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ABSTRACT 

We shall prove that if L is a 3-chromatic (so called "forbidden") graph, and 

-R" is a random graph on n vertices, whose edges are chosen indepen- 

-6" is a bipartite subgraph of R" of maximum size, 
-F" is an L-free subgraph of R" of maximum size, 

dently, with probability p, and 

then (in some sense) F" and 6" are very near to each other: almost surely 
they have almost the same number of edges, and one can delete O,( 1) 
edges from F" to obtain a bipartite graph. Moreover, with p = and L any 
odd cycle, F" is almost surely bipartite. 

Notation. Below we restrict our consideration to simple graphs: loops and 
multiple edges are excluded. We shall denote the number of edges of a 
graph G by e(G), the number of vertices by u(G), but superscripts will also 
denote the number of vertices; G", R", T"*d will always be graphs on n ver- 
tices. The set of vertices of a graph G is denoted by V(G) .  The subgraph of 
a graph F spanned by a subset A will be denoted by GF(A), or simply by 
G(A). The chromatic number of a graph G will be denoted by x(G). The 
number of edges of a graph will be called "the size of the graph." If X and 
Yare disjoint vertex sets in a graph G, then ec(X, Y) denotes the number of 
edges joining X to Y,  and dc(X, Y) denotes the edge-density between them: 
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In the case when X is just {x}, we shall write simply e(x,  Y). The number of 
edges in a subgraph spanned by a set X of vertices of G will be denoted by 
e c ( X ) .  We shall say that X is "completely joined'' to Y if every vertex of X 
is joined to every vertex of Y.  The set of neighbors of a vertex x will be 
denoted by NG(x) .  Sometimes we omit the subscript G. 

Special Graphs. Kq will denote the complete graph on 4 vertices, TnYd is 
the so-called Turin graph with n vertices and d classes: n vertices are parti- 
tioned into d classes as uniformly as possible and two vertices are joined 
iff  they belong to different classes. K ( n l , .  . . , nd) denotes the complete 
d-partite graph with n, vertices in its ith class, i = 1,2, .  . . , d .  

INTRODUCTION 

Given a "forbidden graph" L, the corresponding Turin type extremal graph 
problem asks for determining the maximum number of edges a graph G" 
can have without containing L (as a not necessarily induced subgraph). The 
maximum will be denoted by ext(n, L). A fairly extensive theory developed 
around extremal graph problems of this type (see [3], [24]). 

The main problems we shall discuss in this paper will concern analogous 
problems for random graphs. This means that instead of trying to find a 
maximum size L-free subgraph of K,, we pick a random graph R" and try to 
find a maximum size L-free subgraph F" of this R". In the classical theory 
it turns out [15], that if x(L)  = q + 1, then asymptotically the best graph is 
the q-chromatic Turin graph Tn.q: 

ext(n,L) = e(T".'?) + o(n2).  

In case L is 3-chromatic, taking the bipartite subgraph of K ,  of maximum 
size (i.e., the Turin graph T"*' with [$n2] edges) we get an asymptotically 
extremal graph (which is often not only asymptotically but exactly) extremal. 

Motivated by this, for any fixed 3-chromatic "forbidden subgraph" L, we 
will determine the maximum number of edges an L-free subgraph of the 
random graph R" can have. Our solution will be as follows. Take a random 
graph R", a maximum size bipartite subgraph B" in it, a maximum size 
L-free subgraph F" CZ R". We will show that they are very near to each 
other: one can delete a few edges of F" to obtain a bipartite graph. This 
will give us the maximum number of edges the L-free subgraphs of R" can 
have, and also will give a sufficiently good description of the structure of a 
"random extremal g raph  F". 

What is the connection between these two subgraphs? B" is L-free, since 
x(B") = 2, and x(L) = 3. Thus e(B") I e(F") .  However, F" could have 
many more edges. Our main results will show that this is not the case. 

Above we have given one interpretation of our theorems to be formu- 
lated below. There is another natural interpretation. Many results of ran- 
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dom graph theory suggest that if a random graph does not contain trian- 
gles, then we may be almost sure that it is bipartite. One such result is the 
Erdos-Kleitman-Rothschild theorem [12], asserting that the number of Kq- 
free graphs on n vertices and the number of q - l-chromatic graphs on n 
vertices are in logarithm asymptotically equal. 

Our results also suggest that for random graphs being triangle-free is 
almost the same as being bipartite, and the same holds for any forbidden 
3-chromatic L. (Moreover, analogous results hold for higher chromatic 
numbers.) Still, these results are not obvious: we shall give some examples 
of similar situations, where either the analogous theorem does not hold, or 
where we cannot prove it. 

Random Graphs. In this paper we shall always use the binomial model 
for random graphs. We shall always fix a probabilityp E (0, l), independent' 
of n and denote by R" E G(p) the fact that R" is a random graph generated 
in "binomial way," that is, each edge is chosen with probabilityp and inde- 
pendently. The expected number of edges of R" is p c ) ,  the variance is 
p(1 - p ) ( ! )  and for any fixed graph H" the probability that R" = H" de- 
pends only on E = e(H"): it is 

We shall say "almost surely",if we mean that "with probability tending to 
1, as n + 00." 

Lower Bounds. If H is an arbitrary fixed graph on n vertices, then the 
expected number of edges common to H and R" i sp  - e ( H ) .  Further, the 
standard deviation of this event is O ( G  * n). Therefore for an arbitrary 
w(n) + 03 the number of edges common to H and R" is betweenp . e ( H )  + 
w(n) . n andp * e ( H )  - w(n), almost surely. 

