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Abstract. We show that the de Bruijn–Erdős condition for the error term
in their improvement of Fekete’s Lemma is not only sufficient but also necessary in
the following strong sense. Suppose that given a sequence 0 ≤ f(1) ≤ f(2) ≤ f(3)
≤ · · · such that

(1)

∞∑

n=1

f(n)/n2 = ∞.

Then, there exists a sequence {b(n)}n=1,2,... satisfying

(2) b(n+m) ≤ b(n) + b(m) + f(n+m)

such that the sequence of slopes {b(n)/n}n=1,2,... takes every rational number.
When the series (1) is bounded we improve their result as follows. If there

exist an N and a real µ > 1 such that (2) holds for all pairs (n,m) with N ≤ n
≤ m ≤ µn, then limn b(n)/n exists.

1. Fekete’s lemma on subadditive sequences

An infinite sequence of reals a(1), a(2), . . . , a(n), . . . is called subadditive

if a(n+m) ≤ a(n) + a(m) holds for all integers n,m ≥ 1. Every calculus
textbook contains Fekete’s [7] Lemma as a theorem or as an exercise, see,
e.g., [11]. It says that if the sequence {a(n)} is subadditive, then {a(n)/n}
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has a limit (possible negative infinity). Moreover, that limit equals to the
infimum

lim
n→∞

a(n)

n
= inf

k≥1

a(k)

k
.

The aim of this manuscript is to explore what enhancements of Fekete’s
lemma are possible.

2. Sub-2 sequences and an error term by de Bruijn and Erdős

A sequence {a(n)} is called µ-subadditive with a threshold N ((µ,N)-
subadditive, for short) if

(3) a(n+m) ≤ a(n) + a(m)

holds for all integers n,m such that N ≤ n ≤ m ≤ µn.

Theorem 1 (de Bruijn and Erdős, [4, Theorem 22]). Suppose that the

sequence {a(n)} satisfies (3) for N ≤ n ≤ m ≤ 2n. Then the sequence of

slopes {a(n)/n} has a limit (possible negative infinity). Moreover, that limit

equals to the infimum,

lim
n→∞

a(n)

n
= inf

k≥N

a(k)

k
.

Actually, in [4] they considered the caseN = 1 only. For self-containedness
we present a greatly simplified proof for Theorem 1 in Section 5.

Nearly subadditive sequences. Let f(n) be a non-negative, non-
decreasing sequence. deBruijn and Erdős [4] called the sequence {a(n)}
subadditive with an error term f (or nearly f -subadditive, or f -subadditive
for short) if

(4) a(n+m) ≤ a(n) + a(m) + f(n+m)

holds for all positive integers n,m ≥ 1. The case f(x) = 0 corresponds to
the cases discussed above.

They showed that if the error term f is small,

(5)

∞
∑

n=1

f(n)/n2 is finite,

and (4) holds for all n ≤ m ≤ 2n, then the limit of {a(n)/n} still exists.
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Nearly subadditivity is really important. Subadditivity is impor-
tant, it appears in all parts of mathematics. We all have our favorite ex-
amples and applications. But nearly subadditivity is even more applicable,
here we mention a few areas.

In the beginning of the Bollobás–Riordan book [2] the de Bruijn–Erdős
theorem is listed (as Lemma 2.1 on p. 37) among the important useful tools
in Percolation Theory. The de Bruijn–Erdős theorem is widely used in in-
vestigating sparse random structures, e.g., Bayati, Gamarnik, and Tetali [1]
(Proposition 5 on p. 4011), Turova [13], or Kulczycki, Kwietniak, and Jian
Li [10] concerning entropy of shift spaces.

Also, recurrence relations of type (4) are often encountered in the anal-
ysis of divide and conquer algorithms,

a(n+m) ≤ a(n) + a(m) + cost of cutting.

see, e.g., Hsien-Kuei Hwang and Tsung-Hsi Tsai [9]. In economics it is an
essential property of some cost functions that cost(X + Y ) ≤ cost(X) +
cost(Y ). Similar relations appear in physics and in combinatorial optimiza-
tion (see, e.g., Steele [12]).

Also see, e.g., Capobianco [5] concerning cellular automatas, Ceccherini-
Silberstein, Coornaert, and Krieger[6] for an analogue on cancellative
amenable semigroups.

3. Sub-µ sequences with µ < 2

De Bruijn and Erdős [4] stated that ‘. . . the inequality in (7.1) [i.e., the
condition n/2 ≤ m ≤ 2n] cannot be replaced by µ−1n ≤ m ≤ µn for any
µ < 2’. In their papers [3,4] they deal with many conditions and sequences,
we could not really know what was in their minds, but our first new result
is a strengthening of Theorem 1 for all µ > 1.

