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A short, concise proof is given for that for k ≥ 5 there exists 
a k-uniform hypergraph H without exponent, i.e., when the 
Turán function is not polynomial in n. More precisely, we have 
ex(n, H) = o(nk−1) but it exceeds nk−1−c for any positive c
for n > n0(k, c). We conjecture that this is true for k ∈ {3, 4}
as well.
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1. Introduction

We use standard notation. A k-graph (or k-uniform hypergraph) H is a pair (V, E)
with V = V (H) a set of vertices and E = E(H) a collection of k-sets from V which are 
the hyperedges (or k-edges) of H. We may also use ‘edge’ for ‘k-edge’. The s-shadow, 
∂sH, is the family of s-sets contained in the hyperedges of H. So ∂1H is the set of non-
isolated vertices, and ∂2H is a graph. We write [n] for {1, 2, . . . , n}. Given a set A and 
an integer k, we write 

(
A
k

)
for the set of k-sets of A.

The complete k-graph on n vertices is the k-graph K(k)
n = ([n], 

([n]
k

)
). Let Ik(i) denote 

the k-uniform hypergraph consisting of two hyperedges sharing exactly i vertices. The 
k-graph H is k-partite if there exists a partition {P1, . . . , Pk} of V (H) such that for 
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every edge e ∈ E(H) and part Pi we have |e ∩ Pi| = 1. The complete k-partite k-graph 
Kk(P1, . . . , Pk) has all of such edges, |E(Kk(P1, . . . , Pk))| = |P1| × · · · × |Pk|.

Given a family of k-graphs F , we say that a k-graph H is F-free if it contains no 
member of F as a subgraph. We write ex(n, F) (or exk(n, F) if we want to emphasize k) 
for the maximum number of k-edges that can be present in an n-vertex F-free k-graph. 
The function ex(n, F) is referred to as the Turán number of F . We leave out parentheses 
whenever it is possible, e.g., in case of |F| = 1 we write ex(n, F ) instead of ex(n, {F}).

Erdős and Simonovits (see [3,5]) conjectured that for any rational 1 ≤ α ≤ 2 there 
exists a graph F with ex2(n, F ) = Θ(nα) and for every graph F we have ex2(n, F ) =
Θ(nα) for some rational α. Bukh and Conlon [2] showed that the first conjecture holds 
if we can forbid finite families of graphs. For a single graph, it is still unknown.

For hypergraphs Frankl [7] showed that all rationals occur as exponents of exk(n, F)
for some k and for some finite family F of k-uniform hypergraphs. Fitch [6] showed that 
for a fixed k all rational numbers between 1 and k occur as exponents of exk(n, F) for 
some family F of k-uniform hypergraphs.

We say that a function f(n) : N → R has no exponent if there is no real α such that 
f(n) = Θ(nα). In other words, the order of magnitude of f(n) is not a polynomial.

Brown, Erdős, and Sós [1] proposed the problem to determine (or estimate) fk(n, v, e), 
the maximum number of edges in a k-uniform, n-vertex hypergraph in which no v vertices 
span e or more edges. This is a Turán type problem: Let Gk(v, e) be the family of k-graphs, 
each member having e edges and at most v vertices, then fk(n, v, e) = exk(n, Gk(v, e)).

Ruzsa and Szemerédi [16] showed that if a 3-uniform hypergraph does not contain 
three hyperedges on six vertices, then it has o(n2) edges, and they gave a construc-
tion with n2−o(1) hyperedges. This assumption is equivalent to forbidding the sub-
hypergraphs {123, 124} (a pair covered twice) and {123, 345, 561} (a linear triangle). 
They proved

n2−o(1) <
1
10nr3(n) < f3(n, 6, 3) − (n/2)

≤ ex3(n, {{123, 124}, {123, 345, 561}}) ≤ f3(n, 6, 3) = o(n2). (1.1)

(For the definition of r3(n), see (2.3) in Section 2). So they found a family of two 3-graphs 
such that not only its Turán number does not have a rational exponent, it does not have 
an exponent at all. This is the famous (6, 3)-theorem, f3(n, 6, 3) is non-polynomial.