Let x(L) = 3. If we take an arbitrary random graph R" E G(p), and B" 
is a bipartite subgraph of it, then it contains no L. So, if P" is an L-free sub- 
graph of maximum size, then e(B") I e(F"). Since R" almost surely con- 
tains a bipartite B" of bn' + o(n') edges, we have 

1 
4 e(F") > -pn' - o(n2), 

almost surely. (We shall see that almost surely, 

1 
4 e(F") > -pn2 + cn3" 

for some constant c > 0.) 
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For "most" forbidden L's (where for the sake of simplicity assume that 
x(L) = 3), we can get a lower bound better than (1): 

e(F")  2 p ext(n, L) - o(n)  . n (3) 

almost surely. Indeed, we may fix an arbitrary extremal graph S" for L and, 
clearly, R" will have p . ext(n,L) - w(n) n edges in common with the 
fixed S", almost surely, proving (3). In most cases ext(n, L) > fn' + c~n'+' ,  
with positive constant c. Then (3) is really sharper than (1). Often 
ext(n,L) > fn' + cn'+' with some c > f. Then (3) is better even than (2). 
Some details can be found in later parts of this paper and a more detailed 
description of the corresponding extremal results in [24]. 

MAIN RESULTS 

Below we formulate four theorems. Theorem 1 deals with the simplest case, 
namely, whenp = and K 3  is excluded. Theorem 2 generalizes Theorem 1 
to arbitrary 3-chromatic excluded graphs with "critical edges" (see the defi- 
nition below). Theorem 4 describes the asymptotically extremal structure 
in the general case, i.e., when a 3-chromatic L is fixed, and though L C F" 
is not completely excluded, the graph F" contains only a small number of 
copies of L. Theorem 3 yields a more accurate description of the exact ex- 
tremal graphs, and may be needed for future applications. 

Theorem 1. Let p = i. If R" is ap-random graph and F" is a &-free sub- 
graph of R" containing the maximum number of edges, and B" is a bipartite 
subgraph of R" having maximum number of edges, then 

e(B") = e (F") .  

Moreover, F" is almost surely bipartite. 

Definition 1. (Critical edge) Given a k-chromatic graph L and an edge e 
in it, e is called critical if L - e is (k - 1)-chromatic. 

All the edges of a Kk and of any odd cycle are critical. Many theorems 
valid for complete graphs were generalized to arbitrary L having critical 
edges (see, e.g., [23]). Theorem 1 also generalizes to every k-chromatic L 
containing a critical edge e and to every probabilityp > 0. 

Theorem 2. Let L be a fixed 3-chromatic graph with a critical edge e (i.e., 
x(L - e) = 2). There exists a functionf(p) such that i f p  E (0,l) is given, 
R" E G ( p ) ,  and if B" is a bipartite subgraph of R" of maximum size and F" 
is an L-free subgraph of the maximum size, then 

e(B") 5 e(F") 5 e(B") + f(p) (4) 
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almost surely, and we can delete f ( p )  edges of F" so that the resulting 
graph is already bipartite, almost surely. Furthermore, there exists a p o  < 
such that if p > p o ,  then F" is almost surely bipartite: e(F") = e(B"). 

The second part of Theorem 2 immediately implies Theorem 1. In con- 
nection with the first part one could ask, How large isf(p) a s p  + O? We 
do not know the precise answer, just that Theorem 2 holds withf(p) = 
O ( P - ~ )  or even f(p) = O ( P - ~  log p ) .  As to the lower bound on f(p), we 
do not know if 

e(F") - e(B") - 00 as p - 0. 

In the second part of Theorem 2 we are not concerned with the exact 
value of the threshold probabilityp,. Our main point is that the observed 
phenomenon is valid not just forp = 3, but for some smaller (and for all the 
greater) values of p as well. 

If ,y(L) = 3 but we do not assume that L has a critical edge, then we get 
similar results, having slightly more complicated forms. To formulate them 
we have to introduce the notion of the "decomposition family" of L [23]. 

Definition 2 (Decomposition family). Let ,y(L) = 3. The family M of all 
the spanned subgraphs M C L such that L - M is an independent set will 
be called the decomposition family of L. 

Describing a decomposition family, it is enough to describe the minimal 
graphs in it. 

Examples. If L = K3, then M = KZ is a minimum decomposition graph, 
and more generally, the same holds if L has a critical edge. Obviously, 
there are no other minimum decomposition graphs. If L = K(t , t , t ) ,  then 

, M = K(t,  t) is the only minimum decomposition graph. If L is the dodeca- 
hedron graph (on 20 vertices), then the graph consisting of 6 independent 
edges will be in the decomposition family. However, there are other mini- 
mum decomposition graphs too, e.g., if M is the union of two pentagons 
and 5 edges hanging from one of these pentagons, then M is also a mini- 
mum decomposition graph. We have mentioned that mostly ext(n, L) > 
in' + cLnltC, with some constants cL,c  > 0. Now we can tell that this oc- 
curs exactly if each decomposition graph contains a cycle. 

We shall use-to simplify the form of our results-that for a > 1, 

ext(n,M) I ext(an,M) I (az + o(1)) . ext(n,M). 

(The left inequality is trivial, the right one follows from [20], where- 
using a simple averaging argument -the authors showed that ext(n, %)/(;) 
is decreasing.) It is known in extremal graph theory ([8],[22]) that if 



604 JOURNAL OF GRAPH THEORY 

x(L) = 3, then 

( 5 )  
1 
4 ext(n, L) = -n2  + O(ext(n, M)) + O(n). 

Below we shall neglect the "ceiling signs." (In some sense (5 )  is sharp: 
putting an extremal graph W2 into one class of a T".' we get a graph 
G" with 

and not containing any L.) Now, taking a random R" with edge probability 
p, we get almost surely 

I p .  -nz + ext -n,M - O(n log n) (: ( i  )) 
edges common to R" and G". Hence F" must have at least this many edges. 
The next theorem asserts that it does not have essentially more edges. 

Theorem 3. Let L be a given 3-chromatic graph. Let p E (0,l) be fixed 
and let R" E G ( p ) .  If B" is a bipartite subgraph of R" of maximum size and 
F" is an L-free subgraph of maximum size, then almost surely 

e(B") 5 e ( F " )  5 e(B") + 2 ext(n, M) + O(n) , 

and we can delete O(ext(n,M)) + O(n) edges of F" so that the resulting 
graph is already bipartite, almost surely. 

