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Preface to
Induced Turán problems and traces of hypergraphs

Let me start with telling what the Turán type problems are. Suppose that F is a given ‘‘small" graph,
hen the maximum number of edges of a ‘‘large’’ graph G with n vertices which containing no copy
of F as a subgraph is denoted by ex(n, F ). Pál Turán suggested to study this quantity. Although the
classic theorem of Erdős, Stone and Simonovits has asymptotically determined the value of ex(n, F )
for the graphs F having chromatic number > 2, graph theorists are still publishing many papers
trying to find, on the one hand, the exact values, on the other hand the asymptotic value for bipartite
graphs. In spite of the fact that the original area of Turán type problems has not been completely
settled, the curiosity of the mathematicians raised analogous and more general questions. One of
these directions is the generalizations for hypergraphs when r-element subsets are the edges on
the vertex set in contrast to the traditional graphs when r = 2. Already Turán has asked in 1945
what is the maximum number of 3-element subsets on an n element set without having all 4 of
them on 4 vertices. It is still unknown. There is no Erdős, Stone and Simonovits type theorem here,
only some sporadic results. The other variant is when we do not necessarily forbid the small graph
F , only when it is an induced copy of F . Prömel and Steger and recently Loh, Tait, Timmons and
Zhou gave strong theorems for this case.

Concerning the hypergraph case, a relatively new development is to forbid the so called Berge
hypergraphs. If F if a graph, the corresponding Berge r-hypergraphs are obtained by blowing up the
edges of F , that is adding r − 2 new vertices to each edge of F in such a way that the new r-edges
are different but can overlap each other arbitrarily. The family of all such hypergraphs is denoted
by B rF =BF . The corresponding Turán type problem: determine exr (n, BF ), the maximum number
f edges in an r-hypergraph with n vertices containing no member of BF as a subhypergraph. There
s a growing interest and there are some nice results in this direction, but no general theory was
ound.

fter all of these it is quite natural to combine the previous problems and ask for exr (n, BindF ) that
s for the maximum number of edges when only the induced copies of the Berge hypergraphs are
orbidden in an r-hypergraph on n vertices. But it seems to be hopelessly difficult. This is why it
s a big surprise that Zoltán Füredi and Ruth Luo were able to determine the order of magnitude
f exr (n, BindF ) for every graph F reducing this question to an almost classical Turán type problem.
et ex(n, Ks, F ) denote the maximum number of copies of complete s-element subgraphs in a graph
ith n vertices, containing no copy of F . They proved in their paper in the following pages that
he order of magnitude of exr (n, BindF ) is the same as the largest of the orders of magnitude of
x(n, Ks, F ) (2 ≤ s ≤ r). They also found a large class of graphs F for which the winner is s = 2 that
s the order of magnitude is determined by the solution of a classical Turán type problem.
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Concerning the methods of the paper, let me call the reader’s attention to the ‘‘α-core" of a
ypergraph, I foresee a bright future of this concept.

Gyula O.H. Katona
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a b s t r a c t

Let F be a graph. We say that a hypergraph H contains an
induced Berge F if the vertices of F can be embedded to H (e.g.,
V (F ) ⊆ V (H)) and there exists an injective mapping f from the
edges of F to the hyperedges of H such that f (xy)∩V (F ) = {x, y}
holds for each edge xy of F . In other words, H contains F as a
trace.

Let exr (n, BindF ) denote the maximum number of edges in an
r-uniform hypergraph with no induced Berge F . Let ex(n, Kr , F )
denote the maximum number of Kr ’s in an F-free graph on
n vertices. We show that these two Turán type functions are
strongly related.

© 2023 Published by Elsevier Ltd.

