

Minimal abundant packings and choosability with separation

Zoltán Füredi¹ · Alexandr Kostochka² · Mohit Kumbhat³

Received: 9 January 2024 / Revised: 18 August 2024 / Accepted: 22 August 2024 / Published online: 3 September 2024

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

A (v,k,t) packing of size b is a system of b subsets (blocks) of a v-element underlying set such that each block has k elements and every t-set is contained in at most one block. P(v,k,t) stands for the maximum possible b. A packing is called *abundant* if b>v. We give new estimates for P(v,k,t) around the critical range, slightly improving the Johnson bound and asymptotically determine the minimum $v=v_0(k,t)$ when *abundant* packings exist. For a graph G and a positive integer c, let $\chi_\ell(G,c)$ be the minimum value of k such that one can properly color the vertices of G from any assignment of lists L(v) such that |L(v)|=k for all $v\in V(G)$ and $|L(u)\cap L(v)|\leq c$ for all $uv\in E(G)$. Kratochvíl, Tuza and Voigt in 1998 asked to determine $\lim_{n\to\infty}\chi_\ell(K_n,c)/\sqrt{cn}$ (if it exists). Using our bound on $v_0(k,t)$, we prove that the limit exists and equals 1. Given c, we find the exact value of $\chi_\ell(K_n,c)$ for infinitely many n.

Keywords Packing of sets · t-designs · Choosability · Complete graph · Graph colorings

Mathematics Subject Classification 05C15 · 05B40

1 Preliminaries on hypergraphs

A hypergraph $\mathcal{H} = (V, \mathcal{E})$ consists of a set of vertices $V = V(\mathcal{H})$ and a collection \mathcal{E} of subsets of V called edges or blocks, i.e., multiple copies of edges are allowed. Often we take $V(\mathcal{H}) = [v]$, where $[v] := \{1, 2, 3, \dots, v\}$. The degree of a vertex $x \in V$, denoted by $d_{\mathcal{H}}(x)$ or just by d_x , is the number of edges containing the vertex x.

Communicated by P. Östergård.

Zoltán Füredi furedi.zoltan@renyi.hu; z-furedi@illinois.edu

Mohit Kumbhat mkumbhat@unr.edu

- Rényi Mathematical Institute, Budapest, Hungary
- University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
- ³ University of Nevada at Reno, Reno, NV 89557, USA

4190 Z. Füredi et al.

A set of distinct vertices $\{x_1, \ldots, x_m\}$ is called a *system of distinct representatives* (SDR, for short) of the (multi)family $\mathcal{E} = \{E_1, \ldots, E_m\}$ if $x_i \in E_i$ for each $i \in [m]$. By classic Hall's Theorem [1], \mathcal{E} has an SDR if and only if it satisfies Hall's condition

$$\left| \bigcup_{E \in \mathcal{E}'} E \right| \ge |\mathcal{E}'| \quad \text{for all } \mathcal{E}' \subseteq \mathcal{E}. \tag{1}$$

A hypergraph is k-uniform if each of its edges has k elements. It is a t-packing if $|E \cap E'| < t$ for any two distinct edges E, $E' \in \mathcal{E}$. The following theorem is usually attributed to Johnson [2], who used it to get upper bounds for error-correcting codes. It was rediscovered several times, e.g., Bassalygo [3], Corrádi [4]. Let $\mathcal{E} := \{E_1, \ldots, E_m\}$ be a family of k-sets such that $|E_i \cap E_j| < t$ for all $1 \le i < j \le m$. Then

$$v := \Big| \bigcup_{i=1}^{m} E_i \Big| \ge \frac{mk^2}{(m-1)(t-1) + k}. \tag{2}$$

A (v, k, t) packing of size b is a system of b subsets (blocks) of a v-element underlying set such that each block has k elements and every t-set is contained in at most one block. P(v, k, t) stands for the maximum possible b. A packing is called *abundant* if b > v. For example, the finite affine plane AG(2, q) of order q is a (perfect) $(q^2, q, 2)$ packing with $q^2 + q$ blocks, so it is abundant.