Examples. In the proof of Theorem 2 we shall use the Koviri-T. S6s- 
Turin theorem [21] according to which (for r 5 s) 

Equation (6) is sharp for r = 2,3 (see [14],[5]). For L = K ( r , r ,  r )  
this yields ext(n,M) < c:n2-"'. If L is the dodecahedron graph, then 
ext(n,M) = 5n + O(1). 

Theorem 3 is meant to be "applied primarily when iext(n,M) + 00. 

The extreme case ext(n, M) = 0 is described by Theorem 2. 
In many cases (a) excluding some L, or (b) assuming that there are only 

few copies of L in the considered G" (or now in F"), has the same effect 
in the results. This is the case e.g. in the Erdos-Kleitman-Rothschild 
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theorem, or in the case of the Erdos-Simonovits theorem, or of the Ajtai- 
Erdos-Koml6s-Szemer6di results [l]. And this is the case in our theo- 
rems, too. 

Theorem 4. Let L be a fixed 3-chromatic graph. Let R" be ap-random 
graph, B" a maximum size bipartite subgraph of it, and F" a subgraph of R" 
with o(ndL)) subgraphs isomorphic to L and with 

e(F") > e(B") - o(n') 

edges. Then with probability tending to 1, there exists a partition [A/B] 
of V(G") into two sets A and B with IAl = 5 + o(n) and IBJ = 5 + o(n) 
such that 

1 
4 

eF(A) = o(n2), eF(B)  = o(n'), and e F ( A , B )  = -pn' + o(n') 

All the results of this paper generalize to r-chromatic graphs as well. The 
formulation and proofs of the theorems are almost the same, though the re- 
sults for r > 3 have more complicated forms. Hence we restrict our consid- 
erations to the case r = 3. 

Remark. (A Third Interpretation). An alternative interpretation of 
the above theorems is that if x(L) 2 3, then taking first a random graph 
R" and then a maximal L-free subgraph F" G R" is almost the same as tak- 
ing first an extremal graph S" and then taking the edges of S" with proba- 
bi l i ty~.  

SOME RELATED EXAMPLES 

One could think for a moment that theorems stating that "B" and F" are 
very near to each other" must have some deeper reason, and therefore 
there must be a much more general and more precise theorem in this field. 
The following three observations are to convince the reader that this is not 
quite so. 

The first construction shows that there are random graphs of specific 
structure in which the maximum size triangle-free subgraphs and the maxi- 
mum size bipartite subgraphs are far from each other. 

Construction. Let us divide n vertices into 5 (almost) equal groups 
C1,. . . ,C5. For i = 1,. . . , 5  join a vertexx in Ci to a vertexy in Ci+l with 
probabilityp. (By definition, Ca = Cl.) Denote the resulting graph by Q". 
Now, for all the other pairs (x ,  y) join them with probability q = f. then we 
obtain a random graph R", in which we have to delete at least &n' + o(n2) 
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edges to make it bipartite (because we need at least that many edge dele- 
tion to turn Q" into a bipartite graph). On the other hand, Q" is triangle- 
free; therefore deleting all the other edges of R" we can turn R" into a 
triangle-free graph by just deleting q(;) + o(n') edges: in this case the 
maximum size triangle-free subgraph has definitely more edges than the 
maximum size bipartite subgraph. 

The Path Theorem. 
no path P", then 

By a theorem of Erdos and Gallai [ll], if G" contains 

m - 2  
2 e(G") < - n, 

and the union of n/(m - 1) vertex disjoint Km-, is asymptotically optimal. 
As Erdos pointed out, R" contains at least n/(m - 1) - o(n/(m - 1)) vertex 
disjoint copies of K, , - , .  Hence for L = P", e(F") is asymptotically equal to 
ext(n, L) (instead of being around p . ext(n, L)). 

This shows that in general the "third interpretation"-given at the end of 
the last paragraph- does not necessarily hold. 

The C4 Problem. Let L = C4. Take an arbitrary fixed p E (0,l) and a 
p-random graph R". Let F" be a C4-free subgraph of maximum size. 
Clearly, 

e(F") < ext(n,C4). 

On the other hand, if S" is a C4-extremal graph on n vertices, then a 
p-random graph will contain at least 

edges of this S", showing that 

e(F") 2 (p + o(1)) . ext(n,C4). 

Here we have a big gap (a factor ofp) between the lower and upper bounds 
on e(F") and "finding the truth" seems to be difficult. 

LEMMATA 

Our strategy is to get "self-improving information" on the structure of F": 
prove some estimates and then use them to obtain better estimates. Partly 
this is why we prove the theorems in reverse order. In the proofs we shall 
often delete the phrase "almost surely." 
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We shall estimate the “tail of the binomial distribution” by Chernoff‘s 
bounds [6]. 

Chernoff Bound. Let p be a probability and ci = 1,0 with probabilities 
p and q = 1 - p, independently (i = 1,. . . , h). Let c > p be a constant 
and d = 1 - c. Define the Chernoff function as 

C d 
P 4 

I(p,c) = c l o g - + d l o g - .  

Then 

Analogously, if c < p,  then 

Corollary (Folklore). 
for some constant c > 
almost surely 

The proof is trivial. 

For fixed p ,  if R“ is a binomial p-random graph and 
i, X, Y are two disjoint vertex sets of size > nc, then 

eR(X,Y) = (p + o(l))lxI Iyl . 
The proof of Theorem 3 will consist of two parts. 

-First we prove that the F” of Theorem 3 is almost bipartite. Namely, 
its vertices can be partitioned into two classes A and B of roughly 
equal size, with eF(A) = o(n2), eF(B) = o(n2). This is the content of 
the main lemma. Actually, the main lemma is an obvious weakening 
of Theorem 4. The content of the Randomness lemma is that the 
edges joining A and B behave in a “pseudorandom way.” 