1. Definitions, Berge F subhypergraphs

A hypergraph H is r-uniform or simply an r-graph if it is a family of r-element subsets of a finite
set V (H). If the vertex set V (H) is clear from the text, then we associate an r-graph H with its edge
set E(H), and hence we use |H| = |E(H)|. Usually we take V (H) = [n], where [n] is the set of first n
ntegers, [n] := {1, 2, 3, . . . , n}. We also use the notation H ⊆

(
[n]
r

)
to denote that H is an r-uniform

hypergraph on [n]. For a set of vertices S ⊆ V (H) define the codegree of S, denoted by deg(S), to be
he number of edges of H containing S. The s-shadow, ∂sH, is the family of s-sets contained in the
dges of H. So ∂1H is the set of non-isolated vertices, and ∂2H is the graph whose edges are the

pairs with positive codegree in H.
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Definition 1.1. Let F be a graph with vertex set {v1, . . . , vp} and edge set {e1, . . . , eq}. A hypergraph
H contains a Berge F if there exist distinct vertices {w1, . . . , wp} ⊆ V (H) and distinct edges
{f1, . . . , fq} ⊆ E(H), such that if ei = vαvβ , then {wα, wβ} ⊆ fi. The vertices {w1, . . . , wp} are called
he base vertices of the Berge F .

efinition 1.2. Let F be a graph with vertex set {v1, . . . , vp} and edge set {e1, . . . , eq}. A hypergraph
H contains an induced Berge F if there exists a set of distinct vertices W := {w1, . . . , wp} ⊆ V (H)
and distinct edges {f1, . . . , fq} ⊆ E(H), such that if ei = vαvβ , then fi ∩ W = {wα, wβ}.

In particular, in the case that H is a graph (2-uniform), an induced Berge F is just any copy of
F in H, not to be confused with the notion of induced subgraphs. If the H and F have the same
number of edges, e(H) = e(F ), then we say that H itself is a(n induced) Berge F hypergraph. The set
of r-uniform (induced) Berge F hypergraphs is denoted by {B(F )}r ({Bind(F )}r , resp.). For example,
if F is a triangle, E(F ) = {12, 13, 23}, then {B(F )}3 contains four triple systems: {12a, 13a, 23a},
{12a, 13a, 23b}, {12a, 13b, 23c} and {123, 13a, 23b}. The first three of them contains an induced C3,
the last one does not. Parenthesis and indices are omitted when it does not cause ambiguities.

1.1. Three types of extremal numbers

Given a set of r-graphs F , the hypergraph H is called F-free if it does not have any subgraph
isomorphic to any member of F . The Turán number of F , denoted by exr (n,F), is the maximum
size of an F-free H ⊆

(
[n]
r

)
. Usually it is assumed that |F| is finite. So the well-known fact

ex2(n, {C3, C4, C5, . . . }) = n − 1 usually is not considered a Turán type result because the set of
forbidden graphs F , the set of all cycles, is infinite. If r = 2, then the index is usually omitted. Also,
if F has only one member, F = {F}, then we write exr (n, F ) instead of exr (n, {F}).

The generalized Turán number for graphs, pioneered by Erdős [1] and recently systematically
investigated by Alon and Shikhelman [2], is the following extremal problem. We only formulate the
case relevant to this paper. Given a graph F , let ex(n, Kr , F ) denote the maximum possible number
of copies of Kr ’s in an F-free, n-vertex graph, i.e.,

ex(n, Kr , F ) := max
{
|Nr (H)| : H is F-free ,H ⊆

(
[n]
2

)}
,

where Nr (H) ⊆
(
[n]
r

)
is the family of r-element vertex sets that span a Kr in H . In particular

N2(H) = E(H) and ex(n, K2, F ) = ex(n, F ) is the classical Turán number of F .
For a graph F and positive integer r , let

exr (n, BF ) := max{e(H) : H ⊆

(
[n]
r

)
and H is Berge F-free}.

Ever since Győri, G. Y. Katona, and Lemons [3] investigated hypergraphs without long Berge paths
there is a renewed interest concerning extremal Berge type problems. Here we define a related
function, the induced Berge Turán number of F . Special cases were studied earlier, especially the
3-uniform case (e.g., Maherani and Shahsiah [4], Gyárfás [5], Sali and Spiro [6]).

exr (n, BindF ) := max{e(H) : H ⊆

(
[n]
r

)
and H is induced Berge F-free}.

