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We consider only graphs without loops and multiple edges . Gn

denotes a graph of n vertices, v(G) , e(G) and X(G) denote the number of

vertices, edges, and the chromatic number of the graph G respectively . The

star of a vertex x will be denoted by st x (that is the set of vertices joined to

x), the valency of x will be denoted by 6(x), K(m,n) denotes the complete

bichromatic graph with m and n vertices in its classes . {KCm,n)-r} is the

graph obtained from K(m, n) omitting r ( r<_ min (m, n)) independent edges .

Thus { K(4,4)- 4} = C is the graph formed by the vertices and edges of a cube .

Let us denote by f ( n ; L1_..L %, ) the maximum number of edges

a graph G n can have if it does not contain any

If it does not cause any confusion, f ( n ; L i , . . ., L), ) will be

abbreviated by f( n) .

According to [1]

( 1 ) f(n ; K(Z,m)) =
Om(n2- C ) (£<_m)

L~ as a subgraph .



(2)

(3)

and if c~

This result is sharp if $ = 2,3 [1] [2]

f(n ; K(2,2)) _ (1+0(1)) n

c3 C n5/3

	

f (n ; K(3,0) `- c3 E n 5/3

Hereinafter c, c~, c~~ , . . . will denote positive absolute constants,

is used in different formulas, it can have different values . )

TURÁN asked for the determination or estimation of f ( n ; C) .

A very special case of a result of ERD6S gives [3]

f(n ;C) <cn5/3

Further ERDŐS showed that [4]

c1 n3/2 < f(n ; {C } -fx}) <c 2 n3/2

where {C} - {x} is the graph, obtained by omitting a vertex from the cube . We

shall prove a stronger assertion, namely

(4)

	

c 3 n3/2 < f (n ; L C - 1 ) ) < c,n3/2

where { C-1 } is the graph, obtained by omitting an edge from the cube . ERDŐS

conjectured that n 5/3 is also the lower bound for C, but this conjecture is

false. In fact,

(5)

	

f(n ;C)

	

0(ne/5 )

ERDŐS conjectured [5] that for any graph L , if X( L) = 2 ,

then there exists an of =oc(L) such that

(6)

	

Um f ( n ; L ) na
n ---> 0 0

3/2

2



exists, and perhaps

(7)

would also hold in all cases (where k is an integer) . This conjecture is

disproved by the following results of this paper :

Let D (k, t) be the graph, obtained by joining two given vertices x

and y by k independent paths of length t and let E(t,k,Z) be the graph

obtained by joining each vertex of the first colour of a K(t,t) to each one of

the first colour in D(k,0 and joining the vertices of the second colour of

K(t,t) to the vertices of the second colour in D(kJ) . Mk,k) can be coloured

by 2 colours in exactly one way, thus E(t,k,t) is well determined) . Then

2-

(8)

	

Ck t n

o( = 1+ k

	

or

	

d= 2- k

2k+2t

	

2

	

2

3k+tz +2t(k+1)-1 < f ( n ; E (t, k,3))

	

C'k t n

	

2t+3

where the exponent in the lower estimation tends to the exponent in the upper

one, therefore (7) does not always hold .

Besides, we shall also obtain that

-f-1

	

,

(9)

	

f (n ; E(t,2,0) = o(n2 t(t -,) +t )

Further, we obtain that

f(n ;1K(r,r)-3 }) = 0(n 2
	 2

2r-3

which is a generalization of (5) . (10) is trivial from {K(r,r)-31 = ECr-3,2,3)

and from (9) .

All these results are obtained from two main theorems of the paper .

In order to formulate Theorem 1, we need

DEFINITION 1 . Gn is d-regular, if



d min a- (x) may G(x) (d>4).
xeG"

	

xeG"
1 +1

THEOREM 1 . If e(G n ) > n1+a and d = 1o .2 a2

	

then G (n)

contains a d-regular subgraph G m such that

1-a
and m >, na 1+« unless n is too small .

COROLLARY . If Td(n) denotes the maximum number of edges a d-
(

	

+11
regular graph can have if it does not contain any L i , l d = 10 .2 a2

and if

then

THEOREM 2. Let L(t) be a graph obtained from L where x(L) = 2

by joining each vertex of its ~-th class to each vertex of the i-th class of

K(t,t)

	

(i = 1,2 ) .

If

(10)

	

f ( n ; L ) = O(n2-a )

	

(CKE(0,11)

and

then

e(G m ) > b
m+a

f,í(n) = O(n1+a )

f(n ; L~, . . ., La ) = O ( n 1 +a )

1 _ 1 = t
P á

(12)

	

f(n ; L(t)) = O( n2- ~)

The latter theorem is a recursive one . It can be used for many

estimations if x(L) = 2 .