-In the second part we apply a finer argument to F“, and show that if 
A and B are chosen in the “best” way, then the edges in A (and in B) 
form a graph of bounded degree, and can be represented by a bounded 
number of vertices. This will imply that the number of edges inA and 
in B is OJl), and will immediately imply Theorem 3. 

Main Lemma. Let L be a fixed 3-chromatic graph. Let R” be ap-random 
graph and F” an L-free subgraph of R“ with 

1 
4 

e(F”) > -pn2 - o(n2) 
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edges. Then with probability tending to 1, there exists a partition [A/B] 
of V(G“) into two sets A and B with [A\ = + o(n) and JBI = t + o(n) 
such that 

To prove this lemma we need the regularization lemma of SzemerCdi [25]. 

Regularity Condition. Given a graph G“ and two disjoint vertex sets in 
it, X and we shall call the pair (X,Y) 77-regular if for every subset 
X’ !Z X and Y’ C Y satisfying 1X’I > 771x1 and IY‘I > 71YI, 

Id(X’,Y’) - d(X,Y)I < 7. 

The next lemma asserts that given an 7 > 0, the vertex-set of every G” 
can be partitioned into a bounded number of classes so that almost all the 
pairs of classes will be 7-regular. 

Regularization Lemma [25]. For every 7 > 0, and integer ko there exists 
a k, such that for every G” V(G”) can be partitioned into sets 
vO,V,,. . . ,K-for some ko < k < k,-so that each IKI < ~ n ,  = m (is 
the same) for every i > 0, and for all but at most 7 + (i) pairs (i, j) for every 
X C K and Y C V, satisfying IXI,1YI > qm, we have 

(One interpretation of this lemma is that all the graphs of positive edge 
density can be approximated by random graphs. The role of V, is to make 
possible that all the other classes be exactly of the same size, and the role 
of ko is to make the classes K sufficiently small, so that we could forget 
about the edges inside those classes.) 

To prove the main lemma we shall also use the following theorem of 
Erdos and Simonovits, (formulated in [7,8] and [22] in a much more gen- 
eral way): 

Stability Lemma [7,22]. For every E > 0 there exists a S > 0 such that if 
e(Fk) > ($ - S)k2 and K 3  $L Fk,  then Fk  can be obtained from the Turin 
graph Tkx2  by changing <Ek2 edges in it. 

Proof of the Main Lemma. Let u = u(L).  Let E > 0 be fixed and apply 
the SzemerCdi Regularization lemma to F“, with q‘= E” ,  obtaining a parti- 
tion V,, K ,  . . . , K of the vertices as described above. Now we define a new 
graph Hk, called the “reduced graph,” in which the vertices are the classes 
K, i = 1,2, . . . , k ,  and two classes K and are joined by a “reduced edge” 
if (K,y) is a regular pair and 

d( K, c;) > 2 E .  
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Let m = lKl,(i > 0). In (a) we shall show that K3 $L H k .  In (b) we shall 
show that all but 4&nZ of the edges of F" correspond to edges of Hk, 
i.e., join vertices of classes that are joined in the reduced graph. This will 
imply that 

e(F") < p * e(Hk)m2 + 5 m 2 .  (7) 

(a) First we show that if H' contained a K3, then F" would contain a 
K(u,u,u) .  Indeed, assume that the vertices of this K3 are the classes Wl,  
WZ, and W3. We choose recursively the vertices xl,. . . ,x i  E Wl and the 
sequence of nested subsets y,2 C J4-1 ,2  G w2,y,3 C y-1,3 C W, so that 
I ~ , Z / ,  l w i 3 1  > E'm and each of the vertices xl,. . . , x i  is joined to each 
y E y.2 U w . 3 .  By the assertion of the SzemerGdi lemma, this can be 
done: for j c u, 

Let G K be the set of those vertices that are joined to at least E J + h  

vertices of I&[.  By the regularity, lvl > im. By the same argu- 
ment, there is an E Wi - {xl,. . . , x i }  joined also to y.3 by >d+'m 
edges. Let 

So we can fix the nested sequence of subsets in W2 and W3 as stated above. 
Further, 

Hence, if n is sufficiently large, then (by the Koviri-T. Ss-Turin theorem) 
we can find a K(u, u) between W,,Z and Wu,3. They and {xl, . . . , x u }  form a 
K(u, u, u) C F". This contradiction proves that H k  contains no triangles. 

(More generally, let L be an arbitrary fixed graph of u vertices and r be a 
positive integer. If one applies Szemeredi's regularization lemma to an arbi- 
trary graph F" with 17 = E" and constructs H' as above, then the following 
"blowing up" principle holds. Let L 0 I' be the graph obtained by replacing 
each vertex of L by a r-tuple and joining every vertex of a r-tuple to every 
one of an other r-tuple iff the original vertices of L were joined. Now, if n is 
large and L C H k ,  then L 0 I' G F". The proof goes by induction on ur, 
see, e.g., [18].) 

(b) Since K3 $L H', we can apply Turin's theorem: 

1 
4 e (Hk)  I -k2.  
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By the corollary, each “reduced edge” of Hk corresponds to at most 
p m 2  + o(m2)  edges of F “ .  This yields 

1 1 
-pm2k2 + o(n2) = -pn2 + o(n2) 
4 4 

edges. The remaining edges 
-either join vertices of the same K, 
-or a vertex of Vo to some other vertex, 
-or correspond to a low-density d ( K ,  v), 
-or to a non-regular pair ( K ,  v). 
We can estimate the number of edges joining vertices of the same classes by 

The number of edges represented by Vo is 5IV,ln 5 ( m ) n  = En2. Clearly, 
the low-density pairs ( K , v )  contribute <2~(!) 5 &n2 edges. Finally, the 
nonregular pairs give at most &)m’ I t ~ n ’  edges. This proves (7). 

