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An upper bound on the size of Sidon sets
∗József Balogh, †Zoltán Füredi, ‡Souktik Roy

Abstract. A classical combinatorial number theory problem is to determine the maximum size
of a Sidon set of {1, 2, . . . , n}, where a subset of integers is Sidon if all its pairwise sums are
different. For this entry point into the subject, combining two elementary proofs, we decrease
the gap between the upper and lower bounds by 0.2% for infinitely many values of n. We
show that the maximum size of a Sidon set of {1, 2, . . . , n} is at most

√
n+ 0.998n1/4 for n

sufficiently large.

1. AN ABBREVIATED HISTORY: In 1932 S. Sidon asked a question of a fellow
student P. Erdős. Their advisor was L. Fejér, an outstanding mathematician (cf. Fejér
kernel) working on summability of infinite series, who had a number of outstanding
students who contributed to mathematical analysis including M. Fekete 1909 [Fekete’s
Lemma, see [9]], G. Pólya 1912, John von Neumann 1926, P. Erdős 1934, P. Turán
1935, and V. T. Sós 1957. Studying the Lp-norm of certain Fourier series, Sidon [18]
proposed the following problem, which we present here in contemporary wording.

A set of numbers A is a Sidon set, or alternately a B2-set, if a + b = c + d,
a, b, c, d ∈ A imply {a, b} = {c, d}, i.e., all pairwise sums are distinct. Note that
here do not require that all numbers are different, i.e., 1 + 3 = 2 + 2 is not allowed
either.

Let S(n) denote the maximum size a Sidon setA ⊂ {1, 2, . . . , n}=: [n] can have.
As each pair of elements of A has a different sum, and the number of possibilities is
2n− 1, we have

(|A|+1
2

)
≤ 2n− 1, implying S(n) ≤ 2

√
n. The sequence of powers

of 2, i.e., 1, 2, 4, 8, . . . is an infinite Sidon set showing S(n) > log2 n. It is rather
difficult to construct large Sidon sets, but Sidon found one showing S(n) > n1/4.
Erdős immediately observed that the greedy algorithm gives S(n) ≥ n1/3 as follows.
If A ⊂ [n] and n > |A|3 then one can always find an x ∈ [n] such that x cannot be
written as x = a+ b− c, a, b, c ∈ A. Then A ∪ {x} is a Sidon set as well. In 1941,
Erdős and Turán [7] observed that a result of Singer [19] implies that S(n) >

√
n

infinitely many times. Erdős and Turán [7] also proved, but did not state in that form,
which was done much later by Cilleruelo [4], that

S(n) < n1/2 + n1/4 +
1

2
. (1.1)

Lindström [13] in 1969 gave a different proof for S(n) < n1/2 + n1/4 + 1.
The study of Sidon sets became a classic topic of additive number theory; see e.g.,

the survey by O’Bryant [3]. The notion can be extended in a natural way to (finite)
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groups and fields of characteristic zero see, e.g., Cilleruelo [5]. Many authors apply
deep tools, although Ben Green [11] notes that some approaches via Fourier analysis
have the same spirit as the one in Erdős-Turán [7].

The upper bound in (1.1) has remained the same since 1941. Erdős [6] offered $500
for a proof or disproof that for every ε > 0 the equality S(n) <

√
n+ o(nε) holds.

The aim of this paper, the main result: We improve the current best upper bound by
Θ(n1/4).

Theorem 1. There exists a constant γ ≥ 0.002 and a number n0 such that for every
n > n0

S(n) < n1/2 + n1/4(1− γ).

In Section 2, we recall Lindström’s argument [13] and point out how introducing
a slack term in a critical inequality can imply possible improvements downstream.
In Section 3, we present a different proof, a generalized version of an argument of
Ruzsa [17]. We put his proof into a different framework and we explain, how introdu-
cing a slack term in a critical inequality there as well can lead to a possible improve-
ment. In Section 4, we put the two proof methods together and leverage conditions
on these slack terms to get Theorem 1. In fact, we show that a very dense Sidon set
must have large discrepancy on some initial segment of [n], for related results see
Cilleruelo [5], Erdős and Freud [8].

Our second aim is to have a self-contained introduction to Sidon sets, so we include
Bose’s construction, a lower bound S(n) ≥

√
n+ 1 for infinitely many values of n.

Overall, we do not think that our work deserves 0.2% of Erdős’ prize money, i.e.,
$1, but we want to emphasize here the wonderful unity of mathematics by showing
the many remarkable connections Sidon’s problem has not only to Fourier analysis but
also to abstract algebra and coding and graph theory as well.

