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A special four-cycle F in a triple system consists of four triples inducing a C4. This means 
that F has four special vertices v1, v2, v3, v4 and four triples in the form wi vi vi+1 (indices 
are understood (mod 4)) where the w js are not necessarily distinct but disjoint from 
{v1, v2, v3, v4}. There are seven non-isomorphic special four-cycles, their family is denoted 
by F . Our main result implies that the Turán number ex(n, F) = �(n3/2). In fact, we prove 
more, ex(n, {F1, F2, F3}) = �(n3/2), where the Fi-s are specific members of F . This extends 
previous bounds for the Turán number of triple systems containing no Berge four cycles.
We also study ex(n, A) for all A ⊆ F . For 16 choices of A we show that ex(n, A) =
�(n3/2), for 92 choices of A we find that ex(n, A) = �(n2) and the other 18 cases remain 
unsolved.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A triple system H = (V , E) has vertex set V and E consists of some triples of V (repeated triples are excluded). For any 
fixed family H of triple systems, the Turán number ex(n, H) is the maximum number of triples in a triple system of n
vertices that is H-free, i.e., does not contain any member of H as a subsystem.

Our interest here is the family F of special four cycles: they have four distinct base vertices v1, v2, v3, v4 and four triples 
wi vi vi+1 (indices are understood (mod 4)) where the w js are not necessarily distinct but wi �= v j for any pair of indices 
1 ≤ i, j ≤ 4.

There are seven non-isomorphic special four cycles. The linear (loose) four cycle F1 is obtained when all w j-s are 
different and in F2 all w js coincide. When two pairs coincide we get either F3 (w1 = w2, w3 = w4) or F4 (w1 = w3, w2 =
w4). The F4 is the Pasch configuration. We define F5 with w1 = w2 = w3 (but w4 is different). In F6 we have w1 = w3
(and w2, w4 are different from w1 and from each other). When only w1, w2 coincide we get F7. Set F = {F1, . . . , F7}. For 
the convenience of the reader, the special four cycles are shown on Fig. 1 and Fig. 2.

Turán numbers of various members of F have been investigated before. Füredi [4] proved that ex(n, F3) ≤ 7
2

(n
2

)
. Mubayi 

[8] showed that ex(n, F2) = �(n5/2). Rödl and Phelps [7] gave the bounds c1n5/2 ≤ ex(n, F4) ≤ c2n11/4. In fact, the upper 
bound is Erdős’ upper bound [2] for ex(n, K 3

2,2,2). The lower bound comes from a balanced 3-partite triple system where 
every vertex of the third partite class form a triple with the edges of a bipartite C4-free graph between the first two partite 
classes.

We prove that ex(n, F) = �(n3/2), thus has the same order of magnitude as ex(n, C4) for graphs. In fact, it is enough to 
exclude three of the special four cycles.
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Fig. 1. The family of special four cycles F1, F2, F3 of Theorem 1.

Fig. 2. The family of the other four special four cycles F4, . . . , F7.

Theorem 1. ex(n, {F1, F2, F3}) = �(n3/2).

The family F of special four cycles is a subfamily of a wider class, the class of Berge four cycles, where the vertices wi can 
be selected from the base vertices as well, requiring only that the four triples wi vi vi+1 are different. Theorem 1 extends 
previous similar upper bounds (Füredi and Özkahya [5], Gerbner, Methuku, Vizer [6]) where the family of Berge four cycles 
were forbidden.

The appearance of the set {F1, F2, F3} is not accidental. If any of F1, F2, F3 is missing from A ⊂ F then ex(n, A) is 
essentially larger than n3/2.

• (C1) Ruzsa and Szemerédi [9] constructed triple systems on n vertices that do not carry three triples on six vertices and 
have more than n2−ε triples for any fixed ε. This provides an example which contains only F1 from F ,

• (C2) The 
(n−1

2

)
triples containing a fixed vertex from n vertices contains only F2 from F ,

• (C3) Partition n vertices evenly into three parts, take a pairing between two equal parts and extend each pair with all 
vertices of the third class to a triple. This gives a triple system with approximately n2/9 triples and contains only F3
from F .

In Section 3 we discuss ex(n, A) for all A ⊆ F . It turns out that in 92 cases ex(n, A) = �(n2) and 18 cases remain 
unsolved.

2. Proof of Theorem 1

Assume H is a triple system with n vertices containing no subsystem from the set F1, F2, F3. Applying the standard 
approach (based on [3]), we may assume that H is 3-partite with vertex partition [A1, A2, A3] where |Ai | ∈ {�n/3	, 
n/3�}
and contains at least 2/9 of the triples of the original triple system.