Comparing (1) and (7) we get that in (8) we must have almost equality: 

e(Hk) > [ a k 2 ]  -!Ek2. 
P 

Since K 3  $L Hk, we can apply the stability lemma to Hk: there is a function 
y - 0 (if E --* 0) such that V ( H k )  can be partitioned into two classes AR 
and BR, with IARI,lBRl 5 $ + yk;  further, eH(AR) < yk2,  eH(BR) c yk2. 
Define A as the union of the sets I/: in AR, and B as the union of the I/:?, in 
BR. If we delete all the edges of F“ joining sets K in AR and the edges join- 
ing vertices of the same K for some i = 1,. . . , k ,  and the edges not cor- 
responding to reduced edges and the edges represented by Vo, then we 
deleted all the edges in A, by deleting < ( 5 ~  + y)n2 edges. Similarly, we can 
delete < ( 5 ~  + y)n2 edges to turn B into an independent set. This proves 
the main lemma, if E + 0. 

PROOFS OF THE THEOREMS 

Proof of Theorem 4 (Sketched). The proof of Theorem 4 is almost word 
by word the same as the proof of the main lemma. The only change is that 
now we have to show that 

(*) if the reduced graph contained a K 3 ,  then F“ would contain cnEfL’ 
forbidden subgraphs L. 
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This would be almost trivial if the edges were picked at random, with 
some fixed probabilityp > 0, to join three classes V ,  t$, and K. The proof 
is slightly more complicated but still just a standard argument if we know 
that three classes K, v, and V,, of Hk form a triangle in the reduced graph. 
One could easily give a-somewhat longer- self-contained proof of (*), 
using only the Szemerkdi lemma, however, below we shall provide a proof 
based on the “theory of supersaturated graphs.” 

First we settle the simplest case, when L = K3 (leaving some details to 
the reader). We can argue as follows. We call a vertexx E K typical, if it is 
joined to y by at least ( d ( K , K )  - Eu)m edges and the analogous statement 
for 6 also holds. By the regularity, all but 2 ~ ” m  points of K are “typical.” 
For a “typical” vertexx E K 

By the regularity, 

Hence a “typical” x is contained in at least &p2m2 > c1n2 triangles: there 
are at least c2n3 copies of K3 in F”. 

We shall apply the following Corollary 2 of [16]. 

Theorem on Supersaturated Hypergraphs. Let Khh(t,. . . , t) be the h- 
uniform hypergraph obtained by taking h disjoint t-tuples Xl, . . . , Xh and 
all those h-tuples that contain one vertex from each Xi .  For every c > 0 
there exists a c’ > 0 such that if an h-uniform hypergraph contains at least 
cnh hyperedges, then it contains at least c‘nhf copies of Kk(t, .  . . , t). 

Put h = 3 and take a t for which K(t,  t, t) 2 L. Apply the above theorem 
to the 3-uniform hypergraph of the triangles of F”. We have at least c2n3 
triangles, therefore at least c3n3‘ copies of K:(t, t ,  t). Therefore we have at 
least c3n3‘ copies of K(t,  t, t) in F”. Each L is contained in at most ~ ~ n ~ ‘ - ~ ~ )  
copies of K(t,  t, t). Thus we must have at least c5nV(L) copies of L in F”. 
(These type of arguments are standard in papers on supersaturated graphs, 

This contradicts the assumption of Theorem 4. Hence K3 $Z H k .  From 
see, e.g., [161, ~51). 

here the proof is the same as above. 

Randomness Lemma. Let us fix a probability p E (O,l), a constant 
c E (O,l), and an integer k .  Then a random binomial graph R” with edge- 
probability p (and vertex set V )  has the following property almost surely: 

Let m > cn and 
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I(pk,cpk) = O(1). 
m 

For every subset U C V of m vertices there exists a set Q = QU C V of at 
most tk = O(1) vertices such that every k-tuple of V - Q - U is com- 
pletely joined to at least cpklUl vertices of U. 

The meaning of this lemma is that in R“, fixing a large set U and k ver- 
tices xI, . . . , xk E V - U ,  the expected number of common neighbors of 
thex,’s in U ispklUI. The lemma says that though there are many sets U and 
k-tuples outside, still large deviations from pklUl are highly improbable. 

The constant c in the lower bound on m and in cpk do not have to be 
the same. 

Proof of the Randomness Lemma. Assume that R” is ap-random graph, 
c E (0,l) and k are fixed. Given a set U of m elements, a k-tuple 
{xl , .  . . , x k }  will be called “violating” if U contains fewer than cpkm com- 
mon neighbors of these x,’s. The expected number of common neighbors of 
xl, .  . . , xk in U is pkm. By Chernoff inequalit , the probability that for a 

the violations for disjoint sets are independent, the probability that for a 
fixed U, t given vertex disjoint k-tuples are “violating” is <e-‘.’(p -‘ . Since t 
k-tuples can be chosen in <nlk ways, therefore the 

given U, { x , ,  . . . , xk}  is “violating” is <e-‘(d.‘ 2 )“‘. Since the probabilities of 

k #)m 

vertex disjoint violating k-tuples, is cn%-”(#.cd )m. 
probability there are t 
The rn-element subset 

U can be chosen in 

ways, hence the probability of the existence of a U 
k-tuples is 

< log n +m( log(en/m)-r . I( pk. cp*))  

and t disjoint violating 

If t < c log n, then the na term is negligible: for 

t = 2 log en/ l (pk,cp‘)  m 

the above probability is o(1). (And therefore for t > log n it is also o(l).) 