We consider the relationship between these three functions. Obviously,

ex(n, Kr , F ) ≤ exr (n, BF ) ≤ exr (n, BindF ). (1)

To see that, consider a graph G with |Nr (G)| = ex(n, Kr , F ). Since G is F-free, the r-graph Nr (G) is
Berge F-free, implying |Nr (G)| ≤ exr (n, BF ). The second inequality holds because if a hypergraph
contains no Berge F then it also contains no induced Berge F .

The induced Berge F problem is motivated by the forbidden configuration problem for matrices
(see [7] for a survey). It can also be reformulated as a hypergraph trace problem (see Mubayi
and Zhao [8]). Few results are known for the induced Berge Turán problem. In [8], the value of
4



Z. Füredi and R. Luo European Journal of Combinatorics 111 (2023) 103692

u

a
m

2

n
a
o
p

T

a
e
B

b
t

f
t
t
l
i

M
L

exr (n, BindKt ) is determined asymptotically for K3 and K4, as well as Kt when t is close to the
niformity r .
A special case of induced Berge hypergraphs, so called expansions were intensively studied,

see, e.g., Pikhurko [9], Kostochka, Mubayi, and Verstraëte [10], and the survey by Mubayi and
Verstraëte [11].

There are also other areas of research in extremal graph theory which are called ‘induced’
Turán type results. E.g., Prömel and Steger [12] investigated the extremal properties of graphs not
containing an induced copy of a given graph F . A more recent version is by Loh, Tait, Timmons, and
Zhou [13]. But most of these are only distant relatives of our induced Berge question.

2. Main results, bounds for exr (n,BindF )

Although there was a enormous expansion of investigating Turán type extremal problems in the
last two decades (e.g., Razborov’s flag algebra method incorporated almost all earlier elementary
tools, and also new algebraic and semi-algebraic constructions were found) the topic is still
advancing in small steps, it is in the stage of collecting more and more tools and small results. It is
still important to find out problems which are solvable with our state of knowledge. This article is
a small contribution of that huge task.

We also introduce a new tool (the α-core of a hypergraph) which can be considered as a direct
generalization of the extremely useful simple fact that every graph G with average degree d contains
n induced subgraph G′ with minimum degree at least d/2. It seems that α-cores of hypergraphs
ight be useful in considering further extremal problems.

.1. The order of magnitude

Let F be a graph. Our aim is to determine the order of magnitude of the induced Berge Turán
umber of F as n → ∞, or to reduce it to known problems. In the next subsection we define
large class of 3-chromatic graphs Gtri which contains, e.g., all outerplanar graphs. We then apply
ur results and methods to determine the induced Berge Turán number of graphs in this class more
recisely.

heorem 2.1. Let r ≥ 2, and let F be a graph such that E(F ) ̸= ∅. Then, as n → ∞

exr (n, BindF ) = Θ(max
2≤s≤r

{ex(n, Ks, F )}).

This theorem shows that the order of magnitudes of the three functions in (1) behave differently
s r changes. For small r in the range r ≤ χ (F ) − 1, the functions exr (n, F ), exr (n, BF ), and
xr (n, BindF ), are all of order Θ(nr ): the balanced complete (χ (F ) − 1)-partite r-graph contains no
erge F (and its 2-shadow, the r-partite Turán graph, is r-chromatic).
If r ≥ |V (F )| then ex(n, Kr , F ) = 0 (since a Kr contains a copy of F ). For general graphs F , the

ehavior of the three functions in the range χ (F ) ≤ r ≤ |V (F )| − 1 is still unknown. Determining
he order of ex(n, Kr , F ) for r in this range would give an answer for the growth of exr (n, BindF ).

Concerning the Berge Turán function Gerbner and Palmer [14] showed that

exr (n, BF ) ≤ ex(n, F )

or r ≥ |V (F )|. So in this range exr (n, BF ) = O(n2). For the complete graphs the two sides have
he same order: exr (n, BKr ) = Θ(n2) if r ≥ 3. However this does not hold if r is large compared
o |V (F )|. Grósz, Methuku, and Tompkins [15] proved that for any non-bipartite F and sufficiently
arge r , the order of exr (n, F ) differs from that of ex(n, F ): there exists some number th(F ) such that
f r ≥ th(F ) then exr (n, F ) = o(n2).