The triples of H define a bipartite graph B = [A1, A2] as follows. If (a1, a2, a3) is a triple of H with ai ∈ Ai then a1a2 is 
considered as an edge of B . Define the label L(a1, a2) of a1a2 ∈ E(B) as the set {z ∈ A3 : a1a2z ∈ E(H)}. Then

|E(H)| =
∑

a1a2∈E(B)

|L(a1,a2)|. (1)

Lemma 1. The bipartite graph B has at most O (n3/2) edges.

Proof of Lemma 1. We denote by N(x, y) the set of common neighbors (in B) of x, y ∈ A2 in A1. Similarly, let N(u, v) be 
the set common neighbors of u, v ∈ A1 in A2.

For distinct vertices x, y ∈ A2, define the digraph D = D(x, y) with vertex set A3. For every u ∈ A1 such that u ∈ N(x, y)

and ai ∈ L(u, x), a j ∈ L(u, y), a directed edge aia j is defined in D(x, y). We claim that D(x, y) is a very special digraph.
2
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Claim 1.

• (1.1) There are no multiple loops or parallel directed edges in D(x, y),
• (1.2) There is at most one loop in D(x, y),
• (1.3) Two non-loop edges of D(x, y) either intersect or |N(x, y)| ≤ 4.

Proof. A multiple loop aiai in D(x, y) would give a C4 in B with all edges containing ai in their labels, this corresponds 
to an F2 in H – a contradiction. A multiple edge aia j would give a C4 = (x, u1, y, u2) in B where u1, u2 ∈ N(x, y), u1 �= u2
such that the consecutive edges of C4 contain ai, a j, a j, ai ∈ A3 in their labels. This would give an F3 in H – a contradiction 
again, proving (1.1).

Two distinct loops aiai, a ja j in D(x, y) can appear in two ways. Either we have a C4 = (x, u1, y, u2) in B where u1, u2 ∈
N(x, y), u1 �= u2 such that the consecutive edges of C4 contain ai, ai, a j, a j ∈ A3 in their labels, this would give an F3 in H , 
a contradiction. Otherwise u = u1 = u2 and we have two multiedges xu, yu both containing ai, a j in their labels, this gives 
an F2 in H with u in its center, a contradiction again, proving (1.2).

Suppose that there exist two non-intersecting non-loop edges aia j, akal in D(x, y). If these edges are defined by 
u1, u2 ∈ N(x, y), u1 �= u2, we have a C4 = (x, u1, y, u2) in B with four distinct elements in their labels, giving an F1 in 
H , a contradiction. Thus we may assume that u1 = u2 = u and we have xu, yu in B with ai, ak and with a j, al in their 
labels. Set

M = {v ∈ N(x, y) : v �= u, |L(v, x) ∪ L(v, y)| ≥ 2}.
We claim that |M| ≤ 2. Indeed, consider v ∈ M , there is as, at ∈ A3 such that as �= at and xv, yv have labels containing 
as, at , respectively. Observe that either {s, t} = {i, k} or {s, t} = { j, l} otherwise there is a C4 = (x, u, y, v) with four distinct 
labels, giving an F1 in H , a contradiction. This implies that |M| ≤ 4. However, it cannot happen that for two distinct 
vertices v, v ′ ∈ M the coincidence of the index pairs are {i, k} and { j.l}, respectively, because it would result again in a 
C4 = (x, v, y, v ′) with four distinct labels, a contradiction as above. Thus |M| ≤ 2 (equality is possible with edge pairs 
aiak, akai or a jal, ala j ), proving the claim.

Observing that every vertex of N(x, y) \ ({u} ∪ M) defines a loop in D(x, y), (1.1) and (1.2) implies that |N(x, y)| ≤ 4, 
proving (1.3) and Claim 1. �

A cherry on x ∈ A2 is defined as an incident edge pair, ux, vx ∈ E(B) such that u, v ∈ A1, u �= v and L(u, x) ∩ L(v, x) �= ∅. 
Let C(x, y) be the number of cherries in the subgraph of B induced on {x, y} ∪ N(x, y). We have

C(x, y) ≥
∑

a∈V (D(x,y))

d+(a) + d−(a) − 2, (2)

because there are at least d+(a) − 1 cherries on x with L(u, x) ∩ L(v, x) = {a} and at least d−(a) − 1 cherries on y with 
L(u, y) ∩ L(v, y) = {a}.

