) 7(H') forsalsdasHit,
First, we shall prove two lemmas. In fact, these lemmas have been
proved independently by L. Lovasz and the authors and can be used for a differ=-
ent purpose (see [10]). Let s be a positive integer. Let @w(x) be an inte=

ger function on X ; for ACX , let

(P(A) =3 ox) .
XEA

If :p(Ei)Z s for all 1i€1 , the function ¢ is said to be an s-covering
for H . The minimum of ¢ (X) over all s-coverings ¢ will be denoted by
TS(H) . Clearly, «(H) = Tl(H) .

Now, let H be a hypergraph with vertices x;,X,,.cc X with m(H)
edges, and with maximum degree §(H) . Let Ctl ,az,,“,an be n non-negative
real numbers. Let

n

*

T () =ainf® @ /i35 & 21 ifor all il
i=1 * xiéiEj

Lemma 1. Let H be a hypergraph. Then

T (H)
max{vn) , B8} < F@g S—< @

We have ‘TS(H) < st(H) , because if T is a minimum transversal set and if
cpT(X) is its characteristic function, then SO is an s-covering, and, conse-

quently,
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T (H)s StpT(X) =sq(H) .
*
We have %TS(H)Z T (H) , because if ¢ 1is a minimum s-covering, then by putting

ik ;
a; = ge(x;) , we obtain

s o T
*
Now, we shall show that (H):>%%%% . Consider n <real numbers ai such
%
that % a.>1 for all j and such that T, =T (H) . Denote by & (H)
XREE N 5T & &
S
the degree of vertex =x . We have
m n n v
n(H) « ¥ z i <Z g8, (H M) T g =60 (H)
— s B = = i
Jrme]l o SR i=1 i i=1
L J
Also, if (E! ,Eé ,...,EG) is a maximum matching of H , then
n v
*
T =T g > % F g >l
= xiEEl'{ =

The first inequality follows.

Lemma 2, S“ITS(H) tends to a limit, and
T o (H) s
Lim — =7 (H)
5>

A well known theorem of Fekete states that if a sequence (an) of positive num-
a
bers is such that a < a +a , then the sequence (_n) tends to a limit.
m+n= m n n

Let ¢ be a minimum p-covering and ¢' be a minimum g-covering. Then ¢ +¢o'

is a (p+q) - covering, and therefore

frp+q(H)scp(X)+:p'(x) = -rp(H)+-rq(H) .
T (H)

Hence, by Fekete's theorem, there exists a number E such that +E .
%
By Lemma 1, € > 71 (H) .
%
Furthermore, the Cdi’s whose sum is 1 (H) are defined by a linear pro-

gramming problem with integral coefficients, and therefore, the ai's are

rational, and we can write

Q. =

1
a; .
i s

> Oy and s integers,

Hence
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T (H)
S

» |

%
Za;_ = Lg =g (H)
This shows that & = 1 (a) .
Q.E.D.

Theorem 1. A necessary and sufficient condition for a hypergraph H to satisfy

T(HXH') = 7(H) T(H') for all H' is that 7(H) = r (H) .

. * %
Necessity. Assume that T(H) # v (H) . Then, by Lemma 1, t(H) >t (H) and by
. (H)
s

5

Lemma 2, there exists an integer s> 2 such that < T1(H) . We shall
show that there exists a hypergraph H' such that THxH )< T(H) T(H') .
Let (%) be a minimal s-covering for H . Put oX) = TS(H) =t,
SO R Sl
It is always possible to associate with each x€X a set A(x)CY so that:
(1) |A®)| =o¢(x) for all x€X ,
(2) x # x' implies AX)nAR') =9 .

Let H' = Kz‘ skl (& (Fj)) . We shall show that the direct product

Hx H' admits
T.= {(x,y)/x€x , yeEA(®)}
as a transversal.

Clearly, EiXY contains at least s different elements of '1‘0 . Since
no two of them have the same projection on Y 5 EiXFj contains at least one
element of To s foxialil =uf =N e 'I‘0 is a transversal of HxH' . More-
over, T(H') = s . Hence

THXH') < |To| =T ()< sT@) =T@E)T®E") .
Q.E.D.
Sufficiency. Let H be a hypergraph such that r(H) = T*(H) . Then by Lemma
1 TS(H) = sT(H) for every integer s , Let T CXxY be a minimum transver-
sal of HxH' . Let
tPO(X) 2 HY?’ (x,y)ETO s yGYH .

Since the projection on Y of (EixY)n To is a transversal of H' ,

P, (E;) = |(Eix‘f) nTOI >T@E') .
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Thus, o, is an s-covering for s = 1(H') . Hence,
TEXED [T o (F) 5 e (E) mam () =) T (E) -
Therefore, the equality holds.
Q.E.D.

Corollary 1. If H satisfies v(H) = t(H) (and in particular if H is balanced)

then rT(HxH') = r(H) r(H') for every H' .

