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Abstract

Given a family % of graphs, set p = p(¥) =mingce (L) — 1 and, for n>1, denote by
P(n, &) the set of graphs with vertex set [1] containing no member of ¥ as a subgraph, and
write ex(n, &) for the maximal size of a member of 2 (n, ¥). Extending a result of Erdos,
Frankl and R6dl (Graphs Combin. 2 (1986) 113), we prove that

1(, 1 2y
W(n,y)|<27<17>"2*0<"' g
for some constant y = y(#)>0, and characterize y in terms of some related extremal graph
problems. In fact, if ex(n, #) = O(n*°), then any y<d will do. Our proof is based on
Szemerédi’s Regularity Lemma and the stability theorem of Erdds and Simonovits. The bound
above is essentially best possible.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Notation

Our notation in this paper is standard but for the sake of completeness, we review
it briefly. Readers familiar with extremal graph theory may skip this section.
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In this paper we restrict our attention to undirected graphs without loops and
multiple edges. Given a graph G and a subset X = V(G), we write G[X] for the
subgraph of G induced by X. For X = V(G), we mostly shorten e(G[X]) to e(X). We
write G, for a graph of order n; in fact much of the time, the first suffix in our
notation is the order of the graph, like in K,,, T}, , and Hj.. The chromatic number of a
graph L will be denoted by y(L). We write I'(x) for the set of neighbors of a vertex x,
d(x) = |I'(x)| is the degree of x and d(x, A) = |I'(x) n 4| is the degree of x into a set
A<V (G).

As usual, we write K, for the complete graph on p vertices, and T, , for the p-class
Turdn graph. Thus in T,, the n vertices are partitioned into p classes so that their
sizes are as equal as possible, and two vertices in the graph are joined iff they belong
to different classes. It is easy to see that if n = r (mod p), 0<r<p, then

e(Top) = %(1 —11) (= 1%) + (;)

We shall often make use of the facts that

1\ n2
e(Tn,p)z (1 —;>§

(-3)(2)wm=(-)

Furthermore, we shall use the abbreviation

A(n) = 2%(1—}))6

Many of our inequalities hold only for n>ny and occasionally we shall remind the
reader of this. (Further, the value of ny will vary from place to place.)

We say that a pair of vertex sets (A4, B) is completely joined in a graph G, if
A,B=V(G,),AnB =0, and for all xe 4,ye B we have xye E(G,). If we have two
vertex-disjoint graphs M and Q, we denote by M ® Q the graph obtained by joining
each vertex of M to each vertex of Q.

1.2. Turdn-type extremal problems

Given a family .Z of graphs, we say that G is Z-free if L& G for every Le %,
where L< G denotes the not necessarily induced containment. We call ¥ the family
of forbidden graphs; to avoid trivialities, we shall always assume that % is non-trivial,
ie., e(L)>0 for Le #. We write Z(n, ¥) for the class of .#-free graphs with vertex

*Clearly, e(T,») = | 2* |. As Fiiredi observed, this extends to p<7:

- |-}
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set [n] == {1,...,n}.* We shall use the customary notation
ex(n, #) = max{e(G) : Ge P(n, ¥)}.

When % consists of a single graph L, we use the shorthand ex(n, L) instead of the
pedantic notation ex(n, {L}). The basic Turan-type extremal problem is as follows:

For a given family %, determine or estimate ex(n, %), and describe the
(asymptotic) structure of extremal graphs, as n— oo.

The theory started with Turan’s classical theorem [30], see also [31,32]. For a more
detailed description of this field, see the book of Bollobas [5] or the surveys of
Simonovits [26,27], or Fiiredi [14].

1.3. Erdos—Kleitman—Rothschild-type results

Since all subgraphs of an #-free graph are .#-free, we have
|2 (n, £)| 2202, (1)

Erdos [9] conjectured that (1) is essentially best possible, namely for ‘most’ graphs L
we have

|@(H,L)| — 2(1+0(1))ex(n,L). (2)
If L is a tree then (2) fails, and if L is bipartite containing a cycle, then proving (2)
seems to be difficult, even for L = Cy4 (see [16]). Erdos, Kleitman and Rothschild [13]

were the first to study the function |#(n, L)| in detail, by proving Erdos’ conjecture
for L =K.

Theorem 1.1.

71 " o(n?
|9><n,1<,,+1>|<z(1 1) Qo)

In the case y(L) >3, the conjecture was proved by Erdos, Frankl and Rodl [12].
Theorem 1.2. Let L be a graph with y(L)>3. Then’

1 n )
|H7(n,L)| = 2(1+”(1>)9X(H,L) — 2(l*m> (2)+0(I’L )

Kolaitis, Promel and Rothschild [17] sharpened Theorem 1.1: they proved that, in
fact, almost every K, ,-free graph is p-colorable.

4The vertices of our graphs are fixed, labeled and, for the sake of simplicity, we shall assume that
V(Gy) = {1,...n}.
Mosty it is irrlevant i (1)) o o () ” -
Mostly it is irrelevant if we use 2\ #/'¥ or 2\' »/2  because of the additional error terms in the
exponent.
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Theorem 1.3. Let €,(p) be the set of labeled p-colorable graphs on [n]. Then

P(n, K
7| (, p+l)|—>1 as n— oo.

|n(p)]

Later, Promel and Steger [21] extended Theorem 1.3 to graphs with critical edges,
where an edge e of L color-critical if y(L — e)<y(L). Results in a similar vein have
been proved by Hundack, Prémel and Steger [15] for a larger family of graphs.

2. New results

There are many beautiful theorems generalizing the results mentioned above.
Unless & = {K,;1}, we have two distinct problems: estimating the number of
n-vertex graphs not containing

® induced subgraphs isomorphic to any Le ¥;
® or not necessarily induced subgraphs.

