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1. Introduction

We use standard notation. A k-graph (or k-uniform hypergraph) H is a pair (V, E)
with V' =V (H) a set of vertices and F = E(H) a collection of k-sets from V' which are
the hyperedges (or k-edges) of H. We may also use ‘edge’ for ‘k-edge’. The s-shadow,
O0sH, is the family of s-sets contained in the hyperedges of H. So 01 H is the set of non-
isolated vertices, and 02 H is a graph. We write [n] for {1,2,...,n}. Given a set A and
an integer k, we write (g) for the set of k-sets of A.

The complete k-graph on n vertices is the k-graph K\ = ([n], ([Z})) Let I () denote
the k-uniform hypergraph consisting of two hyperedges sharing exactly i vertices. The
k-graph H is k-partite if there exists a partition {Py,..., Py} of V(H) such that for
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every edge e € E(H) and part P; we have |e N P;| = 1. The complete k-partite k-graph
Ky (Py,..., P) has all of such edges, |E(Ky(Py,...,P))| = |Pi| x -+ x | Pyl

Given a family of k-graphs F, we say that a k-graph H is F-free if it contains no
member of F as a subgraph. We write ex(n, F) (or ex(n, F) if we want to emphasize k)
for the maximum number of k-edges that can be present in an n-vertex F-free k-graph.
The function ex(n, F) is referred to as the Turdn number of F. We leave out parentheses
whenever it is possible, e.g., in case of |F| =1 we write ex(n, F) instead of ex(n, {F'}).

Erdds and Simonovits (see [3,5]) conjectured that for any rational 1 < o < 2 there
exists a graph F with exa(n, F) = ©(n®) and for every graph F we have exa(n, F) =
©(n®) for some rational a. Bukh and Conlon [2] showed that the first conjecture holds
if we can forbid finite families of graphs. For a single graph, it is still unknown.

For hypergraphs Frankl [7] showed that all rationals occur as exponents of exy(n, F)
for some k and for some finite family F of k-uniform hypergraphs. Fitch [6] showed that
for a fixed k all rational numbers between 1 and k occur as exponents of exy(n, F) for
some family F of k-uniform hypergraphs.

We say that a function f(n) : N — R has no exponent if there is no real o such that
f(n) = 6(n%). In other words, the order of magnitude of f(n) is not a polynomial.

Brown, Erdds, and Sés [1] proposed the problem to determine (or estimate) fi(n, v, e),
the maximum number of edges in a k-uniform, n-vertex hypergraph in which no v vertices
span e or more edges. This is a Turdn type problem: Let G (v, €) be the family of k-graphs,
each member having e edges and at most v vertices, then fi(n,v,e) = exg(n, Gr(v, e)).

Ruzsa and Szemerédi [16] showed that if a 3-uniform hypergraph does not contain
three hyperedges on six vertices, then it has o(n?) edges, and they gave a construc-
tion with n2=°(1) hyperedges. This assumption is equivalent to forbidding the sub-
hypergraphs {123,124} (a pair covered twice) and {123,345,561} (a linear triangle).
They proved

n2—o) %Om"g(n) < f3(n,6,3) — (n/2)

< exs(n, {{123,124}, {123,345,561}}) < f3(n,6,3) = o(n?). (1.1)

(For the definition of r3(n), see (2.3) in Section 2). So they found a family of two 3-graphs
such that not only its Turdn number does not have a rational exponent, it does not have
an exponent at all. This is the famous (6, 3)-theorem, f5(n,6,3) is non-polynomial.

Erdés, Frankl, and Rédl [4] extended this to every k proving fi(n, 3k — 3,3) = o(n?)
but limy, 00 fr(n,3k — 3,3)/n?"¢ = oo for all € > 0 (k > 3 and ¢ are fixed, n — o0).
The proofs of the upper bounds here and in (1.1) are based on Szemerédi’s regularity
lemma [18].

Answering a question of Erdés, a single 5-uniform hypergraph with no exponent was
presented in [9]:
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Theorem 1.1 (Frankl and Firedi [9]). Let H = {12346,12457,12358}. Then exs(n, H) =
o(n*) but exs(n, H) # O(n*=¢) for any ¢ > 0.

The aim of this paper is to give a short proof and a generalization for all k£ > 5. The
original proof relied on the delta-system method, here we will use hypergraph regularity.
We conjecture that examples with no exponents should exist for kK = 3 and 4, too.