PROOFS .

PROOF of THEOREM 1 . Let A be a large number and let us divide

the vertices of G" into 2A classes of equal size . (Hereinafter no difference will

be made between x and C x 7 . This is allowed here.) The i-th class will be

denoted by C ;, and we may suppose that xE C, , y ~ C, implies that cr(x) z a(y)

There are two cases .

a) If C, represents less than
2 n t+a edges, we consider G m' _

= G"- 0 1 - e(Gm1 ) ? 2 n I+a

	

If Gm' contains a vertex x~ of valence

<_ ~~ n°` we omit it,

	

mZ = G m ' -

If GMZ contains a vertex x 2 of valence s 10 na we omit it, and
m

so on . At last we cannot omit any x i- from G i and since we omitted less

than
1L n

1+a edges, e(Gmi) >
5

nl+a . Further

implies that

and if

	

4

	

,

Here we used that

max G(x) Ana
xEG`"i

but (14) follows from the fact that C, contains a vertex x o of valency

2e(G) v(G) • max G(x)
XEG

v (Gmj ) = mi
>

S5 n

n1+Cc/ A = A na

6(y)`G~(xo)=And .



Therefore, the maximal valence in G mj is less than A n d and the
•

minimal one is greater than I n°( . Thus Gmj is 10A -regular and10

there exists a j o such that

and
1M k Ak • n

Since v2(G) > e(G) Tor every G,

(4A) k n
1 +0(

	

n 2•A2k .

m' ) ' 2

	

1+ae (G~

	

5
m~

	

,

	 e (G~ ) >

	

n1+a

e(Gmk) >	1

	

n1+oc
(4A)k

m >

	

• n
5A

In this case the theorem is proved .

b) If G represents more than
2 n

1+a edges, we consider the

graphs Gj- Q = 2, • . •, 2A) spanned by C
i
- u C1 . Since

P,(G )

	

1

	

1 n1+a _ 1

	

n1+a
i 0

	

2A 2

	

4A

M,
Let us put Gj= G

, and apply to it this splitting method again .
o

	

m
Either we obtain a 10A -regular graph by a) or a G 2 by b) from it . In the

latter case we apply the method to G m2 , and so on .

•
We prove here that the iteration gives a Gm1 at last, which

posseses the properties, described in Theorem 1 . Clearly



Thus

and consequently

4
)k ~ n1-a

k (1-a) Logn/Aog

On the other hand

Log rn, ,

	

Log Ák
= Log n - k Log A .

Therefore

(15)

	

Log m k

	

(1-(1-a) Log	 ) Log n .
Log A

Therefore, if o('< a and A is large enough,

(16)

	

rn k >- na

This shows that the procedure stops at last, and the obtained graph

Gm will have at least n a' vertices, if A is large enough . Clearly G m is

10A -regular and

e(Gm )

2
E .g. if A = 2 a +1, then a short computation shows that

a

á2+1
Here d=10.2

	

, and this completes our proof .

PROOF of the COROLLARY . There exists a c, > 1 such that

(18)

	

f d(n) <-c,n

4 1+a
5 m

1-a
1+a

1 +a



Let now G" be arbitrary, but having at least 3r n'+ 0( edges .

According to Theorem 1, it contains a d-regular G m such that e(G`") > c~ml+a

and m>_nF-(°`) . According to (18) G"" contains at least one Li, therefore G"

also contains an Li . Thus

PROOF of THEOREM 2. We use induction on t . Let L i = L(t)

and L 2 = L i (1) . Then L 2 = L (t + 1) . Therefore the induction is trivial, if

we know the theorem for t = 1 .

A triple ( x, y, z) will be called a cap, if x, y are joined to z .

First we estimate the number of caps in G" by eCG") then the number of

K(2,2) and finally the number of k(2,2) containing a fixed edge . This will

give the recursion .

Let G be a graph of E edges, E > 1000 n312 and let it be

d -regular, where d is a large integer fixed later . The valency of xi is (5- (x ; )

therefore the number of caps is

2
> i (~__6(-i»

	

1

	

1 4E2

	

E2

2

	

n

	

z

	

s (x~) = 2 n
_ E~

- n

for sufficiently large n . Here we applied the Cauchy inequality .