Here we refer the reader to the papers of Alekseev [1], Promel and Steger [20,22],
Bollobas and Thomason [7,8], Scheinerman and Zito [24] and Balogh, Bollobas and
Weinreich [2—4], and restrict ourselves to the not necessarily induced case. Our
starting point is Theorem 1.2, due to Erdds, Frankl and R&dl [12]. It is trivial to
rephrase Theorem 1.2 for a family % of forbidden graphs:

1(, 1
|@(I’l,£f)| — p(+o(l)ex(n.2) _ 25(1—5) 2+u(n2>, (3)
where
p=my y(L) = 1. @

The problem we study in this paper is how much the ‘error term’ o(n?) in the
exponent in (3) can be improved. Our main result is that o(n?) can be replaced by
O(n*7) for some y = (%) >0.

Theorem 2.1. For every non-trivial family & of graphs there exists a constant y =
Y >0 such that

1 1,1),,2 On* 7 logn
|9’<n,z>|<22( p ot o), (5)

for p=minyc ¢ y(L) — 1.6

In fact, we shall prove a considerably sharper result: we shall determine the
exact order of the error term in the exponent. To this end, we define a new family
M = M (&) of graphs.

SOf course, logn can be deleted by slightly decreasing 7, but we shall see that (5) is a better form.
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Definition 2.2 (Decomposition). Given a family %, let # = .#(¥) be the family of
graphs M for which there exist an Le¥% and a ¢=1¢(L) such that
LEeM®K, (t,...,t). We call .4 the decomposition family of <.

Thus, a graph M belongs to .# if whenever M is placed into a class of T, , for n
sufficiently large, then the new graph contains a forbidden Le Z.

If Z is finite, then .# is also finite but the converse is not necessarily true. For
example, if & is the family of all odd cycles, then .# = {K>}.

We would be in a strong position to give a precise estimate for |2 (n, Z)| if we
could prove the following conjecture about the structure of most #-free graphs. In
fact, a good description of a typical #-free graph should be even more interesting
than a good estimate of the function |2(n, ¥)|.

Conjecture 2.3 (Sharp form). Assume that £ is finite. Then for almost all L-free
graphs G, we can delete h = O 4 (1) vertices of G, and partition the remaining vertices
into p classes Uy, ..., U, such that each G|Uj] is M-free,i=1,...,p.

Remark 2.4. We shall see that if we take an optimal p-partition (Ui,..., U,) of a
typical G,, where “optimal” means that > e(U;) is as small as possible, then the
number of vertices which are joined to each U; by more than en edges is bounded; we

believe that these are the vertices that should be deleted to make the remaining parts
of G[U}] to be .#-free. This would imply

1, 1 n 1, 1), ,
25(1‘13) 0 g, 7)) < 25(‘7)” exin4)
The lower bound is trivial.

The problem in proving Conjecture 2.3 is that we do not know in general whether
P(n, M) is a “smooth” function or it oscillates wildly. Although we cannot prove
that 2(n, .#) is smooth, we have the following result.

Theorem 2.5. For every &, if .M is the decomposition family, ./ is finite, then
1(171) 2
|9(n7$)|<nex(n.y/1)+c<n22 P , (6)
for some appropriate constant ¢>0.

Applying the theorem we obtain that the y of Theorem 2.1 is essentially the lim sup
of those o for which ex(n, .#) = O(n*~?).

2.1. The case p =1

The crucial step in our proofs of Theorems 2.1 and 2.5 is the reduction of the
general case to the case p = 1. For this we shall need a lemma asserting that the
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number of graphs from which we can delete ¥ = o(n?) edges to get p-chromatic
graphs is not much larger than 2¢%(%%),

Lemma 2.6. Let €w(n) denote the class of graphs for which there is a partition
(Ur,..., Uy) with Y, e(U;) <V, where ¥>e - pn. Then
1
31—
[ (m)| <n” 22( ) A(n). (7)

Proof. We shall use the simple inequality () < (%)b There are at most p” partitions
of V(G,) into p distinguishable sets (Uy, ..., U,). Given a partition, there are at most
A(n) choices for the cross-edges between the classes and at most

n n ¥ p
en n
(5) <(5%) <gop 0
2y 2
v (2p)
choices for the edges within the sets U;. These prove the lemma. [

In proving Theorem 2.5, we may and shall assume that p>2. Indeed, for p = 1 we
have .# = % and Theorem 2.5 becomes trivial. To get Theorem 2.1 for p = 1, we use
that, by the Koévari-T. S6s—Turan theorem [18], for the complete bipartite graph
K(p,q) we have

ex(n’K(pvq))<% /q— 1n271/‘p+%pl’l. (9)
Hence ex(n, K(t,1)) <n> /!, for n>ny(t). Since ¥ contains some bipartite L,
ex(n, &) <ex(n,K(1,1)) <n?> (/)

for some ¢. So Theorems 2.5 and 2.1 are trivial for p =1, by the above
lemma and (9).

Theorem 2.5 easily implies Theorem 2.1 since for every ¥ we can find a (p + 1)-
chromatic Lye.% and a K, (t,...,t) 2 Ly: with this ¢ we have K(z,t)e. /.

Remark 2.7. In our proofs, in most cases we do not have to consider all of ¥ but
one Lye Z, as above. We fix now such an Ly and a K, (¢,...,1)=2 Lo (and refer to
this #) we shall need all of ¥ and .# only in the last step of our proof.

3. Almost-Turan graphs

Let % and p be fixed. From now on, we shall frequently suppress the dependence
of various functions on p and %.

We plan to prove Theorem 2.5 in the following way. We shall try to prove
in various ways that a typical #-free G, looks like a random subgraph of an
Z-extremal graph. Furthermore, we think of an #-extremal graph as one obtained
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from a T, , by putting ./#-extremal graphs into some of its classes. Let us describe
this plan in more details.

1. (Uy,..., Uy) is an optimal partition if ) e(U;) is as small as possible. We assign to
each G, an optimal partition, denoted by IT1(G,).”

2. First, with the aid of Szemerédi’s Regularity Lemma (see Section 4.1), using some
variants of previous techniques (primarily of Erdos, Frankl and R6dl [12] and of
Bollobas and Thomason [7]) we show that an optimal partition (U, ..., U,) of
V(G,) satisfies

> e(Un)<on?, (10)
for almost all graphs in 2(n, ¥), for any fixed $>0 and n>ny(3). The graphs
having such partitions will be called 3-Turdn graphs and the class of #-free 3-
Turan graphs will be denoted by Z4(n, &).