Definition 1.2. Let us consider three disjoint sets of vertices A = {a1,...,ax_r}, B =
{b1,...,b.} and C = {cy,...,c,}. Let Qr(r) denote the k-uniform hypergraph consisting
of all the hyperedges of the form AU (B\ {b;}) U {¢;}, for 1 <i <.

So |E(Qr(r)| = r and |V(Qr(r)| = k + r. To avoid trivialities we suppose that r > 2.
In this paper we study exy(n, Q(r)) for every pair of values k and r, k > r > 2, and we
either determine the order of magnitude or show that there is no exponent.

In the case of r = 2 we have Qr(2) = Ix(k — 2), i.e., two k-edges meeting
in k — 2 elements. The study of the Turdn number of I;(i) has been initiated by
Erd6s [3]. Frankl and Fiiredi [8] proved that exy(n, I1,(i)) = ©(n™>{#+=i=1}) One ob-
tains exy(n, Qx(2)) = O(n*~2) for k > 3 and exa(n, Q2(2)) = O(n).

Our main result is the following theorem.

Theorem 1.3. If k > r >3 and r > (k/2) + 1, then exx(n, Qx(r)) = O(nF~1).
Ifk>7r>3andr < (k+1)/2, then exi(n, Qr(r)) = o(n*~1) but exp(n, Qw(r)) #
O(nF=1=2) for any e > 0.

Note that Q5(3) = {12346,12457,12358}, so this Theorem is indeed an extension of
Theorem 1.1. Since Qx(3) C -+ C Qx(k), we have

exp(n, Qr(3)) < exp(n, Qr(4)) < -+ < exp(n, Qr(k)).

So to prove Theorem 1.3 we need to show that for kK > r > 3 as n — oo we have

(1:3.0) exk(n, Qu(k) = O@H=),

(1.3.b) exgp(n, Qu(r)) = Q(nF=1) if k < 2r — 2,

(1.3.c) exp(n,Qr(r)) = o(n*~1)if k > 2r — 1,

(1.3.d) exp(n, Qr(3)) = Q(nF~17¢) if k > 5, Ve > 0 fixed.

We emphasize that to prove that Qx(3) has no exponent (for & > 5) we do not need the
hypergraph removal lemma, we can only use the upper bound in the (6, 3)-theorem (1.1)
and our new lower bound construction from Section 3.3.

Problem. Determine lim sup,, , ., exx(n, Qx(r))/n*~! for 4 <k < 2r — 2.

The rest of the paper is organized as follows. In Section 2 the necessary tools are
presented, and Section 3 contains the proof of Theorem 1.3.
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2. Lemmas and tools

The following observation of Erdés and Kleitman is one of the basic tools to determine
the order of magnitude of the size of a k-graph H: Every k-graph H has a k-partition of
its vertices V(H) = Py U---U Py into almost equal parts (||P;| — [P;||< 1) such that for
the k-partite subhypergraph H' with E(H') := E(H) N E(Ky(Pi, ..., P)), one has

K ) < B < E() (21)

Suppose n > r >t > 1 are integers. An r-graph H on n vertices is called an (n,r,t)-
packing if |e N €’| < t holds for every e,e’ € E(H), e # €. The maximum of |E(H)| is
denoted by P(n,r,t). Since (7) > |0,H| = (})|E(H)|, we have P(n,k,t) < (7)/(7). It is

known that P(n,r,t) = (1+0(1))(%)/(;) when r and ¢ are fixed and n tends to infinity.

We only use the following easy statement: If r is fixed and n — oo then

P(n,r,t) > (C‘)/(:)Q = Qnb). (2.2)

A set of numbers is called APy-free if it does not contain k distinct elements forming
an arithmetic progression. Let ri(n) denote the maximum size of an AP-free subset of
[n]. The celebrated Szemerédi’s theorem [17] states that for a fixed k as n — co we have

re(n) = o(n). (2.3)