In contrast, the order of the induced Berge Turán function exr (n, BindF ) is non-decreasing in r .
oreover, it is basically monotone. If

⋂
E(F ) = ∅, i.e., F is not a star, then we will see later by

emma 3.1 that(
1 −

r − 1
)
exr−1(n, BindF ) ≤ exr (n, BindF ). (2)
n
5
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2.2. Outerplanar graphs and more

We define the class of t-vertex graphs G(t)
tri by induction on t as follows. The class G(2)

tri has only a
single member, K2. For t > 2 one obtains each member G of G(t)

tri by taking a G(t−1)
∈ G(t−1)

tri , taking
an edge xy ∈ G(t−1), adding a new vertex z /∈ V (G(t−1)), and joining z to x and to y. Each G ∈ G(t)

tri
as exactly t vertices and 2t − 3 edges. Finally, let Gtri be the family of all non-empty subgraphs of

the members of ∪t≥2G
(t)
tri .

Note that Gtri contains all outerplanar graphs, particularly cycles, Ct , and forests. Each G ∈ Gtri
has chromatic number at most 3 and are obviously planar.

Theorem 2.2. Let r ≥ 2 be a positive integer. Fix a graph F ∈ Gtri. As n → ∞ we have
exr (n, BindF ) = Θ(ex(n, F )).

This theorem reveals further gaps between exr (n, BF ) and exr (n, BindF ). Győri and Lemons [16,17]
proved that for r ≥ 3 an r-uniform hypergraph avoiding a Berge cycle C2t+1 has at most
O(ex(n, C2t )) edges, which is known to be O(n1+(1/t)). On the other hand, in the same range, we
have exr (n, BindC2t+1) = Θ(n2).

Together, Theorems 2.1 and 2.2 show that ex(n, Ct ) has the same order as max2≤s≤r{ex(n, Ks, Ct )}.
We obtain the following (known) corollary. For any r ≥ 2 and t ≥ 3

ex(n, Kr , Ct ) = O(ex(n, Ct )).

We also state the case of trees.

Corollary 2.3. Let r ≥ 2 and T be a forest with at least two edges. Then exr (n, BindT ) = Θ(ex(n, T )) =

(n).

Finally, we get better bounds for stars, F = K1,t−1.

Theorem 2.4. For any r ≥ 2, t ≥ 3, if n = a(r + t − 3) + b with b ≤ r + t − 4 then

a
(
r + t − 3

r

)
+

(
b
r

)
≤ exr (n, BindK1,t−1) ≤

n
r

(
r + t − 3
r − 1

)
.

n particular, if n is divisible by r + t − 3, the lower bound is n
r

(r+t−4
r−1

)
.

3. Constructions and proofs

3.1. Simple constructions and a monotonicity of the induced Berge Turán function

If E(F ) has a single edge then for n ≥ |V (F )|+r−2 we have ex(n, F ) = ex(n, Kr , F ) = exr (n, BF ) =

exr (n, BindF ) = 0, so there is nothing to prove, all of our statements trivially hold.
In all other cases we have exr (n, BindF ) = Ω(n) as one can see from the following constructions.

If F has two non-disjoint edges then a matching of r-sets gives exr (n, BindF ) ≥ ⌊n/r⌋. If F has two
disjoint edges then the hypergraph consisting of n− r + 1 sets sharing a common (r − 1)-set yields
exr (n, BindF ) ≥ n − r + 1.

If x ∈ V (F ) is an isolated vertex then exr (n, BindF ) = exr (n, Bind(F \{x})) for all n > (r−2)|E(F )|+
|V (F )|. So we may delete isolated vertices and asymptotically get the same Turán number. From now
on, we suppose that F has no isolated vertex and |E(F )| ≥ 2.