3. We define 2 p(n, L) = Py(n, &), as follows.
Let /(x) denote the so called entropy function:

1 1
h(x) = XlOgZ ; + (1 — X)10g2 m
Given a graph G, call a pair (4, B) of disjoint sets of vertices with |4| = | B| sparse
if e(4,B)<i|A| |B|. Let P (n, &) denote the set of graphs in Py(n, Z)
containing no sparse pairs (4, B) with Ac U;, Bc U}, |A| = |B| = | on | for i#},
where

5 =10 \/i(9) (11)

and (Ui,..., Uy) is an optimal partition of G,,.
We shall show that almost all graphs of 2y(n, ) belong to 2z
4. Next we fix two constants, # and , and define Zgo0p (1, L) as the family of those
G, Py(n, #) for which we can delete p vertices such that in the remaining graph
Gy—yu, if we choose ¢ vertices in one class, then each other class contains
[ n/(p2/*%)] vertices completely joined to these # vertices. Then we show that, for
a properly chosen 9>0, almost all graphs in géoon(”a ) satisty

e(U)<ex(|Uy|, 4) + O(n). (12)

More precisely, for each i =1,...,p, there are only O,(1) vertices in G[U;] of
degree >en (i.e., joined to their own class U; by more than en edges) and deleting
them from G[U;] we get an .#-free graph.

"We shall enumerate the graphs according to their optimal partitions. If we took an arbitrary optimal
partition instead of a fixed one, then we would count the same graph several times. An upper bound
obtained that way would be equally good: so this assignment is not too important but may make the proof
more transparent. We can take, e.g., the lexicographically first partition.
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Remark 3.1. The last class, 24 q0p, differs from the previous ones in that it is given
by a local definition: the previous classes are not really influenced by changing o(n?)
edges in G,, but this is.

4. Tools

In the proof of Theorem 2.5 we shall have a complicated system of constants and

several families of graphs on [n]. We assume only that 0<9< (ep)f12 is an arbitrary
small, fixed constant. Later we shall take 39— 0.

Our “Main Lemma” below asserts that almost all graphs to be considered are
3-Turan graphs.

Main Lemma. Given 3>0, there is an integer nyo(3) such that if n>ny(39) then
(1)
|2(n, &) — Py(n, L)| <2\ * = A(n)/2". (13)

In fact, this lemma claims more than we need in its applications: it would suffice to

lfl n?
have 0(2( P)Z ) on the right hand side. Also, as the lemma holds for all $>0, it can
be reformulated as follows.

1)n2
Main Lemma’. One can delete from each 2 (n, %) at most 2( 1’)2 - graphs so that
Jfor each remaining graph Gy, for its optimal partition (U, ..., U,), > e(U;) = o(n?) as
n— 0.

4.1. Regularity lemma

Given a graph G and two disjoint vertex sets X, Y < V(G), the edge-density
between X and Y is defined as
e(X,Y)
D=y
where e(X, Y) = eq(X, Y) is the number of edges of G between X and Y. We call the
pair (X,Y) eregular if, for all X* <« X and Y* < Y with | X*|>¢|X]| and |Y*|>¢|Y],
we have

d(X*, Y") — d(X, Y)|<e.

Furthermore, we say that a partition V(G)=V,u---UV; is eregular if
||Vi| — n/k| <1, for every i, and all but at most ek? pairs (V;, V;) are e-regular. The
sets V; are the clusters of this partition. In this terminology, Szemerédi’s Lemma [28]
can be stated as follows.
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Regularity Lemma. For every ¢>0 and integer K there exist integers ny = ny (&, k) and
ko = ko(e, k) such that every graph of order at least ny has an e-regular partition with
more than i and fewer than ko clusters.

4.2. The cluster graph, the estimate

In order to capture the global structure of a graph, we introduce the notion of
cluster graphs.

Definition 4.1 (Cluster graph). Given >0 and an e-regular partition of a graph G,
with k clusters V7, ..., Vi, let Hy be the graph with vertex set Vi, ..., Vi in which V;V;
is an edge iff (V;, V;) in G, is an e-regular pair of density at least . We call Hj an
(&,m)-cluster graph of G,.

With a slight abuse of notation, we write Hy = Hy(G,) for an (g, n)-cluster graph
of G, with k clusters, where kx = 1 /e <k <ko(e, k) and n>ng(¢, «). (In principle there
are several appropriate partitions and we should also indicate the partition.) In
addition to Szemerédi’s Regularity Lemma, we shall need the following Stability
Theorem of Erdds and Simonovits [10,11,37].

Stability Theorem. For any given 2> 0, there is an o = w(p, 1) > 0 such that if Gy does
not contain K, and

e(Gy)>e(Ty,) — wk?,
then we can change Gy into Ty, by changing at most k* edges.
Here “changing” means deleting or adding. Clearly, o <A.®

Szemerédi’s Regularity Lemma is frequently used to guarantee the existence of
small subgraphs, see, e.g., [6,8,29] for applications nearest to ours, or the survey [19].

Lemma 4.2. Let L be a fixed graph with y(L)=p+ 1, and let n>0. If ¢>0 is
sufficiently small, n is sufficiently large and an (&,n)-cluster graph Hy of G, contains
K, 11, then Lc G,.

In [8] it was shown that in Lemma 4.2 it suffices to take &<n/2%.

Lemma 4.3. Using the notation of the Regularity lemma, let 6, ., (n) be the class of
graphs on [n] such that, for some (n,¢)-cluster-graph Hy., we have

e(Hy)<e(Ty,) — wk*.
If

h(n)<—, 8<% and Kzl, (14)
&

8 Deleting wk? edges from T, we get a graph to which we have to add at least wk? edges to get Ty .
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where h(x) is the entropy function, then for n>ny(y, ¢, o),
1(1,1> 2t o
|(gl’],8,(/) (n)| < 22 P 2 < A(n)/Z”.