Erdős, Frankl, and Rödl [4] extended this to every k proving fk(n, 3k − 3, 3) = o(n2)
but limn→∞ fk(n, 3k − 3, 3)/n2−ε = ∞ for all ε > 0 (k ≥ 3 and ε are fixed, n → ∞). 
The proofs of the upper bounds here and in (1.1) are based on Szemerédi’s regularity 
lemma [18].

Answering a question of Erdős, a single 5-uniform hypergraph with no exponent was 
presented in [9]:
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Theorem 1.1 (Frankl and Füredi [9]). Let H = {12346, 12457, 12358}. Then ex5(n, H) =
o(n4) but ex5(n, H) �= O(n4−ε) for any ε > 0.

The aim of this paper is to give a short proof and a generalization for all k ≥ 5. The 
original proof relied on the delta-system method, here we will use hypergraph regularity. 
We conjecture that examples with no exponents should exist for k = 3 and 4, too.

Definition 1.2. Let us consider three disjoint sets of vertices A = {a1, . . . , ak−r}, B =
{b1, . . . , br} and C = {c1, . . . , cr}. Let Qk(r) denote the k-uniform hypergraph consisting 
of all the hyperedges of the form A ∪ (B \ {bi}) ∪ {ci}, for 1 ≤ i ≤ r.

So |E(Qk(r)| = r and |V (Qk(r)| = k + r. To avoid trivialities we suppose that r ≥ 2. 
In this paper we study exk(n, Qk(r)) for every pair of values k and r, k ≥ r ≥ 2, and we 
either determine the order of magnitude or show that there is no exponent.

In the case of r = 2 we have Qk(2) = Ik(k − 2), i.e., two k-edges meeting 
in k − 2 elements. The study of the Turán number of Ik(i) has been initiated by 
Erdős [3]. Frankl and Füredi [8] proved that exk(n, Ik(i)) = Θ(nmax{i,k−i−1}). One ob-
tains exk(n, Qk(2)) = Θ(nk−2) for k ≥ 3 and ex2(n, Q2(2)) = Θ(n).

Our main result is the following theorem.

Theorem 1.3. If k ≥ r ≥ 3 and r ≥ (k/2) + 1, then exk(n, Qk(r)) = Θ(nk−1).
If k ≥ r ≥ 3 and r ≤ (k + 1)/2, then exk(n, Qk(r)) = o(nk−1) but exk(n, Qk(r)) �=

O(nk−1−ε) for any ε > 0.

Note that Q5(3) = {12346, 12457, 12358}, so this Theorem is indeed an extension of 
Theorem 1.1. Since Qk(3) ⊂ · · · ⊂ Qk(k), we have

exk(n,Qk(3)) ≤ exk(n,Qk(4)) ≤ · · · ≤ exk(n,Qk(k)).

So to prove Theorem 1.3 we need to show that for k ≥ r ≥ 3 as n → ∞ we have

(1.3.a) exk(n, Qk(k)) = O(nk−1),
(1.3.b) exk(n, Qk(r)) = Ω(nk−1) if k ≤ 2r − 2,
(1.3.c) exk(n, Qk(r)) = o(nk−1) if k ≥ 2r − 1,
(1.3.d) exk(n, Qk(3)) = Ω(nk−1−ε) if k ≥ 5, ∀ε > 0 fixed.

We emphasize that to prove that Qk(3) has no exponent (for k ≥ 5) we do not need the 
hypergraph removal lemma, we can only use the upper bound in the (6, 3)-theorem (1.1)
and our new lower bound construction from Section 3.3.

Problem. Determine lim supn→∞ exk(n, Qk(r))/nk−1 for 4 ≤ k ≤ 2r − 2.