This follows immediately from Lemma 1.

In particular, if H is balanced, i.e. if each odd cycle of H possesses
an edge containing three vertices of the cycle, it is known ([1]) that v(H) =

= v(H) , and consequently, the required equality holds.

Corollary 2. Let G be a graph. Then

7(GxH') = 1(@G) @A)

for every hypergraph H' if and only if

T(@G) =v(G) .
By a theorem of Lovgsz [10], T(G) = T*(G) if and only if 71(G) = v(G) .
The proof follows.
Q. E. D.

Corollary 3. Let H be a hypergraph such that m(H) = 7(H) §(H) . Then T(HXH')

= r(H) T(H') for every hypergraph H' .

This follows immediately from Lemma 1.

Corollary 4, Let H and H' be two hypergraphs. Then

p(HxH')S p(H)p(H') .

Furthermore, if H is balanced, then p(HxH') = p(H) p(H') for every H' .

* %
Glearly, i1f H iz the duel of # , then p(H) = r(H )} . Tf H is
*
balanced, then H is also balanced.

Thus, the result follows immediately from Proposition 1, Proposition 2 and

Corollary 1.



28

Corollary 5. Let H and H' be two hypergraphs. Then

p(HxH') > g(H) n(H') + g(H') n(H) -p(H) p(H')

%
Equality holds for every H' if and only if +(H) =1 (H) .

We have

]

pHXH') = n(HxH') =7(HxH') > n(H) n(H') -7 (@) 7(H') = n(H) a(H')

(n(H) - g(H)) (n(H') - g(H')) =g(H) n(H') + B(H') n(H) - g(H) g(H")

The equality holds iff it holds in Theorem 1,

Theorem 2. Let H and H' be two hypergraphs. Then

T(HxH')s 7(H) +7(H') - 1
A hypergraph H = (Ei /i€1) satisfies T(HXxH') = T(H)+r(H')-1 for every
H' if and only if N E; £0.

iel
1. Let H and H' be two hypergraphs on X and Y respectively. Let To

be a minimum transversal of HxH' , and for x€X , let

0, (x) = |{y/ (x,y) €T ,y€Y}|
Clearly, 9, is an s=covering of H for s =qT(H') . Let T]_CXXY be

obtained from TO by removing exactly s -1 vertices, and let
o) = |{y/ (x,y) €1, ,y€v}]
We have, for all edges Ei of i iH A,
®; () > @, (E;) = (s =1) >1
Hence, ©; is a l-covering of H , and therefore :pl(X)Z T(H) . Hence

(1) T(HXH') = ¢ (X) = oy (X) +(s-1)> r(H) +7 (') - 1

2. Now, consider a hypergraph H = (Ei /1i€1I) such that ﬂEi # 0 . Then
TH) =] |
Let x_ EﬂEi . Clearly, HxH' has a transversal T0C|xo]xY such
that
|T0| =T(H') =T@H) +7@E") -1
Hence, by part 1 of the theorem, To is a minimum transversal of HxH' , and

T S TR (R (HY) = 1
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Since this equality holds for every H' , the second part of the theorem is

proved.

3. It remains to show that if r(H)> 1, there exists a hypergraph H' such
that T(HxH') >1(H) +7(H') -1 . Take any balanced hypergraph H' with
T(H') = s > 2. By Corollary 1 to Theorem 1, we have

T(HxH ) = s (H) sv(A)t (5= 1), = 5n.(H) +r(BY) -1
The required inequality follows,
Q.E.D.

Remark. Proposition 2 shows that, for all p ,q ,

1) max{t(HXH') /r(H) =p,TH') = q} = pq
However, Theorem 2 shows only that

(2) min{r (HxH') /t(H) =p , T(H') = q} =p+q-1

holds for p =1 (or q = 1). However, it is easy to show that (2) holds for

all pq .
= 4 ¢ P -
Put H Kp+q- 1° H Kp+q- 1 (the complete hypergraphs on p+q-=-1
vertices with ranks respectively q and p). Clearly, t(H) =p ,T(H') =q .

If the vertex set of H is {xl o and the vertex set of H' is

*p+q- 1}
{yg seees Yourq-1) » then To= {Gx, 50, (%555, 5.0, b1V iq-1}
is a transversal of HXH' because otherwise there exists an edge Ei of H
and an edge Fj of H' such that (EiXFj) ) TO= ¢ , which contradicts that
|Ei| +le| =p+q . Thus, (2) follows from Theorem 2.

%*
In fact, we can have a better inequality by using the number ¢ . We have

Theorem 3. Let H and H' be two hypergraphs. Then

* *
T(HXxH') s max{r (H)r(H') , T@) T @")} .
Let T be a minimum transversal of HxXxH' , and let
o, () = [{y/ (x,y) €T ,yeY]

9, is an s=-covering of H for s = 7(H') . Hence, by Lemma 1,
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TOXE) = [T | =g (> () >s7 (W)= t(') 1 (1)

The required inequality follows.

m(El) ; et T (@)

Corollary 1. T(HXH')> max { 5 (i)

6(H)

This follows immediately from Lemma 1.