Proof. When using the Regularity lemma, we tend to ignore the fact that
n is mostly not divisible by k: our estimates are too robust to be influenced
by this.

The number of <k-partitions is at most &”. We fix a partition (V7,..., V). Then

k
we select the edges of the cluster graph Hy in at most 2(2) ways. If the cluster-size is
m=n/k and the edges of Hj are already fixed, then we have at most

1) » 2
— |n-—own

i, )
ye(Hi)m? <22( P choices for the edges along the cluster-graph edges, at most

27/(k) choices within the partition classes V; and ektm® — pen’ options along the (at
most ¢k?) non-e-regular connections of clusters. Finally, the most significant “loss”
in our estimates comes from the low-density pairs: (V;, V;) with d(V;, V;) <n, where

we have at most (ﬂ”’:; 2) <2 choices for the edges, for each of these pairs. We shall

use that

( a ><2h(x)a7
xa

and therefore

Z a < a < 2h(x)a_
i<xa—1 i xa

One can see that xlogl<h(x)<xlogl+ 3 if x<i. Also, if m<4 then

>(9)=()

This is why 7<3 will always be assumed.
Thus, using the above estimates and (14), we have

k n?
Crooml< Y k2 ) et o gt ghi?,

K<k <ko(r,e)

2
2n log ko (i,e)+0( 1)4% ( 1 7%) " 7(un2+%+8n2 +h(n)n?

< A(I’l) 3 27wn2+sn2+sn2+% n? <A(I’Z)/2n.

In the formula above, the O(1) term in the exponent depends on ko(n,¢) and
“represents’’ the number of possible Hy graphs. [
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5. Proof of the Main Lemma

Let é>0 be as small as required in Lemma 4.2. By Lemma 4.2

if G,e?(n,L) then K, ¢ H. (15)
Hence
1\ k2
e(Hy)<ex(k,K,.)<|1—- > (16)
V4

We could use (16) and the above argument to deduce the Erdds—Frankl-Rodl
theorem and then improve it to get our results but we rather go directly to the proof.
Let us embark on our estimate of |2(n, &£)|.

5.1. Weak partition

The expressions ‘weak’ and ‘strong’ partitions will be used only informally, to aid
the reader. A partition (Uj,..., U,) is “stronger” if )  e(U;) is smaller. We call a
partition weak if we know only (10) or " e(U;) = o(n?), and we call it strong if
Se(U;) = O(ex(n, #)).

Let

1 N
Se (0,5) be fixed, set 1 = 7 and let = w(p, 1)

be the constant whose existence is guaranteed by Stability Theorem.
Then fix # and ¢ as described in (14) and Lemma 4.2.

Lemma 5.1.
P, L) —bpeon)sPy(n,&L).

Proof. Let G,e?(n, &) — 6,,.(n). Let Hi be a cluster graph of G,, and m =n/k.
Since G, ¢%,.0(n), e(Hy)>e(Tiy) —wk?, see Lemma 4.3. By Lemma 4.2,
K, 1 & Hy. So, by Stability Theorem, we can change Hy into Ty, by changing at
most Ak? “‘cluster-edges”.

This yields a p-partition (Uj,..., U,) of V(G,): write C, for the /th class of this
Typ and put Us =y o, Vj- We show that Y e(U;)<9n* and the class-sizes are
roughly the same:

n
’|U/|——‘

<2en for/=1,...,p.
p

Indeed, to change G, into a T,, we ‘“move” <Jk* “cluster-edges” of Hy
corresponding to <ik*m? = in? edges in G,; next we delete the edges corresponding
to “low-density” pairs (V;, ;) with ¥; and V; in the same partition class C; of T,

and d(V;, V;) <n. This yields $ yn?. Our no more than ¢k? “irregular pairs” means en?
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edges in G,. Finally, we have to delete the edges within the clusters V;: this is
Lkm* = 1n*/k<len®. Recalling that 2 =19 and e<{ o<1, n<h(n)<io, we get

1 1
Ze(U,»)<in2+§nn2+sn2+§km2<4in2 = 91> O

6. Typical optimal partitions

Take an optimal partition of a graph G,e2y(n, &) into p classes, (Ui, ..., Up).
The optimality of the partition implies that

d(x,U;)<d(x, Uy)

whenever x € U, since otherwise moving x into U, would decrease ) . e(U;). We shall
call the edge (x,y) of G, horizontal if x,y are in the same U..° The horizontal degree
of a vertex xe U; is d(x, U;) = |I'(x) n Uj|. Clearly, these definitions depend on the
partition. Mostly we may forget to indicate this dependence, but there will be a point
where this dependence will become crucial.

Here we shall prove the following assertions:

® Lemma 6.1: The edges are uniformly distributed between the partition classes.

® ] emma 6.3: All small, i.e. of bounded size, p-chromatic subgraphs occur in G, if
the edges in the partition are uniformly distributed.

® Lemma 6.10: Stability of optimal partitions; and its consequence: by Lemma
6.11, there are only few optimal partitions.

® Lemma 6.6: The vertices are uniformly distributed in partition classes.

6.1. Super-regularity

Having a fixed partition, the edges (x,y) joining different classes will be called
vertical. In a typical graph the vertical edges behave as random edges with
probability % This motivates the following easy lemma.

Lemma 6.1. For all but A(n)/2" &L-free graphs Gy, if (Ui,...,U,) is an optimal
partition, 6>0 and n>ny(%L,9), then if AcU, BcV(G,)— U; with |A| = |B| =
L on], then e(4, B)>|A| - |B|.

Remark 6.2. (a) Here >1|4||B| means that the number of edges is at least half of
what it is expected to be.

(b) In our proof it suffices to consider only graphs from 24(n, &), since the two
sets differ in no more than A(n)/2" graphs and it does not matter if we get twice the
error term.

“Horizontal” comes from some figures showing T,, where these edges are, indeed, ‘“‘almost
horizontal”.
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(c) To assure more symmetry, we could write that A< U;, B< U; for some i#j.
From our point of view the two forms are equivalent but this form is easier to use.

