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Happy birthday, Tom

One of the very influential results is
the Szemerédi-Trotter theorem on inci-
dences:

There exists a constant c > 0 for which, if
Given m points and n straight lines, the number of inci-
dences between them is less than cn2/3m2/3 + c(n + m).
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One generalization, Pach-Sharir:
Let P be a set of n points, and C be a set of m simple curves
having k degrees of freedom and multiplicity type s, then
the number of incidences between them is

I(P , C) < c(s, k)
(

n
k

2k−1m
2k−2

2k−1 + n + m
)

where
k degrees of freedom = through any k points at most s curves

and
multiplicity type s

= any two curves intersect in at most s points.

Spencer-Szemerédi-Trotter , Pach-Sharir , Székely .
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Many other related results. . .
I mentioned this since this is related the most to our
topic.

Behind everything I shall speak about is the
Elekes-Szabó theorem and its proof heavily uses
these theorems.

I shall return to the Elekes-Szabó theorem later.
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How to distinguish
unit circles and straight lines, combinatorially?

Combinatorially = using the incidence matrix = using the
intersection pattern.

Can these curves be circles of some huge fixed radius?
(Can one have such a picture with arcs of unit circles?)
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The original problem

Quadratic number of crossings
On the number of high multiplicity points for 1-parameter families of curves – p. 6



Three families

Still quadratic number of triple crossings
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A Combinatorial Distinction between
Unit Circles and Straight Lines

(a) How can one distinguish unit circles and straight lines
combinatorially?
(b) Can one have as many triple points for circles

as for straight lines?
−→ YES, because of “inversion”: all patterns can be obtained
by straigth lines can also be obtained by arcs of circles.

(c) Can one have as many triple points for unit circles as for
straight lines?
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Three families of circles

We consider 3 families of unit circles,
through 3 points.

On this figure we do no see (?) triple points (except the
obvious 3 points): the circles are selected at random.
Could we have cn2 triple points?

No: we can have at most n2−η triple points.

On the number of high multiplicity points for 1-parameter families of curves – p. 9



Theorem on unit circles
There exists an η > 0 such that

If we take 3 points in the plane: A, B, C, and n unit
circles through each of them, then they can determine
at most cn2−η triple points.
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Is there a general theorem behind this?
(a) High dimension?

Question. Is it true that:
If in some dimension d we have some surfaces of dimen-
sion s, then they cannot have two many points that are
intersections of t of our surfaces?

Non-degeneracy condition is needed: consider many planes
containing the same staight line: we have infinitely many triple points.

We shall restrict ourselves to curves in dimension 2.

Many cases can be reduced to the case of R
2 by projecting

the high-dimensional configurations to R
2.
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The envelope
Crucial in our results:

the envelope of families of curves.

1-parameter families
Implicitely, analytically parametrized families
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Analytic description of the envelope
The enveloping curve is in some sense a singularity:

F (x, y, t) = 0.

Ft(x, y, t) = 0.

← analytic parametrization

← partial derivative by t

Often we can eliminate t, getting an enveloping curve

Φ(x, y) = 0.

Problems with the analytic branches
If you are uncomfortable with analytic functions and

branches, think of polynomials or algebraic functions defined by them.

Watch out: we speak of functions, not curves, the parametrization
influences our statements!
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Envelope of circles
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Envelope of circles, lifting

We lift the curve of parameter t to height t, getting a
surface, the horizontal sections of which are the
parametrized curves.
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Envelope of tangents

If we have a nice curve, its tangents (may) form a 1-
parameter family of straight lines and this curve may
be their envelope.
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Envelope covered by the curves
The geometric picture: We have a 1-parameter family
that covers some part of the plane, does not cover some
other part, and the borderline is the enveloping curve.

Wrong! The curves can cover their envelope
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Envelope covered in the plane
Shift the curve y = x3 by t:
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y = (x− t)3;

then axis y = 0 will be an envelope.
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Analytically:
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Natural form F (x, y, t) = 0 Ft(x, y, t) = 0

y = (x− t)3 (x− t)3 − y = 0 3(x− t)2 + y = 0

(x− t)3 + (y/3)3/2 = 0

(y/3)3/2 + y = 0

then axis y = 0 will be an envelope. . .
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Envelope and the lifted surface

Lifting: The lifted family of curves is a sur-
face: if the curve of parameter t goes through
(x, y), then this point is lifted to (x, y, t).

In the lifted family of curves (=surface) those vertices project onto the
envelope where the tangent plane is vertical
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Envelope covered by the curves, again

The lifted 1-parameter family yields a surface, the points of the
enveloping curve come from those where the tangent planes are vertical.
(Thick black curve)
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Degenerate Cases
Unit circles through three points:

Here there may be a UNIT circle going through the fixed points A, B, C

of the 3 families of unit circles. If we counted the crossings with
multiplicity, this should have been excluded: A, B, C contribute∞ to
the number of triple points.

By the way, the points of the red unit circle are all triple points!
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Concurrency function: Describes the triple points:

Consider the parametrizations and solve them: express the
parameters.

F1(x, y, t) = 0 ⇔ t = ϕ1(x, y)

F2(x, y, u) = 0 ⇔ u = ϕ2(x, y)

F3(x, y, v) = 0 ⇔ v = ϕ3(x, y)

Mostly two parameters define (x, y) that defines the third parameter:
Three curves meet iff

Ψ(t, u, v) = 0 i.e. Ψ(ϕ1(x, y), ϕ2(x, y), ϕ3(x, y)) ≡ 0

Here ϕi(x, y) may be many-valued functions. This creates some
difficulties.