(The case r3(n) = o(n) was proved much earlier by K. F. Roth).
Let k be an integer and p be a prime, p > k. We say that S C {0,...,p— 1} is k-good
if for any mq,ma,m3 € {—k,—k+1,...,—-1}U{1,...,k} and $1,82,83 € S

m1+mo+mg =0 and

imply s1 = s9 = s3.
miS1 + MmosSo +mgsg =0

Here addition and multiplication are taken modulo p. Let si(p) denote the size of the
largest k-good set. The following result is an easy extension of Behrend’s construction,
see, e.g., Ruzsa [15]: There is a ¢; > 0 such that

pexp[—ci/logp] < si(p).
We only need that if £ and € > 0 are fixed and p — oo, then
sk(p) > p' " (2.4)

Note that a k-good set cannot contain a (strictly increasing) arithmetic progression of
length 3, so si(p) < r3(p) and r3(p) = o(p) by Roth’s theorem, see (2.3).
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We will use the hypergraph removal lemma. It was developed by several groups of
researchers (together with different versions of hypergraph regularity), see [11-14].

Theorem 2.1 (Hypergraph removal lemma). For any € > 0 and integers £ > k, there exist
6 > 0 and an integer ng such that the following statement holds. Suppose F is a k-uniform
hypergraph on £ vertices and H is a k-uniform hypergraph on n > ngy vertices, such that
H contains at most 5(7;) copies of F'. Then one can delete at most 5( ) hyperedges from
H such that the resulting hypergraph is F-free.

Recall that Ii(i) denotes the k-uniform hypergraph consisting of two hyperedges
sharing exactly 4 vertices. Frankl and Rodl [10] generalized the lower bound of the (6, 3)-
theorem (i.e., (1.1)) of Ruzsa and Szemerédi [16] as follows.

Theorem 2.2 (/10]). For any integer k > 3 there exists a ¢j, > 0 such that for alln > k

¢k ¥ rr(n) x n*7% <exp(n, {Qr(k), In(k — 1)}).

They conjectured exy,(n, {Qx(k), Ir(k — 1)}) = o(n*~!) and proved the case k = 4
(the case k = 3 is part of (1.1)). In order to prove exy(n, {Q4(4),14(3)}) = o(n?) they
developed a hypergraph removal lemma for the 3-uniform case. They also described how
the hypergraph removal lemma (Theorem 2.1) would imply the general upper bound
o(n*~1). Since then Theorem 2.1 has been proved, so we have the following statement.

Corollary 2.3. For any k > 2 we have exy(n, {Qx(k), I.(k — 1)}) = o(n*~1).

Note that Theorem 2.2 and Corollary 2.3 imply Szemerédi’s theorem: ri(n) = o(n).
Since the above corollary plays an important role in our main result, we include its
few line proof from [10]. This is the only place where we need Theorem 2.1.

Proof Corollary 2.3. Let H be a Q(k) and I(k — 1)-free k-graph on n vertices. We
will give an upper bound on its size. By (2.1) we may suppose that H is k-partite
with parts P, ..., Py. Consider its shadow dH, which is a (k — 1)-uniform hypergraph.
Since H is Iy(k — 1)-free, each f € OH is contained in a unique e(f) € E(H). We get
(kfl)|E( )| = |E(0H)|. This already gives |E(H)| = O(n*~1).

Every edge e € E(H) induces a complete subhypergraph K ,(Ck_l) in 0H. We claim that
these are the only cliques of size k in OH. Consider a copy K of K ,gk_l) in 0H. Then
|P, N V(K)| =1 for each P;. If e(f) = V(K) for some f € E(K) then K is the clique
generated by V(K) = e(f) € E(H). Otherwise, when e(f) # V(K) for each f € E(K),
the k hyperedges {e(f) : f € E(K)} form a copy of Q(k), a contradiction.

Therefore, the number of copies of K,ikil) in 0H is O(n*~1) = o(n!V)I). Then by
the hypergraph removal lemma (Theorem 2.1) there exists a subhypergraph H', E(H') C
E(0H), so that E(H') meets every copy of K,gkfl) in OH and |E(H')| = o(n*~1). For
such an H' we have |E(H)| < |E(H')|, finishing the proof. O
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3. Proof of Theorem 1.3
3.1. Upper bounds

Here we prove (1.3.a) and (1.3.c), the upper bounds for exg(n, Qx(r)).

Let H be a Qp(r)-free k-graph on n vertices. We will give an upper bound on |E(H)|.
By (2.1) we may suppose that H is k-partite with parts Py,..., Py. For a hyperedge
e € E(H),let D(e) C [k] denote the set of integers i such that there is another hyperedge
e’ € E(H) that differs from e only in P;, e\ P; = ¢’ \ P;. Note that |D(e)| < r because
H is Qp(r)-free.