Let $v_0(k, t)$ stand for the minimum v that P(v, k, t) > v. For example, we have $v_0(q, 2) \le q^2$ if an AG(2, q) exists. Applying (2) to v + 1 blocks of an abundant packing one gets $v \ge (v + 1)k^2/(v(t - 1) + k)$. Rearranging we get $v\left(v(t - 1) - k^2 + k\right) \ge k^2$ and thus

$$v_0(k,t) > (k^2 - k)/(t - 1).$$
 (3)

2 Main result and an application

Our main aim here is to show that (3) gives the true order of magnitude of v_0 .

Theorem 1 Let
$$t \ge 2$$
 and suppose that $k \to \infty$. Then $v_0(k, t) = (1 + o(1)) \frac{k^2}{t-1}$.

Leaving out an arbitrary element from each block of a (v, k, t) packing one obtains a (v, k-1, t) packing of the same size (for $k > t \ge 2$). In this way one can see that the sequence $\{v_0(k, t) : k = t, t+1, t+2, \ldots\}$ is strictly increasing. So Theorem 1 follows from (3) and an explicit construction of an infinite series of abundant packings for a dense sequence of k's giving us an asymptotically matching upper bound. From now on, it will be more convenient to use c for t-1. The following construction is presented in Sect. 4.

Construction 2 Let $c \ge 1$ and suppose that q is a prime power, c < q - 1 and c divides q - 1. Then

$$P\left(\frac{q^2-1}{c}+1,q,c+1\right) \geq \frac{q^2-1}{c} + \left\lfloor \frac{q+1}{c} \right\rfloor.$$

We obtain for these values that

$$v_0(q, c+1) \le \frac{q^2 - 1}{c} + 1.$$
 (4)

It is known (see [5]) that for every sufficiently large real k there exists a prime $q \in [k, k+k^{0.6}]$ such that c divides q-1. Then the monotonicity of v_0 and (4) yield

$$v_0(k,c+1) \leq v_0(q,c+1) \leq \frac{q^2-1}{c} + 1 < \frac{k^2}{c} + O(k^{1.6}).$$

This together with (3), completes the proof of Theorem 1.

Theorem 1 can answer a question on list colorings of graphs. Recall that a *list* L for a graph G is an assignment to every $v \in V(G)$ a set L(v) of colors that may be used for coloring v. Graph G is L-colorable if there exists a proper coloring f of the vertices of G from L, i.e., if $f(v) \in L(v)$ for all $v \in V(G)$ and $f(u) \neq f(v)$ for all $uv \in E$. The *list chromatic number* of G, $\chi_{\ell}(G)$, is the least k such that G is L-colorable, whenever |L(v)| = k for all $v \in V(G)$.

A list L for a graph G is a (k, c)-list if |L(v)| = k for all $v \in V(G)$ and $|L(u) \cap L(v)| \le c$ for all $uv \in E(G)$. Kratochvíl, Tuza and Voigt [6] introduced $\chi_{\ell}(G, c)$, the least k such that G is L-colorable from each (k, c)-list L. They showed that $\sqrt{cn/2} \le \chi_{\ell}(K_n, c) \le \sqrt{2ecn}$, where K_n is the complete graph on n vertices. They asked whether the limit $\lim_{n\to\infty} \chi_{\ell}(K_n, c)/\sqrt{cn}$ exists. In Sect. 5 we use Theorem 1 to prove that the limit exists and is 1. We also find the exact value of $\chi_{\ell}(K_n, c)$ for infinitely many values of n.

3 Explicit gaps

There are many results concerning packings when equality holds in (2). These packings have $1+(k^2-k)/(t-1)$ blocks and are called *symmetric* (t-1)-designs, see [1]. By improving (3) we establish large explicit gaps between $v_0(k, t)$ and $v_0(k+1, t)$ for many cases. These gaps will be used in our second topic concerning (k, c)-list colorings of graphs (see Sect. 5).