2. LINDSTRÖM’S UPPER BOUND: In this Section we explain Lindström’s [13]
proof. Recall that A is a Sidon set if all pairwise sums of its elements are distinct,
except a+ b = b+ a.

Proof. Let the elements of A be a1 < . . . < ak. Given i < j, call j − i the order
of the difference aj − ai. We sum all differences of order at most `, where ` will
be chosen later to be around n1/4. There are (k − 1) + (k − 2) + . . . + (k − `) =
`(k − `+1

2
) such differences. By the Sidon property these differences are all distinct.

We obtain the lower bound

1

2
`2
(
k − `+ 1

2

)2

< 1 + 2 + . . .+ `

(
k − `+ 1

2

)
≤

∑
1≤i<j≤k, j≤i+`

(aj − ai).

(2.1)
To simplify the sum on the right hand side, observe that for every 1 ≤ i ≤ r, with
t := b(n− i)/rc

(ar+i − ai) + (a2r+i − ar+i) + . . .+ (atr+i − a(t−1)r+i) = atr+i − ai ≤ n− 1.

Using this, due to cancellation, we have that the sum of all differences of order r is
at most r · n. Hence, the sum of differences of order at most ` is at most

(
`+1
2

)
n.
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Comparing with the right hand side of (2.1), we obtain

1

2
`2
(
k − `+ 1

2

)2

<
∑

1≤i<j≤k, j≤i+`

(aj − ai) <
1

2
`(`+ 1)n. (2.2)

Rearranging, we have k − `+1
2
<
√
n(`+ 1)/` which, using

√
1 + x ≤ 1 + x/2,

leads to

k <
√
n+

√
n

2`
+
`

2
+

1

2
.

Substituting ` := bn1/4c yields k < n1/2 + n1/4 + 1.

A Possible Improvement, Slackness: If the set of differences {(aj − ai) : 1 ≤ i <
j ≤ k, j ≤ i + `} contains large values, then one can obtain a better inequality in
(2.1), which would improve the upper bound on k. We formalize this idea by defining
the non-negative slack term C = C(A, `) as follows:

C = C(A, `) :=

( ∑
1≤i<j≤k, j≤i+`

(aj − ai)
)
−

∑
1≤i≤`(k−(`+1)/2)

i. (2.3)

We can add C, or any lower bound for it, to the left hand side of (2.2) to obtain

k − `+ 1

2
<

√(
1 +

1

`
− 2C

`2n

)
n.

Using
√

1 + x ≤ 1 + x/2, we conclude

k <
√
n+

√
n

2`
− C

`2
√
n

+
`

2
+

1

2
.

An important feature of this inequality is that it is stable in the following sense. If we
use a somewhat smaller `, then the upper bound on k changes only a little bit. We shall
substitute ` = (1− α)n1/4 with some 0 ≤ α < 1, and use it as follows:

k < n1/2 + n1/4 − 2C/n− n1/4α2(1− α)

2(1− α)2
+

1

2
. (2.4)

If we knew C = Ω(n5/4) and α was sufficiently small, then Theorem 1 would follow.

3. SAME BOUND VIA SET SYSTEMS

An inequality from coding theory: The following theorem is usually attributed to
Johnson [12], who used it to establish upper bounds for error-correcting codes. It was
rediscovered several times, e.g., Bassalygo [2]. In hypergraph language (as in Lovász’s
exercise book [15]), it is a statement about the size of the ground set of a set system
with restricted intersection sizes.

Theorem 2. Let A be a family of k-sets A1, . . . , Am such that the intersection Ai ∩
Aj of any distinct pair has cardinality at most t. Then v := | ∪Ai| ≥ k2m

tm+k−t .
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Proof. Let dx be the number of sets Ai containing the vertex x. Given Ai, we have∑
j |Ai ∩Aj| ≤ (m− 1)t+ k. This leads to the following chain of inequalities:

tm(m− 1) +mk ≥
∑
i

(∑
j

|Ai ∩Aj|
)

=
∑

d2x ≥
(
∑
dx)2

v
=
k2m2

v
. (3.1)

A second combinatorial proof: Here we give a second proof of (1.1). The proof is
a generalized version of an argument of Ruzsa [17], which is slightly different from
the original proof of Erdős and Turán [7]. In our proof we are going to use Johnson’s
inequality, Theorem 2, directly. It is an interesting phenomenon that the two different
proofs give exactly the same bound.