V(F”) - QU - U there are no violating k-tuples. I 
Hence for each U we can find a set Qu of size tk so that in 

Proof of Theorem 3. (A) We start with some general remarks. If every 
M E M contains a cycle, then there exists a y > 1 such that ext(n,M) > 
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ny if n is sufficiently large. (See e.g., [24].) In this case the O(n) terms are 
negligible. If M contains a tree or a forest, then ext(n,M) = cn + o(n), 
where in some cases c > 0, in some others c = 0. In this second case one 
can easily see that for some a and /3 the decomposition family contains 
both a K(1, a) and a graph of p independent edges. One can easily see that 
in these cases ext(n, M) = O(1). Below the “linear” and “sublinear” cases 
shall also be covered; however, the reader should primarily concentrate on 
the “superlinear” cases. 

By the main lemma, there exists a partition [A/B], such that 

eF(A) = o(n2) and eF(B) = o(n2) .  

We shall call a partition [A/B] optimal if eF(A, B) attains its maximum. 
Fix an optimal partition [A/B]. By the optimality, for each x E A, 

e&, 4 5 e&, B ) .  

An edge will be called “horizontal” if it joins two vertices of the same 
class, and we shall call an edge of R” “missing” if it joins A and B and is not 
in F”. 

Let u = u(L). We fix an E < $#” and choose n so large that the 
o(n), o(n2) terms below are “negligible” compared to ~ n ,  ~n’. (Later E + 0.) 

Exceptional Vertices. We apply the randomness lemma first to U = A, 
c = i, and to the u-tuples in B, thus obtaining that there exists a subset XB 
of size 0(1), such that all the u-tuples of B - XB have at least :pun common 
neighbors in A. Next we apply the lemma to B and the u-tuples in A, ob- 
taining an XA C A. The vertices in X, U XB will be called exceptional. 

Now we show that if t is the number of vertices inA, joined-in F”-toA 
by more than ~n edges, then t = OE(l). More specifically, t < ~ u / E * ,  if n is 
sufficiently large. 

To prove this we shall assume that xl,. . . , x ,  are these vertices, and we 
shall define some configurations called “flowers” and count them in two 
different ways. Consider the triangles in F” one vertex of which is an xi, 
and the opposite edge joins A to B. A flower is an edge e = (a, 6) with 
u such triangles (abxi) on it (a E A , b  E B). The edge e will be called 
“center-edge,” the u other vertices of the triangles form the “blossoms.” So 
first let us count the triangles (&xi) in F”, a E A, b E B. Each of the t ver- 
ticesxl,. . . , x ,  is joined to bothA and B by at least ~n edges. If all the edges 
of R” were present in F”, then each xi would be roughly in ~’p.’ triangles. 
At most o(n2) edges are missing, hence we have at least $tE’p.’ triangles. 
Now we count the u-flowers. If a(e)  denotes the number of triangles on the 
edge e, then 

x a ( e )  > -tE2pn2. 
2 

e 3 
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Clearly, e yields (‘t)) flowers. Thus the total number of flowers is 

N = z( 
e 

Since e(F”)  < $pn2, on the average we have >E2t  triangles per edge. We 
extend the definition of (t) to all the reals: 

x ( x  - 1) ...( x - u + l)/u! if x > u - 1; 
otherwise 

One can easily see that this function is convex. This yields that the number 
of flowers is 

On the other hand, 

since the blossoms of a flower can be chosen only in (L) ways, and for each 
choice we have at most c3n2-l” center-edges: otherwise, by [21], we could 
find a fixed u-tuple {xl, . . . , x u }  and a K(u,  u) outside, so that all the edges 
of K(u,u)  would be center-edges of a flower with that very u-tuple (as 
“blossoms”). This would yield a K(u,  u, u) C F”, a contradiction. 

Assume (indirectly) that t 1 2 4 ~ ’ .  Then (9) and (10) imply 

(11) 
(&2t  - u)” . ( & z - 2 E z )  1 ” = -  &2u 

cqn-l’u 2 (&;)/( ;) 2 t u  2” 

The left-hand side of (11) converges to 0 as n + 03. Therefore for n > no 
we get t I ~ u / E ~ .  

(B) Denote by Y, (and respectively, by YB) the set of vertices that are 
either in X ,  (in X B )  or are joined to at least en vertices of their own class. 
We wish to prove that the subgraphs M G G(A - Y,) and M G G(B - Ys) 
(where M E M) can be represented by q < O(iext(n, M)) + 0(1) vertices. 

Assume that, e.g.,A - Y, contains some M’s. Fix inA - YA a maximum 
vertex-independent set of subgraphs M I , .  . . , M ,  E M. We shall prove that 
if u is large then the number eM of edges joining A and B in R“ but missing 
from F“ is so large that F“ cannot be maximal. Denote by SA the number of 
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horizontal edges incident with the vertices of these subgraphs. By the ran- 
domness lemma, for every Mi there are ':pun vertices in B joined to Mi 
completely (in R"). Denote this set by Bi. (Bi = B n ( nNR(xi)) . )  Any u ver- 
tices zl,. . . , z,, E Bi, form an L with Mi.  Hence for any z , ,  . . . , z ,  E Bi, at 
least one edge joining them in R" to Mi is missing from F". In other words, 
all but at most u - 1 vertices z E Bi are joined to Mi (in R") by at least one 
"missing edge." Thus each M is incident with at least lBil - u > $"n 
"missing edges." Therefore E~ 3 a - $"n. At the same time, each M is inci- 
dent with at most E U ~  horizontal edges, since it does not intersect YA. 
Hence, if the vertices of these qdisjoint M's represent Sa horizontal edges, 
then a > SA/(eun). Therefore eM'2 a * $"n 2 S , / ( ~ u n )  - $"n > 5SA miss- 
ing edges are incident with these vertices, since E < &$". 

If we fix a maximum family of M's in B - Ye and SB denotes the number 
of horizontal edges incident with them, then-by symmetry-we may as- 
sume that SA > SB.  