Claim 3 Let
$$q > c \ge 1$$
. Then $v_0(q+1,c+1) \ge \frac{1}{c} \left(q^2 + q + \frac{2(q-c+1)}{c+1} \right) + 1$.

Note that using (2), i.e., the inequality $v \ge (v+1)(q+1)^2/(vc+q+1)$, leads to the bound $v_0 > (q^2+q)/c + O(1)$. So we have a slight improvement on the Johnson bound in this critical range.

One can summarize (4) and Claim 3 in one formula:

$$v_0(q,c+1) \le \frac{q^2 - 1}{c} + 1 < \frac{1}{c} \left(q^2 + q + \frac{2(q-c+1)}{c+1} \right) + 1 \le v_0(q+1,c+1)$$
 (5)

whenever q is a prime power, $1 \le c < q - 1$, and c divides q - 1.

Lemma 4 Let $c \ge 1$ and suppose that \mathcal{E} is a q-uniform hypergraph on vertex set Y such that $|\mathcal{E}| = q + 2$ and $|E \cap E'| \le c - 1$ for any two distinct edges. Then $|Y| \ge \frac{1}{c}(q^2 + q + \frac{2(q - c + 1)}{c + 1})$.

Proof Let d_y be the degree of the vertex y. We have

$$\sum_{y \in Y} {d_y \choose 2} = \sum_{E \mid E' \in \mathcal{E} \cdot E \neq E'} |E \cap E'| \le (c-1) {q+2 \choose 2},\tag{6}$$

$$\sum_{y \in Y} d_y = \sum_{E \in \mathcal{E}} |E| = (q+2)q.$$
 (7)

4192 Z. Füredi et al.

Multiply (6) by -2, (7) by 2c, add them up and rearrange. We get

$$c(c+1)|Y| + \sum_{y} -(d_y - c)(d_y - c - 1) \ge (c+1)q(q+1) + 2(q-c+1).$$

Discarding the summation and rearranging we get the desired lower bound for |Y|.

Proof of Claim 3 Let \mathcal{P} be an abundant (v, q + 1, c + 1) packing on the vertex set V. Since

$$\sum_{x \in V} d_x = \sum_{P \in \mathcal{P}} |P| = |\mathcal{P}|(q+1) > v(q+1),$$

there exists an $x \in V$ with $d_x > q + 1$. So one can find q + 2 edges of \mathcal{P} of the form $\{x\} \cup E_i$ where the family $\{E_1, \ldots, E_{q+2}\}$ is a (v-1, q, c) packing on the vertex set $Y = V \setminus \{x\}$. One can now apply Lemma 4 to complete the proof.

4 Construction of a packing

In this section we present Construction 2, a $\left(\frac{q^2-1}{c}+1,q,c+1\right)$ packing $\mathcal P$ of size $\frac{q^2-1}{c}+\left\lfloor\frac{q+1}{c}\right\rfloor$ whenever $c\geq 1,q$ is a prime power, c< q-1, and c divides q-1. Let $\mathbf F$ be the q-element finite field and let g be an element of order c in the multiplica-

Let **F** be the *q*-element finite field and let *g* be an element of order *c* in the multiplicative group $\mathbf{F}\setminus\{0\}$. Set $H=\{1,g,g^2,...,g^{c-1}\}$. It is a *c*-element subgroup of $\mathbf{F}\setminus\{0\}$. For $(a,b),(a',b')\in(\mathbf{F}\times\mathbf{F})$ we say that $(a,b)\sim(a',b')$ if there exists an $h\in H$ such that (a',b')=(ha,hb). This is an equivalence relation with $\{(0,0)\}$ being a 1-element class. Each other equivalence class is a collection of *c* elements in $(\mathbf{F}\times\mathbf{F})\setminus\{(0,0)\}$. So there are $1+(q^2-1)/c$ equivalence classes. The equivalence class containing (a,b) is denoted by (a,b). These equivalence classes form the vertex set *V* of the packing \mathcal{P} .