Let us denote by v ( x, y) the number of caps ( x., y, z) and by N k

the number of K(2,2) in G". Clearly



N - 1

	

Cvc~,y))
-

1

	

v 2 (x,9) _ v(xk

	

y)

2 x y

	

2

	

2

	

2,

> 1 ~~vCx,y))2 _

	

1

	

Nc
4	(n	 4

	

nl

\ 2'

	

~2 1

since N c

	

106 • n2 . Thus

in at least

K(2,2) -s . Since the graph is d-regular, s(x), G(y) is 2 d E and the even

graph, obtained by considering only the edges joining st x to st y, has at least

edges . If G" does not contain L(1 ), then this graph does not contain L , thus

Therefore, there exists an edge (x, y) such that (x, y) is contained

Let

(20)

and a=10-2p
2+ 1 . Then

N k 1

	

E 4
3 n4

1

	

E 3
3 n 4

1 E 33 n4

1 E3
n4 `fC	4 c1E .,L~ c(

	 4 d E
3

	

J
2-a

c(4d) 2
-a

E2-a • na-2 > 3
1 .

E 3 . n-4 .

-N c)> 1
3

N 2c
n 2



(21)

	

C n2+a
> E i+a

1

Thus we obtain

where c, is a constant, depending on c, d and N . (20) and (21) imply that

E 5 C2n 2-
~

i, e .
fd (n ; L(1)) = O( n2-~)

Applying Theorem 1 we obtain

f ( n ; L(1)) = 0(n 2-A )

which was to be proved

APPLICATIONS .

1) Let us denote by D(k,V the graph obtained by joining two given

vertices x and y by k independent paths of length t .

An unpublished result of Erdős states that

4

f (n ; D(2,1» = 0(n1+ e )

Let us denote by E (t, k, t) the graph, obtained by joining t ver-

tices of the first class of a K(t,t) to the vertices of D( k, $) having the same

colour, the other vertices of K (t, t) to the other vertices of D, ( k , t) . (I, e . ,

if L=D(k,t) then E(t,k,E) = L(t)) . If L is connected and bichromatic,

L(t) is uniquely determined, thus E(t,k,t) is also uniquely determined .

According to Theorem 2

2f ( n ; E (t,2,1» = 0(n- t(Y-4)+t



(23)

	

f(n ; L)

	

n

where

On the other hand, the method used in [7] gives that

Therefore

2-

- 387 -

V-2
e-1

v = v(L),

	

e = e(L)

2-2	t+i-4
f(n ; E(t,2,2)) >_ C

	

n

	

t 2 +2te+2e-1
t,2,P

If t-), oo, t is fixed, the exponents tend to 2 - t and 2 - +1
respectively. In this sense the estimations are not too bad .

2) It can be proved that

f ( n ; D ( k, 3)) = 0(n4/3 )

Therefore

2_

2
f(n ; E(t,k,3)) = O(n

	

2t+3 )

(23) gives

2- 2k+2t	
(24)

	

f(n ; E(t,k,3)) >- Ct,k,3 n

	

3k+t2 +2t(k+1)-1

If t is fixed, k-->oo, the exponent in (24) tends to 2- 2

	

This2t+3
shows that the estimation is not too bad and at the same time it disproves the

conjecture of Erdős, mentioned in the introduction . If k= 2 we obtain

estimations for f(n ; C), where C is the cube, moreover, for f (n ; { K(4,á+)-3J)
(see in the introduction) but (24) is not better than the trivial n 3/2 obtained

from (2) . (Clearly, if L i c L 2 , f (n ; L, )!5 f (n ; L 2 ) and here C K(2,2) .)



3) Though it is not a new result, it is interesting to see that (1) is

an immediate. consequence of Theorem 2 . Indeed, if L = K0,1) and t = r-1 ,

then L(t) = K(r,r) thus

defines an a r such that

1 _ 1

	

= r-1
ar

	

a1

f(

	

r))

	

O( 2-a ,.n ; KCr,

	

=

	

n

	

)

Since a1=1,
ár

= r and this gives (1) . Since (1) is sharp if

r = 1 , 2, 3 , thus Theorem 2 is the best possible in a certain sense .

4) Let T be any tree, then f (n,T) = 0(n) . Therefore

If e .g. T is a path of length S, then

But T(1) _ {C-1} and this proves (4) .

1
f ( n ; T(t» = O( n2 t+1 ) ,

f(n ;T(1)) = O(n3/2 )

Here we stop our investigations, though Theorem 2 has many

further applications .

(The reader can easily check that all the results, stated in the

introduction, were really proved .)

OPEN PROBLEMS

By the method of random graphs we can show that for every d and

E, there is G n , e(G
n
) _ [ n3/2 ] which does not have a d-regular subgraph

GM such that e(G~n ) ? &\I-n m .

Many open problems remain, we just state two of them : Is it true

that for every a and of if n > n o (a,a) and d>d •( F-,a) every Gn e(Gn ) >n i+a

contains a d-regular subgraph



M

	

1-0(

	

M

	

1+0C

Is it true that every G", e(G") _ [n log n, contains a d-regular

subgraph Gm , e (G"') > E m Log m where m tends to infinity together with n ?

It would be interesting to determine the correct order of magnitude

of J(n,C) .
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