Proof. Set k := |A|, m a positive integer, and Ai := A+ (i− 1) for i = 1, . . . ,m.
Note that ∪Ai ⊆ [n+m− 1]. The crucial observation is that |Ai ∩Aj| ≤ 1 for i 6=
j. Indeed, if there are two distinct elements x, y ∈ Ai ∩Aj for some i < j then there
would exist elements a, b, c, d ∈ A with a+ i = x = b+ j and c+ i = y = d+ j,
which would give us a+ d = b+ c. SinceA is a Sidon set, this forces {a, d} = {b, c}
hence x = y, and Theorem 2 is applicable with t = 1, v ≤ n+m− 1, and we get

(n+m− 1)(m+ k − 1) ≥ k2m.

Suppose k ≥ n1/2 + n1/4 and define m := dn3/4e. Then (n+m− 1)/k <
√
n, so

we obtain
√
n(m+ k − 1) > km. This leads to

k <
√
n
m− 1

m−
√
n
≤ n1/2 n3/4 − 1

n3/4 − n1/2
= n1/2 + n1/4 + 1.

This is Lindström’s bound. A more careful calculation, what we omit, yields (1.1).

A possible improvement using variance: Consider the family A in Theorem 2.
One can naturally have the idea that the lower bound in (3.1) can be improved if
one knows that the variance of the degree sequence {dx} is large, as the relation∑
d2x ≥ (

∑
dx)2/v could be improved if the values are not equal to each other. We

will utilize the fact that for our shifted set system, the degrees in an appropriate ini-
tial segment (and similarly in an end segment) are necessarily much smaller than the
average, i.e., the degree sequence cannot be totally smooth.

Define the non-negative defect term K(A) as the difference, where dave =∑
dx/v,

K(A) :=
∑

d2x −
(
∑
dx)2

v
=
∑
x

(dave − dx)2.

We also call K(A) or any lower bound K of it a “gain”. Instead of (3.1) one obtains

tm(m− 1) +mk ≥ k2m2

v
+K. (3.2)
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Using t = 1 and v ≤ n+m− 1 we obtain

m+ k − 1 >
k2m

n+m
+
K

m
.

This rearranges to(
k − n+m

2m

)2

< (n+m)

(
1 +

m+ n

4m2
− 1

m
− K

m2

)
< (n+m)

(
1− 4K − n

4m2

)
.

Define m := bn3/4c, and suppose that K < 2n3/2, as otherwise one could easily
obtain much stronger results. Using

√
1 + x ≤ 1 + x/2, we have

k <
n+m

2m
+
√
n ·
√

1 +
m

n
− 4K − n

4m2
− 4K − n

4mn
≤ n1/2 + n1/4 − K

2n
+ 2.

(3.3)
We shall use later that if K > 2γn5/4 + 4n, then (3.3) implies Theorem 1.
Recall the following corollary of the Cauchy-Schwarz inequality about the variance of
numbers.

Lemma 3. Let (y1, . . . , yv) be a sequence of real numbers with average d. For a
subset X ⊆ [v] the average of the elements of {dx : x ∈ X} is denoted by dX . Then∑

(d− yi)2 ≥ |X|(d− dX)2.

Proof. We have∑
i∈[v]

(d− yi)2 ≥
∑
x∈X

(d− yx)2 = |X|(d− dX)2 − |X|d2X +
∑
x∈X

y2x.

4. PUTTING THE TWO METHODS TOGETHER: PROOF OF THEOREM 1

Proof of Theorem 1. The proof is a combination of the proofs in the previous two sec-
tions. The first proof provides a better bound, unless all the differences ai − aj are
“small” when i and j are close to each other, and the second proof gives a better
bound, unless all the degrees are “close” to each other. We prove that both cannot
happen at the same time, which implies our result.

Recall that A = {a1, a2, . . . , ak} ⊂ [n] is a Sidon set, a1 < . . . < ak, m =
bn3/4c is a positive integer, and A is the family {Ai : Ai := A + (i − 1) for
i = 1, . . . ,m} with degree sequence {d1, . . . , dn+m−1}. We may suppose that
n1/2 + 1

2
n1/4 < k < n1/2 + n1/4 + 1/2, hence the average degree d := km

n+m−1 =

n1/4 +O(1).
In this section we fix a “small” α > 0 and a “smaller” β, and an ε to get a positive

γ satisfying (4.1). E.g., one can choose α = 0.137, β = 0.037, ε = 0.235 and any γ
with 0.00204 ≥ γ > 0.002, then these values satisfy

min

{
ε2β,

2(1− α− 2ε)2(α− 2β)− α2(1− α)

