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Abstract

A (v, k, t) packing of size b is a system of b subsets (blocks) of a v-element underlying
set such that each block has k elements and every -set is contained in at most one block.
P(v, k, t) stands for the maximum possible b. A packing is called abundant it b > v. We
give new estimates for P (v, k, ¢) around the critical range, slightly improving the Johnson
bound and asymptotically determine the minimum v = vg(k, t) when abundant packings
exist. For a graph G and a positive integer c, let x¢(G, ¢) be the minimum value of k such
that one can properly color the vertices of G from any assignment of lists L(v) such that
|[L(v)| = k forall v € V(G) and |L(u) N L(v)| < ¢ for all uv € E(G). Kratochvil, Tuza
and Voigt in 1998 asked to determine lim,,— o0 x¢(Ky, ¢)/+/cn (if it exists). Using our bound
on vy (k, t), we prove that the limit exists and equals 1. Given ¢, we find the exact value of
xe(Ky, ¢) for infinitely many .
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1 Preliminaries on hypergraphs

A hypergraph H = (V, £) consists of a set of vertices V = V(H) and a collection £ of
subsets of V called edges or blocks, i.e., multiple copies of edges are allowed. Often we take
V(H) = [v], where [v] := {1, 2, 3, ..., v}. The degree of a vertex x € V, denoted by ds/(x)
or just by d, is the number of edges containing the vertex x.
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A set of distinct vertices {xy, , ..., x,,} is called a system of distinct representatives (SDR,
for short) of the (multi)family &€ = {Ey, ..., E,} if x; € E; for each i € [m]. By classic
Hall’s Theorem [1], £ has an SDR if and only if it satisfies Hall’s condition

‘ U E‘ > €| forall €' C&. )
Eeg&’

A hypergraph is k-uniform if each of its edges has k elements. Itis a t-packing if [ ENE’| <
t for any two distinctedges E, E’ € €. The following theorem is usually attributed to Johnson
[2], who used it to get upper bounds for error-correcting codes. It was rediscovered several
times, e.g., Bassalygo [3], Corrddi [4]. Let £ := {Eq, ..., E;} be a family of k-sets such
that |[E; NEj| <tforalll <i < j <m.Then

m
V= ‘UEl
i=1

A (v, k, t) packing of size b is a system of b subsets (blocks) of a v-element underlying
set such that each block has k elements and every #-set is contained in at most one block.
P (v, k, t) stands for the maximum possible b. A packing is called abundant if b > v. For
example, the finite affine plane AG(2, ¢) of order ¢ is a (perfect) (¢2, ¢, 2) packing with
g2 + g blocks, so it is abundant.

Let vo(k, t) stand for the minimum v that P (v, k, t) > v. For example, we have vo(q, 2) <
g% if an AG(2, q) exists. Applying (2) to v + 1 blocks of an abundant packing one gets
v > (v+ Dk?/(v(t — 1) + k). Rearranging we get v (v(r — 1) — k? + k) > k? and thus

mk?

> .
T m—-De-1D+k

(@)

volk, 1) > (k> —k)/(t — 1). 3)

2 Main result and an application

Our main aim here is to show that (3) gives the true order of magnitude of vg.

kZ
Theorem 1 Let t > 2 and suppose that k — oco. Then vy(k,t) = (1 + o(1)) —.

t—1
Leaving out an arbitrary element from each block of a (v, k, t) packing one obtains a
(v, k — 1, 1) packing of the same size (for k > ¢ > 2). In this way one can see that the
sequence {vg(k,t) : k =t,t 4+ 1,t + 2,...} is strictly increasing. So Theorem 1 follows
from (3) and an explicit construction of an infinite series of abundant packings for a dense
sequence of k’s giving us an asymptotically matching upper bound. From now on, it will be
more convenient to use ¢ for t — 1. The following construction is presented in Sect. 4.

Construction 2 Let ¢ > 1 and suppose that q is a prime power, ¢ < q — 1 and ¢ divides

qg — 1. Then
2 2
—1 —1 1
P<q +1,q,c+1>zq—+{qu J
c c c

‘We obtain for these values that

g’ —1
vo(g,c+1) < + 1. “)
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It is known (see [5]) that for every sufficiently large real k there exists aprime g € [k, k+k%¢]
such that ¢ divides ¢ — 1. Then the monotonicity of vy and (4) yield

q° -1

2
volk,c+1) <vo(g,c+1) < +1 <%+0(k1'6).
This together with (3), completes the proof of Theorem 1.