There is a symmetric, and stronger form of Lemma 6.1: with the conclusion that if
A< Uie; Ui, B U, Uj for some partition of [1, ..., p] into 7 and J, I nJ = 0, then
e(4,B)>314] - |B|.

Proof of Lemma 6.1. We estimate the number of ““bad graphs’: graphs G, for which
there is an optimal partition (U,...,U,) and two sets, A< U; and B< U; with
e(A, B)<1|A||B|. The number of partitions is at most p”, the number of possibilities
for (4, B) is at most

2
( n ) < 2h(o)n
on ’

the number of choices for the edges between distinct classes is at most

A(n) - 7~ (1=h(1/4))5*n’
(since the number of possible “connections” between (A4,B) is only at most
2h(1/40n° instead of 20, and the number of choices for edges within the classes is

at most 2. Since, by (11), h(9) <16* and, further, n>np, the number of “bad
graphs” is at most

A(n) - p" - 22h0m Cph(B)n? —(1=h(1/4))5°n* _ A(n)/2",
proving the lemma. Note that /(1/4) is about 0.3177. O
Lemma 6.1 will be used in combination with Lemma 6.3.
Lemma 6.3 (Weak-regularity). For 0>0, p=1 and t=1 there is an integer ny(3,p, t)

such that the following assertion holds. Suppose that n>ny(d,p,t), 1<q<p, and
Ui,..., U, are q disjoint vertex-sets in V(G,) with |Uj| >3 and

e(4,B) =54 B| (17)
whenever
.. on
AcU, BcU, i#j and |A|,|B|>;. (18)

Then K,(t,...,1) = G,.

The key case above is ¢ = p, when (U, ..., U,) is a slight modification of the
optimal partition of G,,.

We could refer to conditions (17) and (18) as the d-super-regularity conditions.
Similar conditions occurred in several works of Erdos and T. Sos, Rodl, Komlos,
and others.
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Remark 6.4. There are several results closely related to this lemma. One of these
(which, in some sense, is much stronger) is that of Rodl [23].

Proof of Lemma 6.3. We apply induction on ¢, although a direct proof could be
given as well. We shall make use of Lemma 7.2, whose proof does not depend on this
lemma. For ¢ = 2 this immediately follows from the Kévari-T. S6s—Turan theorem,
or from Lemma 7.2.

Assume that the assertion of the lemma holds for ¢ — 1. Applying Lemma 7.2
recursively, ¢ — 1 times, we can choose ¢ vertices in U, completely joined to on
vertices of U; (i = 1,...,¢ — 1). Then applying induction to the first ¢ — 1 classes with
a slightly different 6 >0, the assertion follows. [

6.2. Uniform class-sizes

Definition 6.5 (Well-partitioning). G, is 3-well partitioned if all its optimal partitions
(U, ..., Uy,) satisty ’|Ui| —2< (\/§log%>n for all i. We denote by 2y p(n, &) the
family of graphs from 24(n, %) which are 3-well-partitioned.

Lemma 6.6. Let 0<9< (ep)” "2, Then

}12 —n

1,1
|P5(n, &) — Pyp(n, 2] <22(1 )

Remark 6.7. We do not really need the fine notion of ““‘uniform partition”: to prove
our theorems it would be enough to assume, e.g., that |Uj] >@n for all i. From the

optimality we need only that an xe U; cannot send many edges to its own class and
few edges to the others. Yet, it is interesting to have these estimates which give
profound information on the structure of typical .#-free graphs.

Proof of Lemma 6.6. The idea of the proof is almost the same as that of the Main
Lemma. Let G, ¢ Z4yp(n, &). Then G, has an optimal partition (Uj, ..., U,) with
Y= e(U;) < 9n?, and there is an index iy such that

s

We need the following weak variant of a lemma on uneven vertex-distributions from
[25, p. 290]. Let G, be a p-partite graph with p-partition (Ui,..., U,). Then

cG=emn-3(3);

i=1
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where s; = | [n/p — |Ui|| | for i=1,...,p. Using this, with 5;, = | (V3 log)n | we
have

Siy 9 12 )
Z e(U;, Uj))<e(Tyy) — 5 <e(Tup) ~3 log§ n.

i<j

Since h(x)~xlogl, we find that

( () ) <229<log %)nz’

In?

and therefore, if log, 1> 12,

()

9 1)\?2
25(n, 2) ~ Phyp(n, 2)| < p"A(n) - 2730023) (9 z)
n
< p"A(n) - 2-%(10g é)zn%zs(log &)nz

n . —Q(logl)zn2 2912 n
<p'A(n) - 276\ T < A(n) /277 <A(n)/2".

These inequalities hold since 9< (ep) "2 and n is large enough. [J

6.3. Stability of optimal partitions

In most graphs any two optimal partitions may differ in at most O(1) vertices:
when large parts U;S U; (i = 1,..., p) are already “found”, the remaining vertices are
classified according to their connection to the vertices already classified. We say that
a vertex x has low-degree if d(x, U;) <qg for at least two values of i.'" If the vertices
of low-degree were already eliminated, then only the high horizontal degree vertices
would create trouble.

The problem is that using this would be a ““vicious circle”: we wish to use that
“typically there are not too many optimal partitions™ to prove that “typically there
are no low degrees”.

Remark 6.8 (7, -Distances between partitions). If we have two p-partitions of a set
S, say, V1,...,V, and W1,..., W,, then we can define their distance as the minimum
of the max; |V;AW,,)| taken over all the p! permutations n of the indices.

Now, the stability of the optimal partitions means that any two optimal partitions
are near to each other.

"“Here 1/(10p) is fairly ad hoc...
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Definition 6.9 (Pseudo-optimal partition). Let an integer / be fixed. Given a graph
G,ePy(n, &) with an optimal partition (U, ..., U,) and a vertex set X, with | X|</,
we see that (U} — X,..., U, — X) is a partition of G, — X; we shall call this a pseudo-
optimal partition of G, — X.

In Section 3, paragraph 3 we have defined 2\ and in Lemma 6.1 we proved

that the typical #-free graphs are in W%NIF(n, 2).