We shall assume that Ψ(., ., .) is a polynomial.
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Main Theorem (slight change in the notation)

Assumptions: Γ1, Γ2, Γ3 be 1-paremeter families of curves implicitly
parametrized by F1, F2, F3, analytic on domains Gi × Ti and continuous
on cl(Gi × Ti). Assume that the concurrency function
Ψ = Ψ(t1, t2, t3) ∈ C[t1, t2, t3] is a polynomial:
If t := ϕi(x, y) is an analytic branch of the solutions of Fi(x, y, t) = 0, for
i = 1, 2, 3, then

Ψ(ϕ1(x, y), ϕ2(x, y), ϕ3(x, y)) = 0(1)

(i) Γ3 has a partial envelope E ;
(ii) E ⊆ G1 ∩G2 ∩ cl(G3); and there is a point P ∈ E and a

neighbourhood U of it such that Γ1 and Γ2 both cover U .
(iii) No sub–arc of E is contained in any γ ∈ Γ1 ∪ Γ2 ∪ Γ3.

THEN:
TΓ1,Γ2,Γ3

(n) = O(n2−η),

for suitable η = η(deg(F )) and n > n0 = n0(deg(F )).
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The geometric conditions

The geometric assumption is that one of the families
has a partial envelope, and the other two cross it
transversally: the three tangents are distinct.
We have two versions of this: two theorems
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The role of the concurrency function
Consider a grid: (a, b, c) with integer coordinates.

A linear surface: x + y + z = c may go through many
grid-points.
Transform the grid, e.g.:

(log a, log b, log c) with a, b, c integers. xyz = const iff
log x + log y + log z = const: goes through many of the transformed
grid-points.

The opposite is also true: A nice function, going through very
many grid-points should be of very simple form.

On the number of high multiplicity points for 1-parameter families of curves – p. 26



Distinguishing Circles from Straight Lines
There exist an absolute constant η ∈ (0, 1) and a threshold n0 with the
following property:

Let (a1, b1), (a2, b2), (a3, b3) be three distinct points in the Euclidean
plane and Γ1, Γ2, Γ3 be three families of unit circles, such that, for each
i ≤ 3, all circles of Γi pass through the common point (ai, bi). Then

TΓ1,Γ2,Γ3
(n) = O(n2−η),

provided that n > n0.
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Elekes-Szabó: Black Box
For any d ∈ Z

+ there exist an η = η(d) ∈ (0, 1), k = k(d) and
n0 = n0(d) such that if V ⊂ C3 is a two dimensional algebraic
surface of degree ≤ d and for infinitely many n there exist
T1, T2, T3 ⊂ C such that |T1| = |T2| = |T3| = n and

|V ∩ (T1 × T2 × T3)| ≥ n2−η;

then either V is cylindric or there is a point P ∈ V and a
neighbourhood U of P where the surface can be transformed into

x + y + t = 0,

by a curvilinear transformation.

More explanation is needed here: . . .
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Pseudo-grids and surfaces (meaning of ...)
If a nice surface contains cn2 generalized lattice points, then
it must be very special

After curvilinear rescaling we get

t + u + v = 0.
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Multivalued functions, branches
We use multivalued functions, the surface V can be described locally by

0 ∈ ϕ1(t1) + ϕ2(t2) + ϕ3(t3)

that corresponds to

ϕ1(t1) + ϕ2(t2) + ϕ3(t3) = 0,

Significant “jump”: for a fixed η > 0 (depending on the degree of V ,
either V has only O(n2−η) generalized grid ponts, or it has at least cn2.
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Remarks
Sufficient condition for three one–parameter families
of curves (or for three copies of a single family) to
have few triple intersections.
How far below quadratic should it be? Since we
have no reasonable estimate for η > 0, nothing is
known about the exact order of magnitude.
It may well be that the number of triple points is at
most n1+ε, for any ε > 0.
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Historical remarks and examples
Earlier results for straight lines
Studying the incidence structures of points and straight lines (more
generally, of points and certain curves) has been one of the fundamental
tasks of Combinatorial Geometry for long.

140 years ago Sylvester: famous “Orchard Problem” which, in a dual
form, asks for arranging n straight lines in the Euclidean plane so that
the number of triple points be maximized. Sylvester showed that if L
is the family of all straight lines then TL(n) = n2/6 +O(n).

Later on Burr, Grünbaum and Sloan slightly improved his lower
bound.
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Earlier results on unit circles
An “orchard–like” problem was posed by Erdős:

arrange n unit circles in the Euclidean plane so that the number of
triple points be maximized.

Denoting the family of all unit circles by U , an upper for the above
problem by TU(n). Now TU(n) ≤ n(n− 1) is obvious (since, as before,
already the number of pairwise intersections obeys this bound). Also, a
lower bound of TU(n) ≥ cn3/2 was proved by Elekes. The gap between
these two estimates is still wide open.
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Earlier results on unit circles
Also from another point of view, unit circles play a special role
in Combinatorial Geometry. One of the most challenging
unsolved problems is

Conjecture (Erdős). For any ε > 0 there is an n0 such that for
n > n0 the maximum possible number u(n) of unit distances
between n points in R

2 is at most n1+ε.
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Again, Happy Birthday, Tom!

Happy birthday!
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