For $(a, b) \neq (0, 0)$, define the set $L\langle a, b \rangle = \{\langle x, y \rangle : ax + by \in H\}$. Since H is a group, $ax + by \in H$ implies $(h'a)x + (h'b)y \in H$, for all $h' \in H$. Hence $L\langle a, b \rangle$ is a well-defined subset of V. The next statement is a consequence of basic linear algebra.

Claim 5 (Furedi [7]) Let (V, \mathcal{L}) be the hypergraph with vertex set $V = \{\langle a, b \rangle : a, b \in F\}$ and edge set $\mathcal{L} = \{L\langle a, b \rangle : a, b \in F, (a, b) \neq (0, 0)\}$. Then

- (i) \mathcal{L} is a q-uniform hypergraph, $|L\langle a,b\rangle|=q$,
- (ii) V has $1 + (q^2 1)/c$ vertices,
- (iii) \mathcal{L} has $(q^2 1)/c$ edges.
- (iv) Suppose that $(a, b) \sim (a', b')$. Then $|L\langle a, b\rangle \cap L\langle a', b'\rangle| = c$ whenever $\det\begin{pmatrix} a & b \\ a' & b' \end{pmatrix} \neq 0$ and $|L\langle a, b\rangle \cap L\langle a', b'\rangle| = 0$ whenever this determinant is 0.

Define the sets $V_m := \{\langle x, y \rangle : y = mx, (x, y) \neq (0, 0)\}$ for $m \in \mathbf{F}$ and let $V_{\infty} := \{\langle x, y \rangle : x = 0, (x, y) \neq (0, 0)\}$. Then $|V_{\alpha}| = (q - 1)/c$ and these sets form a partition of $V \setminus \langle 0, 0 \rangle$. Moreover, $|V_{\alpha} \cap L\langle a, b \rangle| \leq 1$ for each $\langle a, b \rangle \in V$.

Select $\lfloor (q+1)/c \rfloor$ disjoint c-sets C_1, C_2, \ldots from $\mathbf{F} \cup \{\infty\}$ and define $L(i) := \cup \{V_\alpha : \alpha \in C_i\} \cup \{\langle 0, 0 \rangle\}$. Then these are q-element sets pairwise meeting in $\langle 0, 0 \rangle$. Moreover, $|L(i) \cap L\langle a, b \rangle| \le c$. Finally, $\mathcal{P} := \mathcal{L} \cup \{L(1), L(2), \ldots\}$ is a packing we were looking for.

5 List colorings

In this section we answer the question of Kratochvíl, Tuza and Voigt [6] on colorings of complete graphs from (k, c)-lists.

Theorem 6 *Let* c > 1. *Then*

- (i) $\lim_{n\to\infty} \chi_{\ell}(K_n, c)/\sqrt{cn} = 1$.
- (ii) If q is a prime power, c < q 1 and c divides q 1, then $\chi_{\ell}(K_n, c) = q + 1$ for all

$$n \in \left\lceil \frac{q^2 - 1}{c} + 2, \frac{1}{c} \left(q^2 + q + \frac{2(q - c + 1)}{c + 1} \right) + 1 \right\rceil.$$

Proof The complete graph K_n is L-colorable if and only if the set of lists $\{L(v): v \in [n]\}$ satisfy Hall's condition (1). (This observation is due to Vizing [8].) A (k, c)-list corresponds to a (c+1)-packing of k-sets. So $\chi_{\ell}(K_n, c) > k$ if and only if there is an abundant (v, k, c+1) packing with $v \le n$. Hence

$$\chi_{\ell}(K_n, c) = q + 1 \iff v_0(q, c + 1) < n \le v_0(q + 1, c + 1).$$
 (8)