There is a set D C {1,...,k} such that there are at least |E(H)|/2" hyperedges
e € E(H) with D(e) = D. Let H’' be the k-graph of these edges, E(H') := {e € E(H) :
D(e) =D}.Set £ :=k—|D|, wehave £ >k —r+1,¢> 1.

Let T be an edge of the complete | D|-partite hypergraph with parts {P; : i € D}, i.e.,
|T| = |D| and |T'N P;| = 1 for each ¢ € D. (D might be the empty set). There are at
most O(n*~*) appropriate T. Define H'[T] as the link of T in H’, i.e., it is an f-graph
with edges {e\T: T Ce € E(H')}.

Observe that H'[T] is Ip(¢ — 1)-free. Indeed, two hyperedges of H'[T] sharing ¢ — 1
vertices would mean two hyperedges in H’ sharing k — 1 vertices such that their only
difference is in a part not belonging to D. So every (¢ — 1)-element set is contained in at
most one hyperedge in H'[T], thus |H'[T]| < (,",). Since |[E(H")| = Y, |E(H'[T])|, we
obtained

B = 0llE()) =0 (") =06, (3.1)

completing the proof of (1.3.a).

Finally, let us assume k > 2r — 1, i.e., £ > r. We claim that in this case H'[T] is
also Qg (f)-free. Indeed, if we add T to the hyperedges of a copy of Q.(¢) from H'[T],
we obtain a Q(¢) in H'. Since Qi (¢) contains a Qy(r), this is a contradiction. Thus we
have |E(H'[T])| = o(n*~') by Corollary 2.3. We complete the proof as in (3.1)

|E(H)| = O(|B(H")]) = O(n*™") x o(n"~") = o(n*"1). O
3.2. Proof of Theorem 1.3, the polynomial range

In this subsection we prove the lower bound (1.3.b) by giving a construction.

Since k < 2r —2, wehaver —1 > k+1—7 > 1. Let X and Y be two disjoint sets,
|X| = |n/2] and |Y| = [n/2]. Let H! be an (| X|,7 — 1,7 — 2)-packing of maximum size,
i.e., an (r — 1)-uniform hypergraph such that any two hyperedges share at most r — 3
vertices. By (2.2) we have |E(H')| = ©(n"~2). Let H? be the complete (k — 7 + 1)-
uniform hypergraph with vertex set Y. Finally, let H> be the k-graph with vertex set
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X UY having as hyperedges all the k-sets that are unions of a hyperedge of H! and a
hyperedge of H?. Then H® has ©(n*~!) hyperedges. We claim that H? is Qy(r)-free.

Assume, on the contrary, that there is a copy of Qi(r) in H3, E(Q(r)) =
{fi, f2,..., fr}. Note that | N f;| =k —r < (k—r+1) < r —1 and the symmetric
differences {f; A f; : 1 <i < j < r} are all distinct 4-element sets. Consider, first, the
case when for some 7 # j we have f; N X = f; N X. Then all f; N X are identical. Indeed,
if there exists an f; N X # f; N X, then these two (r — 1)-sets have symmetric difference
at least 4, so it should be exactly 4, and then (f; N X) A (f;NX) and (f; NX) A (f:NX)
are identical 4-element sets, a contradiction. Then | N f;| > r — 1, a contradiction.

From now on, we may suppose that the (r — 1)-element sets {f; N X'} are all distinct.
Then, because |(fiNX)A(f;NX)| > 4 we have that f;NY = f;NY foralll <i< j<r.
Hence | N f;| > k —r + 1, a final contradiction. O

3.3. Proof of Theorem 1.3, a non-polynomial lower bound

In this subsection we prove the lower bound (1.3.d) by giving a construction. We will
show that if n = kp, where k > 5 and p is a prime, then ex(n, Qx(3)) > p*~2si(p). As
ex(n, Qk(3)) is monotone in n and there is a prime between n/2k and n/k, this and (2.4)
give the desired bound Q(n*~1=°()) for ex(n, Q1 (3)).