Given o >0, we say that a graph G, is a-stable if for any two optimal partitions
(Ui,...,Uy) and (V1,...,V,), there is a permutation n of {l,...,p} such that
|VAU \ >an if and only 1f] =n(i). '' As we shall see, for o = 2pd, the graphs in

Pir(n, L) are a-stable.
Recall that $< (ep) 2. By o</ = 9/4 and 9¢ (0,41)>7 we have po <

Lemma 6.10. Let />0 and 2,9>0, and set 6 = 10\/h(3), as before. If n is sufficiently
large, the following assertion holds. Let (U,...,U,) be an optimal partition of
G, e P, L) Py(n, L), and (V1, ..., V,) a pseudo-optimal partition of G, — W
for a vertex set with |W|</.

Then for every i, 1 <i<p, there is a unique j, 1 <j<p, such that |UAV;|<26n. In
particular, all graphs G, € P} (n, ) are 25-stable.

Proof. The second assertion is just the case W = 0, so it suffices to prove the first
claim. Assume that 9<— 16 o Since G, e P np(n, L)=Py(n, ¥), we have
S e(U;) <9n? and Y e(V;)<In*. Let 1<k<p.

Each V; is partitioned into p parts: V;nU;, j=1,...,p. Let V' be the largest of
these parts so that |V >3, and let Uy(; be the set contalmng V. We show that f(i)

is a permutation.
All we have to check is that /(i) #f () if i#j. This holds since otherwise

2%

1 n\?
e(Ura)zelVi, Vi) 2y (2pz) >9n2> Y e(Uy),

a contradiction. So f(i) is a permutation and we may assume that /(i) =1, i.e.,
Vi< U;. But now the same argument yields that |V; — U;|<dn, otherwise, for
sufficiently small 9>0,

. 1
e(Vi)Ze(V,wVi—Ui)>4 <2 2> (on) = 9n? >Z (V)

would hold which is a contradiction, since 3 = 0(9).
Now, (Ui,...,U,) and (Vy,...,V,) are almost interchangeable, so one can
immediately copy the above proof to get that |U; — V;|<dn, i.e. |U;AV;|<2dn. This

"7 stands for the partition, 7 for the permutation.
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completes the proof. W was unimportant, negligible, in the proof because | W] is
bounded. O

Lemma 6.11 (Near-partitions). (a) The number of partitions of [n] into p classes
whose distance from a given partition Uy, ..., U, of [n] is smaller than wn is at most

(=)=

(b) For almost all L-free graphs G, there are 2°") optimal (or pseudo-optimal)
partitions.

Proof. We shall need only (a): (b) is interesting on its own and follows from (a). The
number of partitions (U, ..., U)) having distance <wn from (U, ..., U,) is at most

()’. We assume here that o is very small: 2po <1. So (19) immediately follows. [

wn

7. Strong partitions
7.1. Large horizontal degrees

Our next lemma extends some well known facts of extremal graph theory (see e.g.
[11,25]) to our “‘typical graphs”.

Lemma 7.1 (Large horizontal degrees). Given £, let p and t be defined in the usual
way, and let ¢>0. Then there exists a 5(¢) such that if 5 <dy(e), then there are integers
hy and ny so that if G,,E?J’%NIF(n,L”), with n>ng, and (U, --- U U,) is an optimal
partition of G,, then

H{xe U, : d(x,Uy)=en}| <h.

The proof of this lemma is basically the same as that of a corresponding assertion
in the extremal graph theory: assuming that there are too many vertices of high
horizontal degrees, we have to build a K,,(¢,...,t) = G, step by step, by finding sets
in Uy, ..., U, completely joined to each other, see e.g. [25]. To prove Lemma 7.1, we
start with a generalization of a lemma of Erdds and Simonovits [25].

Although similar generalizations are implicit in [15,17,21], for the sake of clarity
and completeness we shall prove Lemma 7.2 here.

Here we shall “reuse” ¢>0 (which until now was used in the Regularity Lemma)
but from now on its meaning is a constant ¢ = ¢ depending on % but not on 3.

Lemma 7.2. For every £eN and ¢>0, there exist two integers, k,myeN and a ¢>0
such that if m>mgy and G = G(C, D) is a bipartite graph with bipartition (C, D) where
|C| = k and |D| = m and e(G) = ekm, then there are two vertex sets A< C, B< D with
|A| =¢,|B| = [ em| such that (A, B) is completely joined in G(C, D).



18 J. Balogh et al. | Journal of Combinatorial Theory, Series B 91 (2004) 1-24

Proof. The lemma we need is a version of the Kovari-T. S6s—Turan Theorem [18].
We extend (}) to (—oo, ) by

(x> B x(xfl)-}!(xffJﬁl) for x>/ — 17
/) 0 for x</ — 1.

We claim that

B e (40

will do. Suppose that G(C, D) satisfies the conditions. Call a pair (X, y) consisting of
an /-subset X = C and a vertex ye D a cap if I'(y)2X. Let us count the caps in our
graph. If d(y) is the degree of ye D then, by the convexity of (}), there are

57 ) (%)

caps (X, ). Hence, some /-subset Xp < C is in at least

(2)/ ()

m =cm

l l

caps, yielding the desired complete subgraph G(Xy, Y), |Y|=cm. O

Remark 7.3. In Lemma 7.2 we took ¢ = ¢, ., = () /(%) which is larger than { ¢ if k
is sufficiently large.

Proof of Lemma 7.1. We shall prove the lemma in a stronger form, replacing the
condition that (Ui, ..., Up) is an optimal partition by the condition that [U;| >
We may assume that 0 <e<p~—2. We have already fixed ¢ and p. (See Remark 2.7.)

Let G,e2{nr(n, L), with n sufficiently large. We know the J-super-regularity
(17)+(18):

1 5
e(4,B)>7|4||B| if A<U, B<U;, i#j and |A\,|B|>;n.