Deleting all the edges of G(A) and G(B) and adding all the eM missing 
edges, we get a bipartite 2" not containing L. Therefore e(Z") 5 e(F"). 
Here e(G(A)) I SA + c6n + ext(n,M), since deleting all the I S A  + lYAln 
edges incident to the Mi's and the vertices in Y, we get a graph not contain- 
ing anyM € M. Similarly, e(G(B)) I SB + c6n + ext(n,M). On the other 
hand, eM > 5SA. Hence 

0 5 e(F") - e(2")  = e(G(A)) + e(G(B)) - eM 5 2SA + 2c6n 

+ 2ext(n,M) - 5SA. (12) 

Therefore 

SB 5 SA < ext(n,M) + C6n, 

and 

eM 5 e(G(A)) + e(G(B)) 5 4ext(n, M) + 4c6n. 

Consequently, 

q < uu = O(eM/p"n) < 0 -ext(n,M) + O(1). I (A 1 
Proof of Theorem 2. We start with some obvious inequalities, valid for 

any random graph R". Clearly, for every vertex the degree dR(x)  = pn - 
o(n),  almost surely. Further, for every pair of vertices x and y, almost surely 
[NR(X)  n N R ( Y ) ~  = p2n + o(n). Define 
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We know that in a random R", 

IA(X,Y)( = 2 ( P  - P 2 h  + 44. (13) 

Let u = u(L). Let T4".4*1 be the graph obtained from K4(u,. . . , u) by adding 
one edge to it. In case when L has a critical edge, clearly, L C T2"s2s1. Thus 
F" contains no T2u*2*1 either. (As a matter of fact, a (q + 1)-chromatic L 
has a critical edge iff it is contained in a Tp"*q*l.) 

(A) Again, fix an E > 0 and let n be so large that the o( ...) terms be 
negligible. We shall prove that the maximum degree dF(G(A)) = o(n). 
This will imply that XA = YA in the previous proof in any "optimal" 
partition, if x E A, then IN&) f l  A[ I ~ n .  (Later we shall see that 
~ F ( G ( A ) )  = W).) 

Assume that x E A,A' = A n NF(x), B' = B n NF(x), and IA'I 1 en. 
By the optimality of the partition, IB'I 1 [A'[  1 en. Clearly, eR(A',B')  1 
p(~n) '  + o(n'). If F" contained a K(u, u) with one class in A' and the other 
in B', then x and this K(u,u)  would yield a T2"+1*2*1 C - F" . Thus 
eF(A', B') = O(n2-"") = o(n'), by [21]: almost all of these edges are missing 
from F". 

Let Z" be the graph obtained from F" by deleting all the horizontal edges 
and then adding the p ( ~ n ) ~  + o(n') missing edges of R" (joining A' to B'). 
Since eF(A) = o(n2), eF(B) = o(n2) and Z" C R" is also L-free, therefore 

1 
0 I e(F") - e(Z") = eF(A) + eF(B) - eF(A', B')  < - l p ( ~ n ) ~ ,  

a contradiction. This proves that dF(G(A)) = o(n) and yA = XA. 

(B) What does the argument (B) of the previous proof yield now? Let MO 
be the graph with u(Mo) = u and e(M0) = 1. If M is the decomposition 
class of L, then Mo E M. Therefore ext(n, M) = 0 (if n 1 u). As we saw in 
the previous proof, the edges in A - XA can be represented by O(1) ver- 
tices. Putting these O(1) vertices into XA, and into XB on the other side, we 
achieve that A - XA (and B - XB)  contain no edges. 

(C) Let us count the number of edges in A. We know that these edges are 
incident with the Op(l) vertices in XA U XB.  To prove (4) it is enough to 
show that the horizontal degree IN&) n A1 = Op(l) for each x E XA.  
Assume that we have an x E XA and yl, . . . , y ,  E A n NF(x). We apply 
the randomness lemma to the set U = B fl NF(x) and the vertices (Le., 
1-tuples) y j .  Clearly, IUI = 5n + o(n). If r is large enough, at least one y j  
is pined in R" to >ip'n vertices of U. Since e M  5 e(G(A)) + e(G(B)) c 
(I&( + J X B l ) ~ n  < bk, assumed that E is small enough, hence 

1 
8 INF(y;) n UI > -p2n = c7n.  
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We pick u such vertices: zl,. . . ,z ,  E NF(x) n N F ( y l )  - X,. They are 
joined to (x, y i )  completely in F" and are outside XB. Hence we can apply 
the randomness lemma again, to this u-tuple and U' = A - XA, obtaining 
u - 2 further vertices wl,. . . ,w,-2 E A, completely joined to {zl,.  . . , z,,}. 
They yield a T2"*2*1 C F", a contradiction. Hence (4) is proved. Now, by 
(12), we know that deleting Op(l) appropriate edges we get a bipartite 
graph, and also we know that eM = Op(l). 

(D) Now we prove that there exists a 2 < p o  < such that for every 
p > po,  almost surely F" is bipartite. Here we have to use a finer argu- 
ment. First we sketch the proof, carried out in (i)-(iv). 

On the one hand, we shall show that for an optimal partition [A/B] 

(14) 
P eR(A,B) > -n2 + c8n3", 
4 

that is, we have noticeably more edges across, than expected. (This is again 
a property of every random R".) 

On the other hand, using that T2U9231 $L F", we shall show that unless this 
partition is a 2-coloring of F", there must exist two verticesx andy so that, 
say, apart from a small error (of 6n vertices), B = A ( x , y )  and A = 
V(R") - A(x ,y ) .  More precisely, for every 6 > 0, if p > p(6)  = 4 - 4, 
then 

The probability of (14) for any fixed partition is exponentially small and 
the existence of partitions satisfying (14) is highly probable only because 
there are exponentially many partitions. However, the number of parti- 
tions satisfying (15) is much smaller; therefore the probability of a partition 
satisfying both (14) and (15) will be negligible. Hence the optimal partition 
will give a 2-coloring, almost surely. 

(i) First we show that for the optimal partition [A/B] (14) holds with some 
appropriate constant c8 > 0. To prove this we shall make use of the follow- 
ing purely probability theoretical assertion. 