Let the vertex set V' consist of the pairs (¢,7) with 1 <7 < kand 0 < j < p—1. Choose
two integers 0 < o, 8 < p—1 and a k-good set S C {0,...,p— 1} of size sx(p). Suppose
that my,...,my € {1,...,k} are distinct integers (i.e., a permutation of [k]). We define
a k-partite k-graph F = F(S, «, 8) on V with parts P; := {(4,7) : 0 < j < p—1}. A k-set
{(1,21),(2,22),...,(k,xx)} is a hyperedge of F' if the following two equations hold.

k
(Z xz> =a (mod p),
i=1
k
(Z mixi> €S+ (mod p).

We have |F(S,a, )| = p*~2sx(p). Indeed, we can pick an s € S and k — 2 values
T3, ..., T arbitrarily, and since my # mq, the above two equations uniquely determine
z1 and xo.

Claim 3.1. F is Q(3)-free.

Proof of Claim. Suppose, on the contrary, that there is a copy of Qx(3) in F', and let
A, B,C be the sets of vertices as in Definition 1.2. Without loss of generality we may
assume that A = {({,2;) : 4 <i <k}, b; = (i,2;) (i =1,2,3),and ¢; = (4, 9;) (i = 1,2,3).
Then the constraints in the definition of F' imply the following six equations.
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k
E z; | +y;—z;=a (modp) forj=1,2,3
=1

k
<Zmle> +m;(y; —x;) =s;+ 5 (modp) forj=1,2,3
i=1

for some sy, 59,53 € S. Define u := o — (XF_, ;) and v := (X5, myz;) — B. We obtain

yj —z;=u, (modp) forj=1,23 (3.2)
and

v+mju=s; (modp) forj=1,23. (3.3)
These imply
(v+miu — s1)(ma —m3) + (v + mou — s2)(Mm3 —m1) + (v + mau — s3)(m1 — mg) = 0.
Rearranging

(m3 —ma)s1 + (m1 —m3)sa + (m2 —mq)s3 =0 (mod p).

As S is a k-good set and 1 < |m; — m;| < k, we have s; = s; = s3. Then (3.3) gives
v+miu = v+ mou = v+ mgu implying v = 0. Then (3.2) gives z; = y; (for j =1,2,3),
a contradiction. 0O

3.4. Another lower bound in the case of k = 2r — 1

We give another construction which gives the lower bound Q(r.(n)n*=2) < exx(n,
Qk(r)) in the case of k& = 2r — 1. The construction in Section 3.3 yielded a slightly
weaker lower bound Q(sg(n) x n¥=2).

We start with an r-graph H! with a set V; of |n/2] vertices and Q(r,.(n)n"~2) hy-
peredges that is both @,(r)-free and I,.(r — 1)-free. The existence of such hypergraphs
was proved by Frankl and Rodl [10], see Theorem 2.2. Then we add a set V2 of [n/2]
new vertices and take all the k-edges which contain an r-edge of H' and r — 1 vertices
from V5. This hypergraph H obviously has Q(r,.(n)n*~2) hyperedges. It is not difficult
to see, like we did in Subsection 3.2, that H is Qy(r)-free.

Acknowledgments

Research of Fiiredi was supported in part by NKFIH grant KH130371 and NKFI-
133819. Research of Gerbner was supported by the National Research, Development and
Innovation Office - NKFIH under the grants KH 130371, SNN 129364, FK 132060, and
KKP-133819.



Z. Firedi, D. Gerbner / Journal of Combinatorial Theory, Series A 184 (2021) 105517 9

References

[1] W. Brown, P. Erddés, V. S6s, Some extremal problems on r-graphs, in: New Directions in the Theory
of Graphs, Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich, 1971, 1973, pp. 53—63.

[2] B. Bukh, D. Conlon, Rational exponents in extremal graph theory, J. Eur. Math. Soc. 20 (2018)
1747-1757.

[3] P. Erdés, Problems and results in graph theory and combinatorial analysis, in: Proc. British Com-
binatorial Conf., Conj., 5th, 1975, pp. 169-192.

[4] P. Erdés, P. Frankl, V. Roédl, The asymptotic number of graphs not containing a fixed subgraph
and a problem for hypergraphs having no exponent, Graphs Comb. 2 (1986) 113-121.

[5] P. Erdés, M. Simonovits, Compactness results in extremal graph theory, Combinatorica 2 (1982)
275-288.

[6] M. Fitch, Rational exponents for hypergraph Turan problems, J. Comb. 10 (2019) 61-86.