Lemma 3.1. Fix integers r, t ≥ 2. If F is a graph on t vertices such that F ̸= K1,t−1, F has no isolated
ertices, and e(F ) ≥ 2, then exr (n, BindF ) ≥ ex(r−1)(n − 1, BindF ). More precisely, exr (n, BindF ) =

Ω(ex(n, F )).

Proof. Let H be an (r − 1)-uniform hypergraph on n − 1 vertices with ex(r−1)(n − 1, BindF ) edges
and no induced Berge F . Construct an r-uniform hypergraph H′ with V (H′) = V (H)∪ {v} such that
6
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the edges of H′ are obtained by extending every edge of H to include the new vertex v. Suppose
hat H′ contains an induced Berge F . Since H was induced Berge F-free, v must be a base vertex.
ecause v is contained in every edge of H′, there is a fixed vertex contained in every edge of F . I.e.,

F = K1,t−1, a contradiction.
Inductively, we obtain ex2(n − r + 2, BindF ) ≤ exr (n, BindF ). But ex2(n − r + 2, BindF ) =

x(n − r + 2, F ) = Θ(ex(n, F )). □

To show (2) let H be an induced Berge F-free (r − 1)-uniform hypergraph on n vertices, |H| =

ex(r−1)(n, BindF ). For x ∈ V := V (H) let Hx := {e ∈ H : e ⊂ V \ {x}}. Since each Hx is also induced
erge F-free we get

(n − r + 1)ex(r−1)(n, BindF ) = (n − r + 1)|H| =

∑
x∈V

|Hx| ≤ n × ex(r−1)(n − 1, BindF ).

y Lemma 3.1 the right hand side is at most n × exr (n, BindF ). Rearranging yields (2). □

.2. The α-core of a hypergraph

Let H be an r-partite, r-uniform hypergraph with parts V (H) = V1 ∪· · ·∪Vr . For some 1 ≤ s ≤ r
nd edge e ∈ H, define e[s] to be the trace of e onto all parts other than Vs. That is, e[s] = e \ Vs.
et H[s] = {e[s] : e ∈ E(H)}.

Theorem 3.2. For positive integers α, r, any r-uniform r-partite hypergraph H contains edge-disjoint
subhypergraphs A and B such that

(a) For any S ⊆ V (H), with |S| = r − 1, either degA(S) = 0 or degA(S) ≥ α.
(b) |B| ≥

|H\A|

α−1 and |B| ≤
∑r

s=1 |B[s]|.

roof. We build A and B inductively. Initially set H0 := H, B0 := {∅}.
At step i, if there exists an S ⊆ V (Hi−1) with |S| = r − 1 and 1 ≤ degHi−1

(S) ≤ α − 1, then
let ES be the edges of Hi−1 containing S. Set Hi = Hi−1 \ ES . Pick any edge, say Bi ∈ ES , and set
Bi = Bi−1 ∪ {Bi}.

The process ends after k steps when for every S ⊆ V (Hk) with |S| = r − 1, either degHk
(S) = 0

r degHk
(S) ≥ α. Let A := Hk and B := Bk = {B1, . . . , Bk}. Then A satisfies (a).

To see that B satisfies (b), at each step i when we choose Bi ∈ ES , |ES | ≤ α − 1, so we obtain
hat |B| is at least a 1/(α − 1) portion of the deleted edges. Next, at each step, we associated with
i a distinct set Si of r − 1 vertices. If Bi and Bj are associated with sets Si and Sj respectively such
hat both sets are contained in (V1 ∪ · · · ∪ Vr ) \ Vs, then in B[s], Bi[s] = Si and Bj[s] = Sj are distinct.
Hence

∑r
s=1 B[s] ≥ |{S1, . . . , Sk}| = |B|. □

Let any A ⊆ H satisfying (a) be called an α-core of H.

Lemma 3.3. Let α, r be positive integers, and let F be a graph with |V (F )| − 1 ≤ α. Let H be an
r-uniform, r-partite hypergraph with an α-core A. If the 2-shadow ∂2A of A contains a copy of F , then
A (and therefore H) contains an induced Berge F .