The rest of the paper is organized as follows. In Section 2 the necessary tools are 
presented, and Section 3 contains the proof of Theorem 1.3.
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2. Lemmas and tools

The following observation of Erdős and Kleitman is one of the basic tools to determine 
the order of magnitude of the size of a k-graph H: Every k-graph H has a k-partition of 
its vertices V (H) = P1 ∪ · · · ∪Pk into almost equal parts 

(∣∣|Pi| − |Pj |
∣∣≤ 1

)
such that for 

the k-partite subhypergraph H ′ with E(H ′) := E(H) ∩E(Kk(P1, . . . , Pk)), one has

k!
kk

|E(H)| ≤ |E(H ′)| ≤ |E(H)|. (2.1)

Suppose n ≥ r ≥ t ≥ 1 are integers. An r-graph H on n vertices is called an (n, r, t)-
packing if |e ∩ e′| < t holds for every e, e′ ∈ E(H), e �= e′. The maximum of |E(H)| is 
denoted by P (n, r, t). Since 

(
n
t

)
≥ |∂tH| =

(
r
t

)
|E(H)|, we have P (n, k, t) ≤

(
n
t

)
/
(
r
t

)
. It is 

known that P (n, r, t) = (1 + o(1))
(
n
t

)
/
(
r
t

)
when r and t are fixed and n tends to infinity. 

We only use the following easy statement: If r is fixed and n → ∞ then

P (n, r, t) ≥
(
n

t

)
/

(
r

t

)2

= Ω(nt). (2.2)

A set of numbers is called APk-free if it does not contain k distinct elements forming 
an arithmetic progression. Let rk(n) denote the maximum size of an APk-free subset of 
[n]. The celebrated Szemerédi’s theorem [17] states that for a fixed k as n → ∞ we have

rk(n) = o(n). (2.3)

(The case r3(n) = o(n) was proved much earlier by K. F. Roth).
Let k be an integer and p be a prime, p > k. We say that S ⊆ {0, . . . , p − 1} is k-good

if for any m1, m2, m3 ∈ {−k, −k + 1, . . . , −1} ∪ {1, . . . , k} and s1, s2, s3 ∈ S

m1 + m2 + m3 = 0 and

m1s1 + m2s2 + m3s3 = 0

}
imply s1 = s2 = s3.

Here addition and multiplication are taken modulo p. Let sk(p) denote the size of the 
largest k-good set. The following result is an easy extension of Behrend’s construction, 
see, e.g., Ruzsa [15]: There is a ck > 0 such that

p exp[−ck
√

log p] < sk(p).

We only need that if k and ε > 0 are fixed and p → ∞, then

sk(p) > p1−ε. (2.4)

Note that a k-good set cannot contain a (strictly increasing) arithmetic progression of 
length 3, so sk(p) ≤ r3(p) and r3(p) = o(p) by Roth’s theorem, see (2.3).
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We will use the hypergraph removal lemma. It was developed by several groups of 
researchers (together with different versions of hypergraph regularity), see [11–14].

Theorem 2.1 (Hypergraph removal lemma). For any ε > 0 and integers � ≥ k, there exist 
δ > 0 and an integer n0 such that the following statement holds. Suppose F is a k-uniform 
hypergraph on � vertices and H is a k-uniform hypergraph on n ≥ n0 vertices, such that 
H contains at most δ

(
n
�

)
copies of F . Then one can delete at most ε

(
n
k

)
hyperedges from 

H such that the resulting hypergraph is F -free.

Recall that Ik(i) denotes the k-uniform hypergraph consisting of two hyperedges 
sharing exactly i vertices. Frankl and Rödl [10] generalized the lower bound of the (6, 3)-
theorem (i.e., (1.1)) of Ruzsa and Szemerédi [16] as follows.

Theorem 2.2 ([10]). For any integer k ≥ 3 there exists a c′k > 0 such that for all n ≥ k

c′k × rk(n) × nk−2 ≤ exk(n, {Qk(k), Ik(k − 1)}).