Theorem 2. Suppose µ > 1 and N ≥ 1 are given. If {a(1), a(2), . . .} is
(µ,N)-subadditive, i.e.,

a(n+m) ≤ a(n) + a(m) ∀n ≤ m ≤ µn, n,m ≥ N,

then limn→∞
a(n)
n exists and equals infk≥N

a(k)
k . (It may be −∞.)

Let us call a sequence {a(n)} (µ,N, f)-subadditive if (4) holds for all
N ≤ n ≤ m ≤ µn. Our Theorem 2 yields the following corollary.

Theorem 3. Suppose µ > 1 and N ≥ 1 are given and f is a non-negative
monotone increasing real function satisfying (5). If the sequence {a(1), a(2),
. . .} is (µ,N, f)-subadditive, i.e.,

a(n+m) ≤ a(n) + a(m) + f(n+m) ∀m ≤ n ≤ µm, m,n ≥ N,
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then limn→∞
a(n)
n exists. (It may be −∞.)

The proofs are presented in Section 5.

4. How large the error term f(x) could be?

It is very natural to ask how more one can extend the de Bruijn–Erdős
theorem concerning f -nearly subadditive sequences (the case µ = 2, N = 1).
Especially, how large the error term could be?

f(x) = o(x) is necessary. Suppose that f(n) is non-negative and
lim sup f(n)/n > L > 0. We can easily construct a sequence {a(n)} satisfy-
ing (4) for all pairs m,n ≥ 1 such that lim a(n)/n does not exist. We do not
even use that f is monotone or not.

Given such an f one can find a sequence of integers 1 ≤ n1 < n2 < n3 <
. . . such that f(ni)/ni > L/2, and ni+1 ≥ ni +2 for all i ≥ 1. Define a(n) =
f(ni) if n = ni and 0 otherwise. �

f(x) = o(x) is not sufficient. Condition (5) allows f(x) = O(x1−c)
(c > 0 fixed) or even f(x) = O(x/(logx)1+c). The first author observed that
f(x) could not be Ω(x/ logx). In 2016 he [8] proposed the following problem
for Schweitzer competition for university students. “Prove that there exists
a sequence a(1), a(2), . . . of real numbers such that

a(n+m) ≤ a(n) + a(m)+
n+m

log(n+m)

for all integers m,n ≥ 1, and the set {a(n)/n : n ≥ 1} is everywhere dense
on the real line.” There were two correct solutions: by Nóra Frankl, and
Kada Williams and two partial solutions by Balázs Maga, and János Nagy.

de Bruijn and Erdős got the best result. We show that the de
Bruijn–Erdős condition (5) for the error term is not only sufficient but also
necessary in the following strong sense.

Theorem 4. Let f(n) be a non-negative, non-decreasing sequence and
suppose

(6)
∑

1≤n<∞

f(n)/n2 = ∞.

Then there exists a nearly f -subadditive sequence b(1), b(2), b(3), . . . of ratio-
nal numbers, i.e., for all integers m,n ≥ 1

b(n+m) ≤ b(n) + b(m)+f(n+m)

such that the set of slopes takes all rationals exactly once.
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In particular we have {b(n)/n : n ≥ 1} = Q. The proof is constructive
and presented in Section 6.

5. Proofs of the improvements

Here we give the proofs of Theorems 1–3.

A new proof for Theorem 1. Fix a k, k ≥ N . Write n as n =
(⌊n/k⌋ − 1)k + β where k ≤ β ≤ 2k − 1. We will show that

(7) a(n) ≤ (⌊n/k⌋ − 1)a(k) + a(β).

To prove (7) we need a definition. A sequence of positive integers X :=
{x1, x2, . . . , xt} is called 2-good if 1/2 ≤ xi/xj ≤ 2 holds for all 1 ≤ i, j ≤ t.
Take the two smallest members xi, xj ∈ X , delete them from X and join a
new member xnew := xi + xj . The new sequence X ′ := X \ {xi, xj} ∪ {xnew}
is 2-good as well. Note that the sum of the members of X is the same as
in X ′. If the sequence {a(x)} is (2,N)-subadditive then a(xnew) ≤ a(xi) +
a(xj), which implies that

(8)
∑

x∈X′

a(x) ≤
∑

x∈X

a(x).