Corollary 2. T(HXH') > max{Vv(H) T(H') , v(H') T(H)}

This follows immediately from Lemma 1.

3. The Chromatic Number. We shall now consider the chromatic number of the direct

product HxH' .

Example. (Polarized partition relations among cardinal numbers, [6], [4]). What is
the least number of colors required to color the points of an mxn rectangle
unit lattice so that rs points situated in r columns and s rows cannot
have the same color? Clearly, this number is X(K:;fol) .

For instance, x(Kngzj = 2 , and a bicoloring of the 6x4 rectangle
unit lattice is shown in Example 2, Section 2.
Also, we have
X(KsxK3) = 3
Otherwise, there exists a bicoloring of the 5x 5 matrix ((ai_':")) where the 0's

denote the points of the first color and the 1's the points of the second color.

Since the first column (a.l,a.l,a3 a.,a ) necessarily has three entries of
equal value , suppose ai = ai = ai = 0. .

The first two rows have, in each column, one of the combinations 00, 11,
2
01,10, and there exist two columns with the same combination (because 2°¢ 5).

Since this repeated combination cannot be 00 nor 11 , we may assume

1 1 _
a2 a3—0
2aemd o
82—33.—]_,
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None of ag ,ag can be zero; hence
3 3
3.2 3.3 1 .
Since the submatrix
a2 a2
2 3
8.3 63
2 5

has only ones , the 0's and I's in ((a;)) do not define a bicoloring of

2 2
K5xK5 §
Q.E.D.
This argument has been extended by ChvAtal [3], [4], who showed that
1/r T LT 117 <
(a) RS x(KnxKn) < ¢,

6 rd i
In fact, the lower bound also follows from a result of Kovary, Sos, Turan [9],
while the upper bound was obtained by so-called probabilistic methods. Moreover,

replacing the probabilistic method by a finite geometrical construction, oné can

show that

(®) oo Lo
n n

Finally, Sterboul [11] showed that in some cases, the same kind of argu-

ments gives the exact value of X(K:lxKi) v
The problem of finding a lower bound for yx(HxH') was also considered by
Chv.{atal [3], who gave the two following inequalities:
~(Hx H') > min {x(H) , x(H')]'/n(H)}
X@EXE) > nin {x@) , m@  x@)} .

An obvious result is:

Proposition 3. x(HXH')< min {y(H) ,x(H')]}

Assume that y(H)< x(H'), and let g(x) be a coloring of H in p = x(H)

colors. Then h(x,y) = g(x) is a coloring of HxH' in p colors. Hence

X(HXH')S ¥ (H) .
Q.E.D.



Equality is obtained in some degenerate cases, for example when x(H) = 2 .
However, in general, Proposition 3 is far from being best possible. A better

estimation for ¥(HxH') , knowing x(H) =p and x(@H') =q , is:

Theorem 4. max {x(HX H') /x(H) =p, x(H') = q} = x(KEXKi)
We have only to show that if H and H' are two hypergraphs with x(H) =p ,
x(H') = q , then
! 2.9
x(HxH') < x(K_XK )
= P q
Consider a coloring c(x) of H with p symbols 3y 53y 5000, ap , and a

1 ] 2 g minie
graph Kf) with vertex set {al 28y 5000 ap[ and a complete graph K(ZI with

coloring c¢'(y) of H' with q symbols b, ,b bq . Consider a complete

vertex set [bl by seee, bq} . Let g(a,, bj) be a coloring of KEXKf[ in
t = x(stKi) colors. Now, put

h(x,y) = g(&(x),c'(¥))
To show that h(x,y) is a coloring of HxXH' , consider an edge EXxF of
HxH' . E contains two vertices x, and x, with c(xl) #Fc'(x

1 2
contains two vertices 1 and Yy with c'(yl) # c'(yz) . Since

2) , and F
fe(xy) ,ex)} x {c'(y;) ,c'(y,)} is an edge of szKz it contains two
1 3 2 1 3 2 p q ?
points, say (c(x3) ,c'(y3)) and (c(xk) ,c‘(y4)) , Wwith
g(e(x;) , ¢'(y3)) # gle(x,) ' (v,))
Hence, EXF contains two vertices (x3 5 y3) and (x4 ~ y4) with h(x3 5 y3) #
# h(le_ ,yé) . This shows that h(x,y) is a t-coloring of HxH' . Hence
2 2
N(HX B )=t =y (K XK ).
- P q
Q.E.D-
The problem of finding a good estimate for
£(p, q) = min {x(HXH') /x(H) =p, x(®') =q]
seems to be difficult, In particular, we can ask if as p and gq tend to

infinity, £(p, q) tends to infinity.
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