Proof. We will find an induced Berge F on the same base vertex set V (F ). Let xy be an edge in the
copy of F , and let exy be an edge of A containing {x, y} with minimum |exy ∩ V (F )|. Such an edge
exy exists by the definition of the 2-shadow. If exy contains some vertex z ∈ V (F ) \ {x, y}, then the
(r −1)-set exy \ {z} is contained in at least α −1 other edges in A. Since there are |V (F )|−3 ≤ α −2
vertices in V (F ) \ {x, y, z}, we may find some z ′

̸∈ V (F ) − {x, y, z} such that exy \ {z} ∪ {z ′
} ∈ E(A),

contradicting the choice of exy. Therefore exy ∩ V (F ) = {x, y}. We find such an edge of A for each
edge of F . □

If α ≥ e(F )+|V (F )|, then with the same method one can find an induced Berge F in A such that
each pair of hyperedges exy and euv intersect only at {x, y}∩{u, v}. This is called an F-expansion. But
this observation does not seem to help our purposes here.
7
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Claim 3.4. Suppose that r ≥ 3 and A contains an induced Berge F , where |V (F )| ≤ α (and E(F ) ̸= ∅).
Define a new graph F+

:= F+
xy by adding a new vertex z /∈ V (F ), taking an edge xy ∈ E(F ), and joining

z to x and to y. Then A also contains an induced Berge F+.

Proof. By Lemma 3.3, there exists a hyperedge exy ∈ A such that exy ∩V (F ) = {x, y}. Then for every
z ′

∈ exy \ {x, y} we have xz ′ and yz ′
∈ ∂2A, so F+ is a subgraph of ∂2A. Then Lemma 3.3 completes

the Claim. □

Lemma 3.5. Suppose that G ∈ Gtri with t = |V (G)| ≥ 3. Then G ∈ G(t)
tri .

Proof. This statement seems to be evident, but still needs a proof. By definition, there exists an
s ≥ t such that G ∈ G(s)

tri . Let s = s(G) be the smallest such s. We will show by induction on t that
s(G) = t . The base case t = 3 is obvious. Suppose t > 3 and that G is a subgraph of H ∈ G(s)

tri ,
where the vertices of H are {v1, . . . , vs} and each vi (with i ≥ 3) has exactly two H-neighbors in
{v1, . . . , vi−1}. Moreover, these two neighbors (call them vα(i) and vβ(i)) are joined by an edge in H .
Let I ⊆ [s], I := {i1, . . . , it}, 1 ≤ i1 < · · · < it ≤ s, VI := {vi : i ∈ I}, and suppose that G is a spanning
subgraph of H[VI ]. Since s is minimal, we have it = s and NH (vs) = {vα(s), vβ(s)}. G′

:= H[VI ] \ {vs}

has t − 1 vertices, and it belongs to Gtri. By our induction hypothesis there exists a H ′
∈ G(t−1)

tri such
that G′ is a subgraph of H ′ on the same vertex set VI \ {vs}. If {vα(s), vβ(s)} ⊆ V (H ′) then by adjoining
a new vertex z ′ to H ′ and connecting it to vα(s) and vβ(s) we obtain a t-vertex graph H ′′ from G(t)

tri
containing G. If |NH (vs) ∩ V (H ′)| ≤ 1 then it is even simpler to find such a graph H ′′. □

3.3. Proofs of the upper bounds for induced berge F problems

We prove a version of Theorem 2.1 with more precise bounds. For positive integers a and b,
(a)b = (a)(a − 1) · · · (a − b + 1) denotes the falling factorial.

Theorem 3.6. Let t, r, n be positive integers, and let F be a graph with |V (F )| = t. Let H be an n-vertex
r-uniform hypergraph with no induced Berge F . If H is r-partite, then

|H| ≤

r∑
i=2

(t − 2)r−i(r)r−iex(n, Ki, F ).