To make (8) more clear, let us explain. If $v_0(q, c+1) < n$, then there exists a (v, q, c+1) packing \mathcal{P} of size $v+1 \le n$. Assign the members of \mathcal{P} to the first v+1 vertices of K_n and assign completely disjoint q-sets to the rest of the vertices. This assignment does not satisfy Hall's condition, so we obtain $\chi_{\ell}(K_n, c) > q$. On the other hand, if $n \le v_0(q+1, c+1)$ then any (q+1, c)-list assignment L of K_n is a (c+1)-packing of (q+1)-sets of size at most $v_0(q+1, c+1)$. So neither $\{L(v): v \in [n]\}$ is abundant, nor any part of it is abundant. Therefore, it satisfies Hall's condition and thus implying K_n is L-colorable.

The proof now follows from Theorem 1, (5), and (8).

For a fixed $c \ge 1$, one might be interested in knowing what is the maximum value of $\chi_{\ell}(G,c)$ over all *n*-vertex graphs G. Note that if H is an induced subgraph of G, then $\chi_{\ell}(H,c) \le \chi_{\ell}(G,c)$, but this may not hold true for non-induced subgraphs. We have the following conjecture.

Conjecture 7 *If* $c, n \ge 1$ *and* G *is an* n-vertex graph, then $\chi_{\ell}(G, c) \le \chi_{\ell}(K_n, c)$.

Work [6] generated lots of further research, especially concerning planar graphs, e.g., [9]. For further recent results concerning separated list colorings see [10, 11].

Acknowledgements Research of the first author is supported in part by the National Research Development and Innovation Office, NKFIH, KKP 133819 and OTKA 132696. The support of the HUN-REN Research Network is appreciated. Research of the second author was supported in part by NSF Grant DMS-2153507 and by NSF RTG Grant DMS-1937241.

References

- Hall M. Jr.: Combinatorial theory. Wiley-Interscience Series in Discrete Mathematics, 2nd edn., p. 440.
 Wiley. New York (1986).
- Johnson S.M.: A new upper bound for error-correcting codes. IRE Trans. IT 8, 203–207 (1962). https://doi.org/10.1109/tit.1962.1057714.
- Bassalygo L.A.: New upper bounds for error-correcting codes. Problemy. Peredači. Informacii. 1(4), 41–44 (1965).
- Lovász L.: Combinatorial Problems and Exercises, 2nd edn, p. 642. AMS Chelsea Publishing, Providence (2007) https://doi.org/10.1090/chel/361.

4194 Z. Füredi et al.

 Huxley M.N., Iwaniec H.: Bombieri's theorem in short intervals. Mathematika 22(2), 188–194 (1975). https://doi.org/10.1112/S0025579300006069.

- Kratochvíl J., Tuza Z., Voigt M.: Brooks-type theorems for choosability with separation. J. Graph. Theory 27(1), 43–49 (1998).
- Füredi Z.: New asymptotics for bipartite Turán numbers. J. Combin. Theory Ser. A 75(1), 141–144 (1996). https://doi.org/10.1006/jcta.1996.0067.
- 8. Vizing V.G.: Coloring the vertices of a graph in prescribed colors. Discret. Analiz 29, 3–10101 (1976).
- Yang F., Wang Y., Wu J.-L.: 4-choosability of planar graphs with 4-cycles far apart via the combinatorial Nullstellensatz. Discret. Math. 346(4), 113298–113316 (2023). https://doi.org/10.1016/j.disc.2022. 113298.
- Dvořák Z., Esperet L., Kang R.J., Ozeki K.: Single-conflict colouring. J. Graph. Theory 97(1), 148–160 (2021). https://doi.org/10.1002/jgt.22646.
- Esperet L., Kang R.J., Thomassé S.: Separation choosability and dense bipartite induced subgraphs. Combin. Probab. Comput. 28(5), 720–732 (2019). https://doi.org/10.1017/s0963548319000026.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