2(1− α)2

}
> γ. (4.1)

We also define s = bβn3/4c, r1 = |A ∩ [s]|, r2 = |A ∩ [n + 1 − s, n]|, r = r1 +
r2, R1 := |A ∩ [m− s]|, R2 := |A ∩ [n+ 1−m+ s, n]|, R = R1 +R2, and ` =
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b(1 − α)n1/4c. Recall that K = K(A) :=
∑
d2x − (

∑
dx)2/(n+m− 1). In the

course of the proof we distinguish three cases: r ≤ 2(1 − ε)n1/4, and R ≥ 2(1 +
ε)n1/4, and 2(1− ε)n1/4 < r ≤ R < 2(1 + ε)n1/4.

The density of the initial segments of A: The first main idea is to have a closer
look at the variance of the degree sequence of A.

In the claim below, we handle the case when A contains only few small numbers
(i.e., |A ∩ [s]| is “small”) or only few large numbers. In this case, the degrees in the
end segments will be lower than the average degree, and Lemma 3 will be applicable.

Claim 4. If r ≤ 2(1− ε)n1/4 then K ≥ 2ε2βn5/4 +O(n).

Proof. Let dX = (
∑

x∈X dx)/|X| be the average of the degrees for the elements of a
setX ⊂ [n+m− 1]. By the definition of the defectK = K(A) and by Lemma 3 we
have K =

∑
x(d− dx)2 ≥ |X|(d− dX)2. For X = [s] ∪ [n+m− s, n+m− 1]

we have

dX =
1

|X|
∑
i∈X

di =
1

2s

∑
1≤j≤s

(|A ∩ [j]|+ |A ∩ [n+ 1− j, n]|)

≤ 1

2
|A ∩ ([s] ∪ [n+ 1− s, n])| =

r

2
≤ (1− ε)n1/4.

Using d− r
2
≥ εn1/4 + O(1), |X| = 2s, and s = βn3/4 + O(1), the inequality

K ≥ |X|(d− dX)2 yields the required lower bound.

In the claim below we consider the case when A contains too many small numbers
(i.e., |A ∩ [m− s]| is “too large”) or too many large numbers. (Note that we consider
the interval [m− s] which is small compared to [n+m− 1] but larger than [s] from
Claim 4). In this case, the degrees in these end segments will be larger than the average
degree, and Lemma 3 will be applicable.

Claim 5. If R ≥ 2(1 + ε)n1/4 then K ≥ 2ε2βn5/4 +O(n).

Proof. Set X = [m − s + 1,m] ∪ [n, n + s − 1]. Every x ∈ [m − s + 1,m] gets
covered |A ∩ [m − s]| = R1 times just by the translates of A ∩ [m − s]. Similarly,
every x ∈ [n, n+ s− 1] gets covered at least |A ∩ [n+ 1−m+ s, n]| = R2 times.
Hence, |dX − d| ≥ R

2
− d ≥ εn1/4, and using |X| = 2s and s = βn3/4 +O(1), the

application of Lemma 3 completes the proof.

Large gaps in A: If Claims 4 and 5 are not applicable to A, then there is an interval
of size about n3/4, which contains very few elements ofA. This means thatA contains
many pairs of numbers, whose indices are close to each other, but their difference is
large.

The segment [s+ 1,m− s] contains R1 − r1 members of A, similarly [n+ 1−
m + s, n − s] contains R2 − r2 of them, which adds up to R − r. After having
Claims 4 and 5, we may assume that 2(1− ε)n1/4 < r ≤ R < 2(1 + ε)n1/4, hence
A ∩ ([s+ 1,m− s] ∪ [n+ 1−m+ s, n− s]) has fewer thanR− r < 4εn1/4 ele-
ments. Using these assumptions, we shall slightly modify the proof of (1.1) by defining
` = b(1− α)n1/4c.

The second idea of the proof is that with ` defined as above we can find many
differences aj − ai of small order which are significantly larger than k`, hence we
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give a lower bound for C(A, `), which was defined in (2.3). This provides the right
hand side bound in (4.1).

Claim 6. If 2(1− ε)n1/4 < r ≤ R < 2(1 + ε)n1/4 and `, k, and m are defined as
above, then

C(A, `) > (1− α− 2ε)2(α− 2β)n5/4 +O(n).