Claim 2. For any two distinct vertices x, y ∈ A2 , C(x, y) ≥ |N(x, y)| − 4.

Proof. Claim 2 is certainly true for |N(x, y)| ≤ 4. Otherwise, using (1.3) from Claim 1, we have pairwise intersecting edges 
in D(x, y).

Case 1. The edges of D(x, y) form a triangle (edges oriented two ways are allowed) plus at most one loop. Therefore D(x, y)

has at most seven edges thus 5 ≤ |N(x, y)| ≤ 7. By (1.1) of Claim 1, d+(a) ≤ 2 for any vertex of the triangle. There are at 
least |N(x, y)| − 1 edges on the triangle, so there exists at least |N(x, y)| − 4 vertices a with d+(a) ≥ 2 resulting in at least 
|N(x, y)| − 4 cherries on x.

Case 2. All edges of D(x, y) (apart from a possible loop) contain a ∈ A3. For every u ∈ N(x, y) (apart from one possible 
vertex which defines a loop) either ux or uy has label a. Thus 

∑
a∈V (D(x,y)) d+(a) + d−(a) ≥ |N(x, y)| − 1 so (2) results in at 

least |N(x, y)| − 3 cherries on x or on y, completing the proof of Claim 2. �
Claim 3. 

∑
x,y∈A2

C(x, y) ≤ (|A1|
2

)
.

Proof. Every cherry counted on the left hand side is on some pair of A1. At most one cherry can be on any (u, v) ∈ A1, 
otherwise (by (1.1) in Claim 1) we have one of F2, F3. �

Applying Claims 2, 3 we get

∑
(|N(x, y)| − 4) ≤

∑
C(x, y) ≤

(|A1|
2

)
,

x,y∈A2 x,y∈A2

3
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thus

∑
x,y∈A2

|N(x, y)| ≤ 4

(|A2|
2

)
+

(|A1|
2

)
≤ O (n2).

By convexity we get

|A1|
( |E(B)|

|A1|
2

)
≤

∑
u∈A1

(
d(u)

2

)
=

∑
x,y∈A2

|N(x, y)| ≤ O (n2),

therefore |E(B)| = O (n3/2), proving Lemma 1. �
To finish the proof of Theorem 1, we need to show that the presence of labels does not affect strongly the edge count of 

Lemma 1. Let B∗ denote the subgraph of B with the edges of at least three-element labels.

Proposition 1. If H is {F1, F2, F3}-free then B∗ is C4-free.

Proof. Assume C = (x, u, y, v, x) is a four-cycle in B∗ . From the definition of B∗ there are three distinct elements, say a, b, c
from the labels of three edges of C . The only way to avoid F1 is that the fourth edge has label {a, b, c}. However, the same 
argument forces that all labels on C are equal to {a, b, c} giving (many) F3’s. �

We can consider B∗ as a bipartite multigraph obtained as the union of |A3| simple bipartite graphs as follows. Set

E(z) = {(u, x) : u ∈ A1, x ∈ A2, (u, x, z) ∈ E(H) and |L(u, x)| ≥ 3},
then E(B∗) = ∪z∈A3 E(z).

Proposition 2. For every z ∈ A3 there is no path in B∗ with four edges such that its first and last edge is in E(z).

Proof. Suppose that edges e1, e2, e3, e4 form such a path for some z ∈ A3. Since each edge of B∗ has multiplicity at least 
three, we can replace e2 by f2 and e3 by f3 so that f2 ∈ E(z1), f3 ∈ E(z2) and z1, z2 are distinct and both different from z. 
Then the four triples of H ,

e1 ∪ {z}, f2 ∪ {z1}, f3 ∪ {z2}, e4 ∪ {z}
form an F1, contradiction. �

For any vertex x ∈ A2 let L(x) denote the subset of A3 that appears in some of the labels on edges of B∗ incident to x.

Proposition 3. For distinct vertices x1, x2, x3, x4 ∈ A2 ,

|L(x1) ∩ L(x2) ∩ L(x3) ∩ L(x4)| ≤ 1.

Proof. Suppose on the contrary that we have z1, z2 ∈ A3 such that for i = 1, 2, 3, 4, ei = {z1, xi, u2i−1}, f i = {z2, xi, u2i} are 
all triples of H .

An F1 is formed by the triples ei, f i, e j, f j if there is a pair i, j such that u2i−1, u2i, u2 j−1, u2 j are all different. Thus, we 
may assume that for any pair 1 ≤ i < j ≤ 4 there is an equality between elements u2i−1, u2i, u2 j−1, u2 j .