Define the set X⌊n/k⌋ of length ⌊n/k⌋ as {k, k, k, . . . , k, β}. It is obviously
a 2-good sequence with sum n. Define the sets Xt of length t for ⌊n/k⌋
≥ t ≥ 1 by the above rule, Xt−1 := X ′

t. We obtain X⌊n/k⌋ −→ · · · −→ Xt

−→ Xt−1 −→ · · · −→ X1 = {n}. Then (8) gives

a(n) =
∑

x∈X1

a(x) ≤ · · · ≤
∑

x∈Xt

a(x)

≤ · · · ≤
∑

x∈X⌊n/k⌋

a(x) =
(

⌊n/k⌋ − 1
)

a(k) + a(β).

To complete the proof observe that (7) implies

a(n)

n
≤ a(k)

⌊n/k⌋ − 1

n
+

1

n
( max
k≤β≤2k−1

a(β))

for all n ≥ k ≥ N . Therefore

lim sup
n→∞

a(n)

n
≤ a(k)

k

holds for every k. So the limit superior of the sequence {a(n)/n} does not
exceed its infimum, these two values must be equal, so the sequence is con-
vergent. �
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Sub-1+ sequences. For the proof of Theorem 2 we investigate se-
quences where the subadditivity holds only for a very sparse set of pairs
(n,m).

A sequence {a(n)} is called (1+,N) subadditive if the following two in-
equalities hold for all n ≥ N :

a(2n) ≤ a(n) + a(n), a(2n+ 1) ≤ a(n) + a(n+ 1).

Define q(n) := max
{ a(n)

n , . . . , a(2n−1)
2n−1 , a(2n)2n

}

.

Lemma 5. Suppose that the sequence {a(n)} is (1+,N) subadditive.
Then for n ≥ N the sequence {q(n)} is non-increasing, q(n) ≥ q(n+ 1).

We only have to show that q(n) is at least as large as a(2n+1)/(2n+1)
and a(2n+ 2)/(2n+ 2). The (1+,N) subadditivity implies

q(n) ≥
{

a(n+1)
n+1 ≥ a(2n+2)

2n+2 ,

max{a(n)
n , a(n+1)

n+1 } ≥ n
2n+1

a(n)
n + n+1

2n+1
a(n+1)
n+1 ≥ a(2n+1)

2n+1 .

Proof of Theorem 2. Since the case µ ≥ 2 is covered by Theorem 1,
we may suppose that 1 < µ < 2. We can fix a positive integer k such that

(1 + µ)k−1 ≤ 2k+1 < (1 + µ)k.

Given any n define the sequences u0, u1, . . . , uk and v0, v1, . . . , vk as follows.

u0 = v0 := n, ui+1 := 2ui, vi+1 := vi + ⌊µvi⌋, (i = 0, 1, . . . , k − 1).

We have uk = 2kn and vk > (1 + µ)kn− (1 + µ)k/µ. So there exists an N1

(depending only on µ and k) such that 2uk ≤ vk holds in the above process
for every integer n ≥ N1.

Let N2 := max{N,1/(µ−1)}. Then the sequence {a(n)} is (1+,N2) sub-
additive. Lemma 5 implies that L = limn→∞ q(n) exists. If L = −∞ then
limn→∞ a(n)/n = −∞ as well, and we are done. Since L < ∞, from now on,
we may suppose that L is a real number.

Choose an (arbitrarily small) ε > 0. There exists an N3 (depending on ε,
µ, N , and {a(n)}) such that q(n) < L+ ε for every n ≥ N3. By the definition
of q we get

(9) a(n)/n < L+ ε

for every n ≥ N3.
We are going to show that for n ≥ max{N1,N2,N3}

(10) a(n)/n > L+ ε− ε (1 + µ)k .

Since this holds for every ε > 0 the limit a(n)/n exists and equals to L.
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To prove (10) we need the following claim which holds for each i ∈ {0, 1,
. . . , k − 1}.

Claim 6. If a(w)/w ≤ L+ ε− η for every w ∈ [ui, vi], then a(z)/z <
L+ ε− η

1+µ for every z ∈ [ui+1, vi+1].

Indeed, every z ∈ [ui+1, vi+1] can be written in the form z = x+ y where
x ∈ [ui, vi], x ≤ y ≤ µx. Apply subadditivity for (x, y) and the upper bound
L+ ε− η for a(x)/x and the upper bound L+ ε for a(y)/y. We obtain

a(z)

z
=

a(x+ y)

x+ y
≤ a(x) + a(y)

x+ y

=
a(x)

x

x

x+ y
+

a(y)

y

y

x+ y
< (L+ ε− η)

x

x+ y
+ (L+ ε)

y

x+ y

= L+ ε− η
x

x+ y
≤ L+ ε− η

1

1 + µ
.