Theorem 1 can answer a question on list colorings of graphs. Recall that a list L for a graph
G is an assignment to every v € V(G) a set L(v) of colors that may be used for coloring
v. Graph G is L-colorable if there exists a proper coloring f of the vertices of G from L,
ie,if f(v) € L(v) forall v € V(G) and f(u) # f(v) for all uv € E. The list chromatic
number of G, x¢(G), is the least k such that G is L-colorable, whenever |L(v)| = k for all
v e V(G).

A list L for a graph G is a (k, c)-list if |L(v)| = k for all v € V(G) and |L(u) N
L()| < c for all uv € E(G). Kratochvil, Tuza and Voigt [6] introduced x,(G, c), the
least k& such that G is L-colorable from each (k, ¢)-list L. They showed that \/cn/2 <
xe(Ky, ¢) < +/2ecn, where K, is the complete graph on n vertices. They asked whether
the limit lim,_, oo x¢(Ky, ¢)/+/cn exists. In Sect. 5 we use Theorem 1 to prove that the limit
exists and is 1. We also find the exact value of y¢ (K}, c) for infinitely many values of n.

3 Explicit gaps

There are many results concerning packings when equality holds in (2). These packings have
14 (k% —k)/(t — 1) blocks and are called symmetric (t — 1)-designs, see [1]. By improving (3)
we establish large explicit gaps between vo(k, t) and vo(k + 1, ¢) for many cases. These gaps
will be used in our second topic concerning (k, c)-list colorings of graphs (see Sect. 5).

1 2(qg — 1
Claim3 Letg >c > 1. The”00(4+1,c+1)27<q2+q+%>+1,
¢ c

Note that using (2), i.e., the inequality v > (v+ 1)(g + 1)2/(vc +¢q + 1), leads to the bound
vo > (g% + q)/c + O(1). So we have a slight improvement on the Johnson bound in this
critical range.

One can summarize (4) and Claim 3 in one formula:

g —1 2(q—c+1)
C

, 1<
vo(g,c+1) < o

1
+1<;<qz+q+ >+1§v0(q+1,6+1) )

whenever ¢ is a prime power, | <c¢ < g — 1, and ¢ divides ¢ — 1.

Lemma4 Let c > 1 and suppose that £ is a q-uniform hypergraph on vertex set Y such that
|El = g+2and |ENE'| < c—1forany two distinct edges. Then |Y| > %(q%—q—f—%).
Proof Let d, be the degree of the vertex y. We have

d, , 2
2(2): 3 |EmE|s<c—1)(q;>, ©)

yeY E,E'eE:E#E’

Y dy=Y |El=(q+24q. @)

yey Ee€
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Multiply (6) by —2, (7) by 2¢, add them up and rearrange. We get

cle+ DY+ —dy—)dy —c—1) = (c+ Dglg + 1) +2(g —c + ).
y

Discarding the summation and rearranging we get the desired lower bound for |Y|. O
Proof of Claim 3 Let P be an abundant (v, ¢ + 1, ¢ + 1) packing on the vertex set V. Since

Y ode=)Y IPI=[Plg+ 1 >v(g+1),

xeV PeP

there exists an x € V withdy > g + 1. So one can find g 42 edges of P of the form {x} U E;
where the family {Ey, ..., E442}isa (v — 1, g, ¢) packing on the vertex set ¥ = V \ {x}.
One can now apply Lemma 4 to complete the proof. O

4 Construction of a packing

2 2
In this section we present Construction 2, a <% +1,q9,c+ 1) packing P of size qT_l +

[‘ICLIJ whenever ¢ > 1, g is a prime power, ¢ < ¢ — 1, and ¢ divides ¢ — 1.

Let F be the g-element finite field and let g be an element of order ¢ in the multiplica-
tive group F\{0}. Set H = {1, g, g2, ..., g '}. It is a c-element subgroup of F\{0}. For
(a,b), (@,b") € (F x F) we say that (a, b) ~ (a’, ') if there exists an & € H such that
(@', b") = (ha, hb). This is an equivalence relation with {(0, 0)} being a 1-element class.
Each other equivalence class is a collection of ¢ elements in (F x F)\{(0, 0)}. So there are
1 + (g% — 1)/c equivalence classes. The equivalence class containing (a, b) is denoted by
(a, b). These equivalence classes form the vertex set V of the packing P.