Let us call an equality u2i−1 = u2i horizontal, an equality u2i = u2 j or u2i−1 = u2 j−1 (for i �= j) vertical, finally an equality 
u2i−1 = u2 j (for i �= j) diagonal. The terms to distinguish equalities refer to an arrangement of the vertices ui into a 4 × 2
matrix with u2i−1, u2i in row i. Observe the following facts.

1. F3 or F2 is formed by the triples ei, f i, e j, f j if the pair i �= j have both horizontal equalities holding. Thus, at most one 
horizontal equality may hold.

2. If there is pair i �= j such that both vertical equalities hold, then a C4 can be found in B∗ contradicting to Proposition 1. 
Similarly,

3. if there is pair i �= j such that both diagonal equalities hold, we get a contradiction with Proposition 1.
4. We get a four edge path contradicting to Proposition 2 if there is a pair i, j such that exactly one vertical equality holds, 

that is u2i = u2 j and u2i−1, u2 j−1 are different and different from u2i as well. (Symmetrically, if there are xi, x j such 
that u2i−1 = u2 j−1 and u2i, u2 j are different and different from u2i−1 as well.)
4
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Facts 1–4 imply that there exists a triple of indices, i, j, k such that we have exactly one diagonal equality on each 
pair of them. These are either in the form u2i−1 = u2k, u2i = u2 j−1, u2 j = u2k−1 defining a six-cycle in B on the vertices 
xi, x j, xk, u2i, u2 j, u2k , giving (three) F1, for example ei, fk, f j, e j , or in the form u2i−1 = u2k, u2i = u2 j−1, u2 j−1 = u2k that 
implies horizontal equality u2i−1 = u2i , a contradiction. This proves Proposition 3. �

By Propositions 1, 2 the simple bipartite graph B(z) with edge set E(z) has no cycles or paths with four edges. Therefore 
each component of B(z) is a double star. Thus each B(z) can be written as the union of two graphs, S(z), T (z) where each 
vertex of S(z) ∩ A2 and each vertex of T (z) ∩ A1 has degree one in B(z). Set

S = ∪z∈A3 S(z), T = ∪z∈A3 T (z).

By the definition of S , for every vertex x ∈ A2, we have |L(x)| = dS(x) where dS(x) is the degree of vertex x in the (multi) 
graph S . By Proposition 3

∑
x∈A2

(|L(x)|
2

)
≤ 3

(|A3|
2

)

therefore
∑
x∈A2

(
dS(x)

2

)
≤ 3

(|A3|
2

)
.

Applying the same argument symmetrically for vertices of A1 and for the graph T , we get

∑
u∈A1

(
dT (u)

2

)
≤ 3

(|A3|
2

)
.

By the convexity argument, |E(B∗)| = |E(S)| + |E(T )| = O (n3/2). By Lemma 1, we also have |E(B)| = O (n3/2). Thus by (1)
and the definition of B∗ ,

|E(H)| =
∑

a1a2∈E(B)

|L(a1,a2)| ≤ 2|E(B)| + |E(B∗)| = O (n3/2),

concluding the proof of Theorem 1.

3. Concluding remarks

Theorem 1 determines the order of magnitude (�(n3/2)) for the 16 subsets of F containing F1, F2, F3 and we pointed 
out that for all other choices A ⊂ F , ex(n, A) must be essentially larger. In this section we summarize what we know about 
these cases. There is a trivial case, when A is empty and ex(n, A) = (n

3

)
. Furthermore, as mentioned before, ex(n, F2) =

�(n5/2) was proved by the first author (see in Mubayi [8]). Thus we have 27 − 24 − 2 = 110 cases to consider. It turns out 
that in 92 cases the order of magnitude is �(n2) (see Subsection 3.1) and only the remaining 18 cases are left unsolved 
(see Subsection 3.2).

A simple but useful lemma compares Turán numbers of closely related triple systems. Assume G is a triple system and 
v, w ∈ V (G) is covered by e ∈ E(G). The triple system obtained from G by removing e and adding the triple v, w, x where 
x /∈ V (G) is called a fold out of G . For example F7 is a fold out of F3, F6 is a fold out of F4.

Lemma 2. (Fold out lemma.) If G is a triple system and G1 is a fold out of G then ex(n, G1) ≤ ex(n, G) + (|V (G)| − 2)
(n

2

)
.