The end of the proof of Theorem 2. Consider any n with n ≥
max{N1,N2,N3}. By (9) we have a(n)/n = L+ ε− h for some h > 0. Con-
sider the intervals [ui, vi] for i = 0, 1, . . . , k, where [u0, v0] consists of a single
element, namely n. Using Claim 6 we get that a(x) < L+ ε− h/(1 + µ)i

for each x ∈ [ui, vi] for 1 ≤ i ≤ k. Especially, a(x)/x < L+ ε− h/(1 + µ)k

for each x ∈ [uk, vk]. Since 2uk ≤ vk we obtain q(uk) < L+ ε− h/(1 + µ)k.
But q(uk) ≥ L, since q(n) is non-increasing. This implies h < ε(1+ µ)k. We
obtained that a(n)/n = L+ ε− h > L+ ε− ε(1+µ)k as claimed in (10). �

Proof of Theorem 3 using Theorem 2. We utilize the proof from [4]
(bottom of p. 163). For n ≥ N define

G(n) := a(n) + 3n

(

∑

x≥n

f(x)/x2
)

.

Then the monotonicity of f , the relation n ≤ m ≤ µn, and an easy calcula-
tion imply that

G(n+m) ≤ G(n) +G(m)

whenever (4) holds for (n,m).
Theorem 2 can be applied to {G(n)}, so we have that the limit

lim
n→∞

G(n)

n
= lim

n→∞

(

a(n)

n
+ 3

(

∑

x≥n

f(x)

x2

))

exists. Here the last term tends to 0 as n → ∞ by (5) and we are done. �
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6. Proof of Theorem 4, a construction

A typical subadditive function is concave like, e.g., for a(x) =
√
x we

have
√
x+ y ≤ √

x+
√
y (for x, y ≥ 0). The main idea of the construction for

Theorem 4 is that a nearly f -subadditive sequence {a(n)} could be (strictly)
convex with limn→∞ a(n)/n = ∞.

A convex f -subadditive function.

Claim 7. Suppose that f(n) is a non-negative, non-decreasing sequence,
0 ≤ f(2) ≤ f(3) ≤ . . . . Define f(1) = a(1) = 0 and in general let

(11) a(n) := n

( n
∑

i=1

f(i)

i2

)

.

Then the sequence {a(n)} is nearly f -subadditive, it satisfies (4).

Proof. Write down the definition of a(n), simplify, use the monotonic-

ity of f , finally the estimate
(

∑

u<i≤v 1/i
2
)

< (1/u)− (1/v) (for integers

1 ≤ u < v). We obtain

a(n+m)− a(n)− a(m)

= n

(

∑

i≤n+m

f(i)

i2

)

+m

(

∑

i≤n+m

f(i)

i2

)

− n

(

∑

i≤n

f(i)

i2

)

−m

(

∑

i≤m

f(i)

i2

)

= n

(

∑

n<i≤n+m

f(i)

i2

)

+m

(

∑

m<i≤n+m

f(i)

i2

)

≤ nf(n+m)
(1

n
− 1

n+m

)

+mf(n+m)
( 1

m
− 1

n+m

)

= f(n+m). �

Claim 8. The above sequence {a(n)} defined by (11) is non-negative and
convex, i.e., for n ≥ 2 we have

a(n) ≤ a(n− 1) + a(n+ 1)

2
.

Proof. We have

a(n− 1) + a(n+ 1)− 2a(n)

= (n− 1)

(

∑

i≤n−1

f(i)

i2

)

+ (n+ 1)

(

∑

i≤n+1

f(i)

i2

)

− 2n

(

∑

i≤n

f(i)

i2

)

=
f(n+ 1)

(n+ 1)
− (n− 1)

f(n)

n2
≥ f(n+ 1)

(n+ 1)n2
≥ 0. �
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The end of the proof of Theorem 4. In this section {f(n)} is given
by Theorem 4, and {a(n)} is the well-defined nearly f -subadditive, convex
sequence obtained by (11) in Claim 8. Then (6) implies limn→∞ a(n)/n = ∞.

For the rest of the proof the main observation is the following: If c(1)
≤ c(2) ≤ c(3) ≤ · · · is a monotone sequence, and {a(n)} is f -subadditive,
then

b(n) := a(n)− c(n)n is f subadditive as well.

Indeed,

b(n+m)− b(n)− b(m)− f(n+m) =
[

a(n+m)− c(n+m)(n+m)
]

−
[

a(n)− c(n)n
]

−
[

a(m)− c(m)m
]

− f(n+m)

=
[

a(n+m)− a(n)− a(m)− f(n+m)
]

+
(

c(n)− c(n+m)
)

n+
(

c(m)− c(n+m)
)

m ≤ 0.