Define a sequence of integers /1,,/,_1, ..., hy, by a backward recursion, as follows.
Set h, = t; having defined A;,1, let ; = k be the integer whose existence is guaranteed
by Lemma 7.2, when we take ¢/3 instead of ¢ and £ = h;,;. We may assume that n is
large enough so that we can take me [ﬁ, n].

Let n>ng = 3hy/c. Let C* be the set of those vertices of U; which are joined to
each U; by at least en edges. We show that |C*| <. Assume the contrary, and fix /g
vertices in C*, forming a set C<U;. For D= U, — C we have d(x,D)>en—
ho=1en.

Then by Lemma 7.2 there are sets H; = C and F; < D with |H,| = h; and |Fi| = cn

such that H; is completely joined to F; in G,. By the optimality of partition, each
vertex x€ H, sends at least en edges to U,. Therefore, Lemma 7.2 implies that there
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are sets HycH; and F,< U, with |Hy| =h; and |F,| = | cn| such that H, is
completely connected to F, in G,,. Proceeding in this way, we find a nested sequence
of sets Hyc H, < --- < HycHy, and F;< U; with |H;| = h; and |F;| = | cn | for all
1 <i<p such that H; is completely joined to F;< U; in G,,. A fortiori, H, is completely
joined to Fy,...,F, in G,. As |H,| = ¢, it is sufficient to find a K,(¢,...,¢) in the p-
partite subgraph of G, spanned by the sets Fi,...,F,. The existence of this
immediately follows from Lemma 6.3, which is now applied to class-sizes ~cn. To
enable us to apply Lemma 6.3, 6 must be much smaller here than there. Thus
K,.1(t,...,1) =Gy, a contradiction. O

7.2. Elimination of “low” degrees and “bad” subsets

We have assigned to each graph G,eZy(n,¥) an optimal partition II(G,) =
(Ui, ..., U,). We have defined (Section 6.3) a vertex x of a graph G, e@%NIF(n, Z) to
have low degree if G, has an optimal partition (Uy, ..., U) such that [I'(x) 0 Uj| <1,
where 1<j<p and x¢ U;. Note that if xe U; is of low degree then by the optimality
of the partition, [I'(x) N Uj| <G, holds as well.

Lemma 7.4. In the notation of Theorem 2.5, at most n™*"*)*¢"\(n) graphs in
Py (1, L) contain vertices of low degree.

Needless to say, we could write o(n*"-“)+¢"A(N)) in our estimate as well, but
that would not make any difference here, since increasing ¢ immediately provides the
same (seemingly stronger) result. Note that we chose ¢ here and in Lemma 7.6 large
enough to be able to start the induction, and at least /.

We skip the proof since this lemma is in some sense a special case of the next one. To
formulate the next lemma, we need a definition. The motivation of this definition is that
in a random subgraph of T;,, with classes (Uj, ..., Uy), if an /-tuple X = U is fixed, a
vertex ye U; (j#i) can be joined to X in 2 patterns, where a pattern means that
I'(y) "X is fixed. The “expected number” of vertices of any fixed pattern is |U;|/27. We
denote a connection pattern by [X;/X2] where X .= X nI'(y) and X» = X — I'(p).

Definition 7.5. Assume that ¢>0 is fixed. Given a set X < U; of size /, having no
vertices of horizontal degree > en, if for some j# i the number of vertices ye U; with a

fixed X; = I'(y) X is smaller than |U;|/2""!, then we call X a bad /-tuple. Denote
by Z%00p (1, £) the family of those graphs which have no bad /-tuples.

Lemma 7.6 (Bad /-tuples). Let £ be a forbidden family and ( an integer. Then there
are ¢ = &4 >0 and 6 = 6(e, &) >0 such that

123niE (1, L) = PGoop (, L) | <n™ A (),

for some constant ¢>0.
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Proof of Lemma 7.6. We shall prove that if the assertion of Lemma 7.6 holds for
n>n; and some sufficiently large ¢, then the assertion also holds for n + /. Then we
choose a ¢>0 so large that Lemma 7.6 holds for n<n; + ¢ and that will imply the
assertion.

We can fix X in (}) ways in [n]. Deleting X we get a G,,—,. The graph G, generates a
partition (U, — X, Us, ..., U,) of V(G,—,) = [n] — X. Call this partition the pseudo-
optimal partition of G,_,.

Let 2X(n— ¢, %) be the set of #-free graphs on [n] — X, and let

by Ponp(, L) PX(n— 1, %)
be the map given by ¢, (G,) = G, — X. Clearly,
W%NlF("a Z) - yéooo(”v 2|

< EXZ GZ 107 (Gus)| < (;)pzw(n — 1,9 +max 10 (G_r)|. (20)

n—{

We assumed that |2(n — £, )| < (n — £)*" OO p(n — /). The problem is to
estimate ¢~ (G,_/)|. We shall estimate this by

|67 (Gar)| <N () - Na(n), (21)

where

(a) Ny(n) is the number of pseudo-optimal partitions generated on a fixed G,_, by
those G, for which G, — X = G,_;

(b) N2 (n) bounds the number of extensions between X and G, — X, assumed that
the induced partition is already fixed: this is the product of the number of
connections of X to G, — X, multiplied by the number of G[X]’s which can be

‘
estimated by 2(2).
In order to make use of (20), we shall bound N, (n) and N,(n) separately. Clearly,

Nl(l/l) gzph(épé)n zzf»pzh(é)n, (22)
since the optimal partitions of the graphs G/, which lead to G,_, are at most at
distance Spén from (U, ..., U,)."?

To bound N, (n), we have to work a little harder. Let @%K{I]F(n,,,%’) denote the
family of the graphs G, € 2%\ (1, &) for which X = U;, and another class, say Uj,

(i#]) has fewer than |U;|/2""! vertices completely joined to X.
Suppose that X< U, is a bad /-tuple for an optimal partition I1(G,) =

(Uy,...,Uy) for a Gne,@%g]F(n,g).