For (a, b) # (0, 0), define the set L{a, b) = {{x, y) : ax + by € H}. Since H is a group,
ax + by € H implies (h'a)x + (W'b)y € H, forall i’ € H.Hence L{a, b) is a well-defined
subset of V. The next statement is a consequence of basic linear algebra.

Claim 5 (Furedi [7]) Let (V, L) be the hypergraph with vertex set V. = {{a, b) : a,b € F}
and edge set L = {L{a,b) :a,b € F, (a,b) # (0,0)}. Then

(@) L is a q-uniform hypergraph, |L{a, b)| = q,
(ii) V has1+ (q2 — 1)/c vertices,
(iii) L has (q2 — 1)/c edges.
(iv) Suppose that (a, b) = (a’,b"). Then |L{a, b)NL{a’,b')| =c wheneverdet(s, Z,) #0
and |L{a, b) N L{a’, b')| = 0 whenever this determinant is 0.

Define the sets V,,, := {(x,y) : y = mx, (x,y) # (0,0)} for m € F and let V, :=
{{(x,y) : x =0, (x,y) # (0,0)}. Then |Vy| = (¢ — 1)/c and these sets form a partition of
V \ (0, 0). Moreover, |V, N L{a, b)| < 1 foreach (a,b) € V.

Select | (g + 1)/c] disjoint c-sets C1, Ca, ... from F U {oco} and define L (i) := U{V, :
a € Ci} U {{(0,0)}. Then these are g-element sets pairwise meeting in (0, 0). Moreover,
|[L#E)N L{a, b)| < c.Finally, P := LU{L(1), L(2), ...} is a packing we were looking for.
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5 List colorings

In this section we answer the question of Kratochvil, Tuza and Voigt [6] on colorings of
complete graphs from (k, c)-lists.

Theorem 6 Letc > 1. Then

(1) lim,— o0 x¢(Ky, €)/s/cn = 1.
(i) If g is a prime power, c < q — 1 and c divides q — 1, then x¢(K,,c) = q + 1 for all

21 1 2(q—c+1
ne[q . +2,;<q2+q+u>+l].

c+1

Proof The complete graph K, is L-colorable if and only if the set of lists {L(v) : v € [n]}
satisfy Hall’s condition (1). (This observation is due to Vizing [8].) A (k, c)-list corresponds
to a (c+1)-packing of k-sets. So x¢(K,, ¢) > kif and only if there is an abundant (v, k, c+1)
packing with v < n. Hence

xe(Kp,o)=qg+1 < wvo(g.c+1) <n=<wvo(g+1,c+1). (®)

To make (8) more clear, let us explain. If vo(g, ¢+ 1) < n, then there exists a (v, g, c+ 1)
packing P of size v + 1 < n. Assign the members of P to the first v + 1 vertices of K,, and
assign completely disjoint g-sets to the rest of the vertices. This assignment does not satisfy
Hall’s condition, so we obtain x;(K,, c) > g. On the other hand, if n < vo(¢ + 1,¢c+ 1)
then any (¢ + 1, ¢)-list assignment L of K, is a (¢ + 1)-packing of (¢ + 1)-sets of size at
most vo(q + 1, ¢ + 1). So neither {L(v) : v € [n]} is abundant, nor any part of it is abundant.
Therefore, it satisfies Hall’s condition and thus implying K, is L-colorable.

The proof now follows from Theorem 1, (5), and (8). ]

For a fixed ¢ > 1, one might be interested in knowing what is the maximum value of
xe(G, ¢) over all n-vertex graphs G. Note that if H is an induced subgraph of G, then
xe(H,c) < x¢(G, c), but this may not hold true for non-induced subgraphs. We have the
following conjecture.

Conjecture7 Ifc,n > 1 and G is an n-vertex graph, then x¢(G, ¢) < x¢(K,, ¢).

Work [6] generated lots of further research, especially concerning planar graphs, e.g., [9].
For further recent results concerning separated list colorings see [10, 11].
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