Let r1, r2, r3, . . . be an enumeration of Q. We will define a sequence
1 ≤ n0 ≤ n1 ≤ n2 ≤ · · · and simultaneously {c(n)} (and thus {b(n)} as well)
such that

(D) the slopes {b(n)/n : 1 ≤ n ≤ ni} are all distinct and rational, and
(R) ri ∈ {b(n)/n : 1 ≤ n ≤ ni} (i ≥ 1).
We proceed by induction on i. Let n0 be the smallest x ≥ 1 such that

f(x) > 0. Equation (6) implies that 1 ≤ n0 < ∞. Choose c(1) ≤ . . . ≤ c(n0)
such that for all 1 ≤ x ≤ n0, x ∈ N the fractions b(x)/x = (a(x)− c(x)x)/x
are all rationals and they are all distinct. Since these are finitely many
constraints of the form

a(x)

x
− c(x) �= a(y)

y
− c(y) 1 ≤ x �= y ≤ n0

and the set Q is everywhere dense on R, one can easily choose appropriate
c(x)’s.

If n0, n1, . . . , ni has been already defined (satisfying properties (D) and
(R)) then proceed as follows.

If ri+1 ∈ {b(x)/x : 1 ≤ x ≤ ni}, then let ni+1 := ni.
If ri+1 �∈ {b(x)/x : 1 ≤ x ≤ ni} then define ni+1 as the smallest integer x

satisfying

x > ni,
a(x)

x
− c(ni) > ri+1.

Such x exists. Let c(ni+1) :=
a(ni+1)
ni+1

− ri+1. It follows that c(ni) < c(ni+1).

Then select c(x) for integers x with ni < x < ni+1 such that the values of
a(x)/x− c(x) are all rationals, distinct from each other, have no common
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values with {b(n)/n : 1 ≤ n ≤ ni} ∪ {ri+1} and also c(ni) ≤ c(ni + 1) ≤ · · ·
≤ c(ni+1). These are finitely many conditions but c(ni) < c(ni+1) and Q is
everywhere dense, so the induction step can be done. This completes the
construction. �

7. Conclusion, problems

Let X ⊆ N×N, f : N → R. The sequence {a(n)} is (X, f)-subadditive
if a(m+ n) ≤ a(n) + a(m) + f(n+m) holds for (n,m) ∈ X . We have found
conditions for X and f , strengthening the original Fekete’s lemma and its
de Bruijn–Erdős generalization, which ensure that lim a(n)/n exists. Con-
cerning further thinning of X we propose two problems.

Is it possible to replace the constraint n ≤ m ≤ µn in Theorem 2 by
some condition like n ≤ m ≤ n+ r(n) where r(n) = o(n) is some slow grow-
ing function? (Probably not).

What is the structure of 1+ subadditive sequences? Can we tell more
than Lemma 5?

Having the threshold N is a genuine extension. Indeed, consider
the following sequence. Suppose that 2 ≤ N ≤ n1 < n2 < n3 < . . . are inte-
gers such that ni+1 −N ≥ ni and lim supni+1/ni = ∞. Define for all i ≥ 1
and positive integer n

a(n) :=











1 if n ≤ n1

1 if ∃ i such that ni+1 −N ≤ n ≤ ni+1 − 2,

⌈n/ni⌉ if ∃ i such that ni ≤ n < ni+1 (but |n−ni+1| �∈ [2,N ]).

This sequence is subadditive for m ≥ n ≥ N . Indeed, if f(n+m) ≤ 2 then
f(n)+ f(m) ≥ f(n+m) since f(x) ≥ 1 for all x. Otherwise, ni ≤ (n+m) <
ni+1 for some i and f(n+m) = ⌈(n+m)/ni⌉ > 2. We obtain (n+m)/ni > 2
so m > ni and ni < m < ni+1. If n ≥ ni then ni ≤ n ≤ m < ni+1 −N so
f(n) = ⌈n/ni⌉ and f(m) = ⌈m/ni⌉ and we are done. So we may suppose
that n < ni. Then

f(n+m) = ⌈(n+m)/ni⌉ ≤ 1 + ⌈m/ni⌉ ≤ f(n) + f(m)

completing the proof.
However it does not seem to be easily transformed to a true subadditive

one, because there are infinitely many (x, y) pairs, namely 1 ≤ x < N and
x+ y = ni+1 − 1, such that a(x+ y)− a(y)− a(x) = ⌈(ni+1 − 1)/ni⌉ − 2 is
arbitrarily large.
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