Proof. Suppose that a triple system H has n vertices and has more than ex(n, G) + (|V (G)| − 2)
(n

2

)
triples. A triple of H is 

called bad if it contains a pair of vertices that covered by at most |V (G)| − 2 triples of H , otherwise it is a good triple. Then 
H has more than ex(n, G) good triples thus contains a copy of G with all triples good. By definition, any pair of vertices in 
any triple of this copy of G is in more than |V (G)| − 2 triples of H so some of them is suitable to define the required fold 
out G1 of G . �
3.1. When ex(n, A) = �(n2)

Here we collect all cases of A ⊂ F when we can prove that ex(n, A) = �(n2).

Proposition 4. Assume that A ⊂F \ F2 and A ∩ {F1, F3, F7} �= ∅. Then ex(n, A) = �(n2).
5
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Proof. The first condition ensures that the members of A cannot be pierced by one vertex, thus Construction (C3) shows 
that ex(n, A) = �(n2). On the other hand, F7 is a fold out of F3 and F1 is a fold out of F7 thus by Lemma 2 (and by the 
second condition of the proposition)

ex(n, F1) ≤ ex(n, F7) + O (n2) ≤ ex(n, F3) + O (n2) ≤ 7

2

(
n

2

)
+ O (n2)

where the upper bound of ex(n, F3) is Füredi’s result [4]. �
Proposition 5. Assume that A ⊂F \ F3 and A ∩ {F1, F7} �= ∅. Then ex(n, A) = �(n2).

Proof. To show that ex(n, F ) = �(n2), consider the Construction (C3), it contains only F3 from F . The upper bound follows 
by the argument of Proposition 4. �
Proposition 6. Assume that {F2, F3} ⊂A ⊂ {F2, F3, F4, F5, F7}. Then ex(n, A) = �(n2).

Proof. To show that ex(n, A) = �(n2), consider

• (C4) Steiner triple systems without F4 (the Pasch configuration), they do not contain any member of A.

The upper bound follows from [4] since F3 ∈A. �
Proposition 7. Assume that {F2, F3, F6} ⊂A ⊂ {F2, F3, F5, F6, F7}. Then ex(n, A) = �(n2).

Proof. To show that ex(n, A) = �(n2), consider

• (C5) Steiner triple systems without F6 (projective Steiner triple systems), they do not contain any member of A.

The upper bound follows again from [4] since F3 ∈A. �
Note that Proposition 4 covers 56 cases, Proposition 5 adds 24 further cases, Propositions 6, 7 add 8 plus 4 further cases. 

These 92 cases are the ones when ex(n, A) = �(n2) follows from known results.

3.2. Unsolved cases

The 18 unsolved cases are grouped as follows.

• 1. ex(n, {A ∪ F6}) where A ⊆ {F2, F4, F5} (8 cases)
• 2. ex(n, {F2, F5}), ex(n, F5)

• 3. ex(n, {F2, F4, F5}), ex(n, {F4, F5})
• 4. ex(n, {F2, F4}), ex(n, F4)

• 5. ex(n, A) where {F2, F3, F4, F6} ⊆A ⊆ {F2, F3, F4, F5, F6, F7} (4 cases)

The upper bounds for the unknown cases can be compared by using Lemma 2. For example, observing that F6 is a fold 
out of F4 and of F5, moreover F5 is a fold out of F2, Lemma 2 implies

Proposition 8. Let A be any subset of {F2, F4, F5}. Then

ex(n, F6) ≤ ex(n, {A∪ F6}) ≤ ex(n, F6) + 7

(
n

2

)
.

A lower bound �(n2) for the first four groups of unknown cases can be obtained from Construction (C3). Lower bounds 
for the fifth group of unknown cases can be given by well studied functions introduced in [1]. Let ex(n, (6, 3)) be the 
maximum number of triples in a triple system that does not contain three triples inside any six vertices. Since all members 
of F except F1 contain three triples inside six vertices an almost quadratic lower bound of Construction (C1) comes from [9]
for the four unsolved cases in group 5. A quadratic upper bound is from [4] since F3 ∈A. Thus we get

Proposition 9. If {F2, F3, F4, F6} ⊆A ⊆ {F2, F3, F4, F5, F6, F7} then

ex(n, (6,3)) ≤ ex(n,A) = O (n2).
6
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In fact, the lower bound of Proposition 9 can be changed to ex(n, (7, 4)) (the maximum number of triples in a triple 
system that does not contain four triples inside any seven vertices).
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