If we fix two numbers a and /3 with a + /3 = 1, and set out with X = 0, 
Y = 0, and put an element ei with probabilitypa into the set X, and with 
probabilitypp into and into none of them with probability 1 - p ,  for 
i = 1,2,. . . , rn, then there is a constant c (p )  > 0 such that the probability 
Prob(llXI - lYll > c ( p ) f i )  > c ( p ) .  The reason for this is that the stan- 
dard deviation of the binomial distribution of m events is dp(1 - p)m. 
The details are left to the reader. 

Let the vertices of our random graph be x l ,  x2, . . . , xn. We may regard R" 
as a random graph, generated in n - 1 passes, where in the ith pass we de- 
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cide for j = 1,. . . , i - 1 if (xi ,  xi) is an edge or not. We build up the sets 
(Ai, Bi)  as follows: A 1  = B1 = 0. In the ith step (i 1 2) we check whether 
eR(xi, Bi - l )  < e,(xi, or not. According to the result we put xi into Bi or 
Ai, respectively: either 

Bi = Bi-l U {x} and Ai = 4 - 1  

or 

Ai = Ai-l U {x} and B, = Bi-1. 

Let d,  = eR(x, Ai-l U Bi- l ) ,  and Si be the number of edges pining xi  to 
the "other" class. Then Si L id i ,  and for i > I, with some fixed positive 
probabilitypl we have Si > fd, + d f i .  These events are independent for 
i = 2, .  . . , n. Hence, apart from an exponentially unlikely event, we get 

(ii) We show that for everyx the degree 

(16) 
1 
2 

d&) z -pn - o(n). 

Delete the O(1) horizontal edges in F" - x,  and put x intoA - x or B - x,  
according to whether eR(x, B - x )  or e R ( x , A  - x )  is the larger. Thus we 
deleted I&(x) edges but added at least fpn - o(n) edges, getting a bipar- 
tite 2" with 0 I e(F") - e(Z") 5 ~ F ( x )  - fpn + o(n). 
(iii) We show that if (x ,y )  is a horizontal edge in A, then all but OJ1) of 
the vertices in NR(x) n NR(y)  belong to A.  Indeed, if u of them, {zl,. . . , zu} 
belonged to B - X, and none of the edges (xzi) ,  ( y z i )  (i = 1,.  . . , u) were 
among the Op(l) missing edges (i.e., all they belonged to F"), then we could 
find wl,. . . , w . - ~  E A - XA completely joined to { z l , . .  . ,zU}. Thus 
x , y , w l , . .  . , w , , - ~  and { z l , .  . . , zU}  would span a T2u*2*1 G F", a contradic- 
tion. Thus all but OJ1) vertices of NR(x) n NR(Y) belong to A. 

At this point forp > i it is trivial that F" is bipartite: if ( x , y )  were an edge 
in A, then 

andp - p z  c fp, contradicting (16). 
In the other case we need a more involved argument. 
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(iv) Let now 3 < p < i. We shall prove that if there is a horizontal edge 
( x ,  y )  in the optimal partition [A/B], 

then 

eF(A,B) < -nz P + c6n3", 
4 

where c6 + 0 as 6 + 0. Obviously, this will prove that e(A) = e(B) = 0. 
Our aim is to prove that ( x ,  y )  determines the partition [A/B] up to 6n ver- 
tices: for every S > 0, if p > PO = - i, then (15) holds. Since N R ( x )  n 
N R ( y )  is almost completely in A, and 

therefore 

n n 6n 
IB n (NR(x)  - NR(y))l 2 py - o(n) 2 - - - 4 8  

Similarly, 

Thus 

n n Sn 
- + o(n) > IA(x,y)I = 2(p - pZ)n - o(n) > - - - 
2 2 25' 

This, (18), and IBI = f + o(n), imply (15). 

(v) Now we are going to estimate the probability that for a random 
graph R" there exists an edge ( x , y )  and a partition [A/B] satisfying both 
(14) and (15). 

For any fixed pair (x ,  y )  we may regard R" in the following way: first we 
select the edges incident withx ory, with probabilityp, independently, then 
we select the other edges. If we have already the neighbors of x and y,  then 
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we have also A(x, y). B differs from A(x, y) only in I S n  vertices; thus we 
can fix the symmetric difference D of A(x, y) and B in at most (s"") ways. For 
each D we can choose [A/B] in at most 2'" ways. Hence, given the neigh- 
bors of x ,  y in R", we can choose the optimal partition [A/B] in fewer than 
4'" ways. Now we select the edges of R" - {x, y}. For fixed [A/B],  the prob- 
ability of 

n 3 / 2  P 
4 2 

eR(A,B) > -nz  + cg- 

is exponentially small, by the Chernoff inequality. More precisely, there 
exists a A = A, > 0 independent of 6 (and n), such that this probability is at 
most (1 - A)". 

The edge in (17) can be chosen in at most (1) ways. Thus the probability 
that there is an edge (x, y) joining vertices of the same class in an optimal 
partition is 

<nZ(l - A)"46" + 0, 

if S is sufficiently small. This completes the proof. (Observe that (iv)-(v) 
also covered the case p = i.) 

OPEN PROBLEMS 

1. We have already mentioned that perhaps the most intriguing problem 
we could not settle here was the problem of C.,: 

What is the maximum of e(F") if we exclude C., instead of a 3-chromatic L? 

2. 

3. 

What happens if p -+ 0 as n + m? Obviously, if p + 0 very slowly, 
then our theorems will still hold. However, if, e.g., R" is a random 
graph with roughly nZ-' edges for some small c > 0, the proofs 
completely break down and the theorems still may hold. 
Erdos and the authors asked the following problem. Assume that G" 
contains no K3 and for any two nonadjacent vertices x and y there exist a common neighbors. What is the maximum number of edges this 
graph can have? This problem was settled by P. Frank1 and J. Pach in a 
more general form [FP]. 
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