Proof. We proceed by induction on r . The base case r = 2 is trivial since an induced Berge F
is just a copy of F . Thus ex2(n, BindF ) = ex(n, K2, F ) = ex(n, F ). Now let r ≥ 3. Let A and B be
subhypergraphs of H obtained from Theorem 3.2 with α = t − 1. So we have

|H| = |A| + |H \ A| ≤ |A| + (t − 2)
r∑

s=1

|B[s]| ≤ |A| + (t − 2)(r)exr−1(n, BindF ),

here the last inequality holds because each B[s] is (r − 1)-uniform, (r − 1)-partite and does not
ontain an induced Berge F .
By Lemma 3.3, ∂2A contains no copy of F . Furthermore, since each edge in A creates a Kr in ∂2A,

|A| ≤ ex(n, Kr , F ). Applying the induction hypothesis, we obtain

|H| ≤ ex(n, Kr , F ) + (t − 2)r
r−1∑
i=2

(t − 2)r−1−i(r − 1)r−1−iex(n, Ki, F )

and we are done. □
8
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Corollary 3.7. Let t, r, n be positive integers, and let F be a graph with |V (F )| = t. Then

max
2≤s≤r

{ex(n − (r − s), Ks, F )} ≤ exr (n, BindF ) ≤
r r

r!

r∑
i=2

(t − 2)r−i(r)r−iex(n, Ki, F ).

n particular, exr (n, BindF ) = Θ(max2≤s≤r{ex(n, Ks, F )}).

roof. The lower bound follows from Lemma 3.1 and (1). For the upper bound, we use the fact
hat any r-uniform hypergraph H has an r-partite subhypergraph with at least r!

rr e(H) edges. Apply
Theorem 3.6 to any such subhypergraph. □

Proof of Theorem 2.2. The lower bound comes from Lemma 3.1. For the upper bound, we proceed
by induction on r . First we show that if H is r-partite with no induced Berge F ∈ Gtri then

|H| ≤ (t − 2)r−2 r!
2
ex(n, F ). (3)

The base case r = 2 is trivial, so let r ≥ 3. Let A and B be subhypergraphs of H obtained from
Theorem 3.2 with α = t − 1. We have

|H| ≤ |A| + (t − 2)
r∑

s=1

|B[s]| ≤ |A| + (t − 2)(r)exr−1(n, BindF ). (4)

Observe that A is empty. Indeed, if A contains at least one edge, then the 2-shadow ∂2A contains
a Kr . So Claim 3.4 and Lemma 3.5 imply that ∂2A contains a copy of F . Then we apply Lemma 3.3
to find an induced Berge F , a contradiction. Hence |A| = 0. Applying induction hypothesis, (4)
yields (3).

Finally, if H is not r-partite, then we apply the previous proof to an r-partite subgraph H′ of H
ith at least r!

rr |H| edges to obtain |H| ≤
1
2 r

r (t − 2)r−2ex(n, F ). □

roof of Theorem 2.4. For the lower bound, let each component of H be a clique such that there
re as many cliques of size r + t − 3 as possible. If n = a(r + t − 3) + b where 0 ≤ b < r + t − 3,
hen |H| = a

(r+t−3
r

)
+

(b
r

)
. Suppose H contains an induced Berge K1,t−1. Then its base vertices, say

v1, . . . , vt} must be contained in a single component of H. But each edge in a component contains
t least 3 base vertices, a contradiction.
For the upper bound, let H be an n-vertex, r-uniform hypergraph with no induced Berge K1,t−1.
e say that a set system {f1, . . . , fs} is strongly representable if for every fi ∈ F , there exists a vi ∈ fi

uch that vi /∈ fj for all j ̸= i. Füredi and Tuza [18] proved that if a set system F with |f | ≤ r for
ll f ∈ F does not contain a strongly representable subfamily of size s then |F| ≤

(r+s−1
r

)
. For any

ertex v ∈ V (H), let Ev := {e \ {v} : v ∈ e ∈ H}. The (r − 1)-uniform set system Ev cannot contain
strongly representable subfamily of size t − 1, otherwise the corresponding edges in H and their
epresentative vertices would yield an induced Berge K1,t−1 in H with vertex v as the center vertex.
Therefore deg(v) ≤

((r−1)+(t−2)
r−1

)
so |H| ≤

n
r

(r+t−3
r−1

)
. □
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