Proof. Consider the pairs (ai, aj) with ai ≤ s < m − s < aj and j ≤ i + `. Each
such pair appears in the definition of C(A, `) and each of such difference aj − ai is
at least m− 2s, which exceeds `(k − (`+ 1)/2), as α > 2β. Each such pair adds a
gain of at leastm− 2s− (`(k − (`+ 1)/2)) ≥ (α− 2β)n3/4 +O(n1/2) toward C
in (2.3).

Given ai with 1 ≤ i ≤ r1 we choose j as R1 < j ≤ ` + i; there are `− R1 + i
possibilities, whenever this last quantity is positive. Altogether we have at least 1 +
2 + . . .+ (`−R1 + r1) > (`−R1 + r1)

2/2 such pairs.
Similarly, pairs (ai, aj) with ai < n + 1 −m + s < n + 1 − s ≤ aj and j ≤

i+ ` give us more than (`−R2 + r2)
2/2 such pairs.

Since R1 −R2 − r1 − r2 = R− r ≤ 4εn1/4, the total number of pairs is at least
(2`−R+ r)2/4 > (1− α− 2ε)2n1/4 +O(1), and we get the lower bound for the
total gain as stated.

Completing the proof of Theorem 1: The constraints in the above three claims
cover all possibilities for A. In the cases covered by Claims 4 and 4 we have a large
defect K(A) so inequalities (4.1) and (3.3) establish the required upper bound for
k. In the case covered by Claim 4 the large slackness term C in the inequality (2.4)
completes the proof of Theorem 1.

Remark: Note that one could optimize somewhat better the parameters α, β, etc., but
we did not see the point of computing more digits of the optimal values. Much more
refining should be possible by exploring the structure of a Sidon set more thoroughly;
i.e., giving further conditions on the number of elements in some intervals. For ex-
ample, when a ∈ A is close to s, then one can improve the bounds from Claim 4, as
such a will not contribute much to the degrees of vertices in X . From the other side,
when a ∈ A is close to 1, then a will participate in larger gaps, and one can improve
Claim 6. The computation is rather delicate, and it seems to improve the bound on γ to
0.00342. It is likely that it could be improved a bit further, with an additional analysis
of the structure of A.

There is a discussion of the structure of dense Sidon sets in the blog of Gowers [10],
though probably there is no connection toward our proof. It seems that further ideas
are needed to get rid of the n1/4 term in its entirety.

5. SIDON SETS AND EXTREMAL GRAPH THEORY: A classical problem of
Zarankiewicz [20] is to determine the maximum number of edges of bipartite C4-
free graphs, with class sizes n. Reiman [16] constructed extremal graphs using finite
geometries. One can construct large such graphs using Sidon sets as follows. Let A ⊂
[n] be a Sidon set, X , Y be two copies of [n]. Let G(A,n) be the bipartite graph with
vertex set X ∪ Y , with xy being an edge when x ∈ X, y ∈ Y and y − x ∈ A. As A
is a Sidon set, G(A,n) is a C4-free graph.

6. THE LOWER BOUND CONSTRUCTION FROM FINITE FIELDS: For
completeness we recall a classical construction that in case where q is a power of a
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prime one has

S(q2 − 1) ≥ q. (6.1)

For these values of n we have S(n) ≥
√
n+ 1. Since the set of primes is sufficiently

“dense” among the integers, see [1], one can conclude the lower bound S(n) =
√
n+

O(n21/40).
Recall a few definitions from introductory abstract algebra. Let p be a power of a

prime, Fp = (Fp,+, ·) the finite field of size p, F∗p = F \ {0}. We have xp−1 = x0 =
1 for every element x ∈ F∗. There are elements g such that F∗ = {g, g2, . . . , gp−1},
these are called primitive elements of F. In fact, there are ϕ(p− 1) of them, where ϕ
is Euler’s totient function. Then (F∗, ·) is a cyclic group Zp−1.

To show (6.1) we define p := q2 and take a primitive element g of Fq2 . The Bose–
Chowla Sidon set Aq ⊂ [q2 − 1] is defined as

Aq := {a : 1 ≤ a ≤ q2 − 1, ga − g = f for some f ∈ Fq}.

This Aq is a q-element Sidon set in Zq2−1, i.e., the numbers {a− a′ : a, a′ ∈ A, a 6=
a′} are all distinct mod (q2 − 1). The properties of the setAq can be found in many
places, e.g., in Chapter 27 of the excellent textbook of van Lint and Wilson [14].

Acknowledgements: We thank Bernard Lidicky for assisting in the optimization of
formulae. We also thank the referees for their useful comments.
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