12 h(px) = ph(x) if x is small.
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Let us fix a Gneﬁfjm};(n, &). An optimal partition II(G,) = (U, ..., U,) was

already fixed. We may assume that X< U, and j = 2. Let v = |U,|. We defined a

connection pattern [X; /X>] by fixing X; := X nI'(y). Then the number of connection-

patterns between X and a ye U, is 2/, the number of possible connections is 2". The

number of those connections (i.e., graphs G(X, U,)) where fewer than v/2/*! vertices
ye U, are joined to X according to the fixed [X|/X>] is at most

2/»‘—z/v

for some constant o, >0. Indeed, this estimate is equivalent to showing that joining
the two classes in a random way, with edge-probability %, the probability that one
fixed connection pattern occurs at most v/2/*! times is at most 2=*". The expected

number of vertices of a given connection is v/2/. The probability that we get less than
half of these connections, by Chernoff’s Inequality, is smaller than 27*". Therefore

Na(n) < 2/ n=|Ui))=arv+thieyn, o
Here 24" reflects the fact that each xe X may be joined in at most 27)” ways to its

‘
own class. (This includes 2(2) as well.)

We have arrived to the last stage of the proof of Lemma 7.6. Let = max; ¢ ¢ v(L).
This maximum exists since % is finite. Fix ¢ = ¢¢ so that

|
hie) = 7; i a. (24)
Then fix 3 and § appropriately. This way, to estimate |<@%1[\1X,]F(n,$)| we gain 2"
because of the missing “connection pattern” and lose 2/ because of the possible
horizontal edges.
In the “induction step’” below we shall use that

(n _ /)ex(nfl,uil)Jri’»(nf/)A(n _ /) < 27 (17;) n{.
nex(n,,,///)+c~nA(n)

(25)
Here we used that n®(#)+¢" is monotone increasing. Hence, using that by the

“induction hypothesis” |2(n — £, L)|<A(n —£)(n — £)™"F0") “and succes-
sively applying (20)—(23) and (25) we find that

|=“7€JN1F(”7 L)~ =J7/Goon(n, 2|

n
< </>p2|g>(n —1, %) max |6~ (Goy)]
4 n—{

s (Z)leﬂ(n = L) - Ni(n) - Na(n)

gn/pz . (n _ /)ex(iz—ﬂ:/ii)+5~(n—/)A(n _ /) . zﬁpzh(é)n . 2/(n—\U1\)—x/v+/h(a)n

1
én/pz . nex(n,{///)Jrc"'-nA(n)z* (liﬁ) nt . 26112h(6)n . ol (n=|Up)—ov+Lh(e)n
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All that remains is to estimate the factor of A(n) - n®"#)+é" above. This is
1\,
n/p2 . 27(171_1) nt . 26p2h(5)n . 2/(n7|U1\)7oc/vf+/h(£)n.

Here n’p? is negligible. Using that |/(n —|U;|) — (l —;—,)n/\<\/§log%n/ =o(n),
and 6 and ¢ are such that 6p*h(8)n<o,4 and Zh(e)n<oy3, see (24),

n{’p2 % 2\/§log(l/9)n/ % 2611211(5)}1 . 271/"+//1(3)n <0(271/V/4).

This yields the desired result. [

8. Proof of Theorem 2.5

After all this preparation, we can easily prove Theorem 2.5: all we have to do is to
apply the lemmas in appropriate order.

Until now we have fixed an L =K, (t,...,t), where p,t>2, as described in
Remark 2.7. Now we may slightly increase this ¢. It is important to emphasize here
that until now we used only one graph, K, (¢, ..., t) as a forbidden graph containing
some Le.#. Now we use that .# is finite: we fix for each M e.# a K, (z,...,7), so
that M ®K,_i(t,...,7) contains some Ly €. We may fix ¢ as the maximum of
these 7’s and of v(M)’s. We may replace the original % by the finite #* which is the
set of the corresponding L,’s. Let 9,0,n be sufficiently small positive constants
satisfying the “‘corresponding” restrictions: we shall use below lemmas where we
needed to build up some forbidden graphs, for which we needed that the number of
vertices in our forbidden graphs were bounded. Therefore we could fix the constants
appropriately.

1. We wish to estimate |2(n, £*)|=|?(n, Z)|. (From now we shall not mention
this difference between % and £*.) By the Main Lemma, we may restrict ourselves
to estimating |2y(n, £)|, i.e., the family of #-free graphs on [n] for which, for the
optimal partition (U U - U U,), Y_e(U;) < 9n*. Moreover, by Lemmas 6.1 and 6.6,
we may restrict ourselves to 2\ (11, L) 0 Piyp (1, L).

2. By Lemma 7.1 there is a /o such that every G,e 2y (n, %) has at most /g
vertices of horizontal degree >eén.

3. By Lemmas 7.4 and 7.6, we may discard at most 2z - n™»#)+¢7 . A\ () graphs to
get a part of 2§\ p (1, L) N Piyp(n, L) in which there are no low degrees, neither bad
/-tuples. Pgoop(n, L) is the set of graphs G, € 25 (1, £) that contain no vertices
of low degree and no bad /-tuples.

Take any of the remaining graphs, G, with II(G,) = (Ui, ..., U,).

We assert that G[U;] becomes .#-free, after the deletion of the vertices having
horizontal degree > ¢n. This will show that the deletion of iyn edges provides a graph
in % (n,.#), where €(n, .#) is the set of graphs from 25 op, (1, £), that after deletion
of at most A vertices, the rest of the vertices can be partitioned into p .#-free classes.
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We know that
1 (n, )| <n2ai IV p () < et en ().

and that will complete the proof. Note that first ¢ is chosen large enough, at least /g,
to enable us to start the induction, then ¢>¢is chosen large enough to enable us to
start the induction. So assume that Z is the set of vertices of U, of horizontal degrees
>en. If G[U —Z] contains an Me.#, then we can build up an
M®K, (t,...,t) = G,, first fixing an M < G[U; — Z], using Lemma 7.6: we first
fix p—1 sets of fpn points, V;<U; (i>1). Then, using Lemma 6.3 we find a
K, i(t,....1) in G, — Uy, and therefore an M ®K,(t,...,t1)2Le ¥ a contradiction.
This completes the proof. [
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