[7] P. Frankl, All rationals occur as exponents, J. Comb. Theory, Ser. A 42 (1986) 200-206.

[8] P. Frankl, Z. Fiiredi, Forbidding just one intersection, J. Comb. Theory, Ser. A 39 (1985) 160-176.

[9] P. Frankl, Z. Firedi, Exact solution of some Turdn-type problems, J. Comb. Theory, Ser. A 45
(1987) 226-262.

[10] P. Frankl, V. Rodl, Extremal problems on set systems, Random Struct. Algorithms 20 (2002)
131-164.

[11] W.T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Ann. Math. 166
(2007) 897-946.

[12] B. Nagle, V. Rodl, M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random
Struct. Algorithms 28 (2006) 113-179.

[13] V. Rédl, J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Struct. Algorithms 25
(2004) 1-42.

[14] V. Rodl, J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Struct.
Algorithms 28 (2006) 180-194.

[15] I.Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith. 65 (1993) 259-282.

[16] I.Z. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, in: Combina-
torics, vol. 2, Proc. Fifth Hungarian Colloq., Keszthely, 1976, in: Colloq. Math. Soc. Janos Bolyai,
vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 939-945.

[17] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith.
27 (1975) 199-245.

[18] E. Szemerédi, Regular partitions of graphs, in: Problémes combinatoires et théorie des graphes,
Colloqg. Internat. CNRS, Univ. Orsay, Orsay, 1976, in: Colloq. Internat. CNRS, vol. 260, CNRS,
Paris, 1978, pp. 399-401.


http://refhub.elsevier.com/S0097-3165(21)00116-3/bibAF2289331F3D2C843730AC459969DFABs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibAF2289331F3D2C843730AC459969DFABs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib5360AF35BDE9EBD8F01F492DC059593Cs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib5360AF35BDE9EBD8F01F492DC059593Cs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibED86079F4A2D214EED8EADE2095D7EC4s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibED86079F4A2D214EED8EADE2095D7EC4s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibC6E285907444ACE4568AE3DFAAAC78DAs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibC6E285907444ACE4568AE3DFAAAC78DAs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibB9091C45278C3F46698009C7C2C492D2s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibB9091C45278C3F46698009C7C2C492D2s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibA6CB701B0FDA9F3443982009BD3336D2s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibFF9387EFC3C4F931E364486766584BDAs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib41B70D31B881C31C5F125F5FCAF1DF64s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibAB75C78FEB3CEFA88DFE9D7B4042CC43s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibAB75C78FEB3CEFA88DFE9D7B4042CC43s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib82A9E4D26595C87AB6E442391D8C5BBAs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib82A9E4D26595C87AB6E442391D8C5BBAs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibCC9E29D265EC317628A110A3F2A11A3As1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibCC9E29D265EC317628A110A3F2A11A3As1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibC8A42EDC6BC3E9499E1AE393E8FD5A65s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bibC8A42EDC6BC3E9499E1AE393E8FD5A65s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib3A2D7564BAEE79182EBC7B65084AABD1s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib3A2D7564BAEE79182EBC7B65084AABD1s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib964D89A1B7E857E4CEED9EBD9A5079F3s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib964D89A1B7E857E4CEED9EBD9A5079F3s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib6F7476F2450E65E52F47C36B7569D392s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib611BDBC1A25040D562A09384DA155884s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib611BDBC1A25040D562A09384DA155884s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib611BDBC1A25040D562A09384DA155884s1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib6AEDC5BF1F4012406B2E25C528B584DAs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib6AEDC5BF1F4012406B2E25C528B584DAs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib8AEC793DC0925BA6ECC1BFA8E0E46E9Fs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib8AEC793DC0925BA6ECC1BFA8E0E46E9Fs1
http://refhub.elsevier.com/S0097-3165(21)00116-3/bib8AEC793DC0925BA6ECC1BFA8E0E46E9Fs1

	Hypergraphs without exponents
	1 Introduction
	2 Lemmas and tools
	3 Proof of Theorem 1.3
	3.1 Upper bounds
	3.2 Proof of Theorem 1.3, the polynomial range
	3.3 Proof of Theorem 1.3, a non-polynomial lower bound
	3.4 Another lower bound in the case of k=2r−1

	Acknowledgments
	References