They conjectured exk(n, {Qk(k), Ik(k − 1)}) = o(nk−1) and proved the case k = 4
(the case k = 3 is part of (1.1)). In order to prove ex4(n, {Q4(4), I4(3)}) = o(n3) they 
developed a hypergraph removal lemma for the 3-uniform case. They also described how 
the hypergraph removal lemma (Theorem 2.1) would imply the general upper bound 
o(nk−1). Since then Theorem 2.1 has been proved, so we have the following statement.

Corollary 2.3. For any k ≥ 2 we have exk(n, {Qk(k), Ik(k − 1)}) = o(nk−1).

Note that Theorem 2.2 and Corollary 2.3 imply Szemerédi’s theorem: rk(n) = o(n).
Since the above corollary plays an important role in our main result, we include its 

few line proof from [10]. This is the only place where we need Theorem 2.1.

Proof Corollary 2.3. Let H be a Qk(k) and Ik(k − 1)-free k-graph on n vertices. We 
will give an upper bound on its size. By (2.1) we may suppose that H is k-partite 
with parts P1, . . . , Pk. Consider its shadow ∂H, which is a (k − 1)-uniform hypergraph. 
Since H is Ik(k − 1)-free, each f ∈ ∂H is contained in a unique e(f) ∈ E(H). We get (

k
k−1

)
|E(H)| = |E(∂H)|. This already gives |E(H)| = O(nk−1).

Every edge e ∈ E(H) induces a complete subhypergraph K(k−1)
k in ∂H. We claim that 

these are the only cliques of size k in ∂H. Consider a copy K of K(k−1)
k in ∂H. Then 

|Pi ∩ V (K)| = 1 for each Pi. If e(f) = V (K) for some f ∈ E(K) then K is the clique 
generated by V (K) = e(f) ∈ E(H). Otherwise, when e(f) �= V (K) for each f ∈ E(K), 
the k hyperedges {e(f) : f ∈ E(K)} form a copy of Qk(k), a contradiction.

Therefore, the number of copies of K(k−1)
k in ∂H is O(nk−1) = o(n|V (K)|). Then by 

the hypergraph removal lemma (Theorem 2.1) there exists a subhypergraph H ′, E(H ′) ⊂
E(∂H), so that E(H ′) meets every copy of K(k−1)

k in ∂H and |E(H ′)| = o(nk−1). For 
such an H ′ we have |E(H)| ≤ |E(H ′)|, finishing the proof. �
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3. Proof of Theorem 1.3

3.1. Upper bounds

Here we prove (1.3.a) and (1.3.c), the upper bounds for exk(n, Qk(r)).
Let H be a Qk(r)-free k-graph on n vertices. We will give an upper bound on |E(H)|. 

By (2.1) we may suppose that H is k-partite with parts P1, . . . , Pk. For a hyperedge 
e ∈ E(H), let D(e) ⊆ [k] denote the set of integers i such that there is another hyperedge 
e′ ∈ E(H) that differs from e only in Pi, e \ Pi = e′ \ Pi. Note that |D(e)| < r because 
H is Qk(r)-free.

There is a set D ⊂ {1, . . . , k} such that there are at least |E(H)|/2k hyperedges 
e ∈ E(H) with D(e) = D. Let H ′ be the k-graph of these edges, E(H ′) := {e ∈ E(H) :
D(e) = D}. Set � := k − |D|, we have � ≥ k − r + 1, � ≥ 1.

Let T be an edge of the complete |D|-partite hypergraph with parts {Pi : i ∈ D}, i.e., 
|T | = |D| and |T ∩ Pi| = 1 for each i ∈ D. (D might be the empty set). There are at 
most O(nk−�) appropriate T . Define H ′[T ] as the link of T in H ′, i.e., it is an �-graph 
with edges {e \ T : T ⊂ e ∈ E(H ′)}.

Observe that H ′[T ] is I�(� − 1)-free. Indeed, two hyperedges of H ′[T ] sharing � − 1
vertices would mean two hyperedges in H ′ sharing k − 1 vertices such that their only 
difference is in a part not belonging to D. So every (� − 1)-element set is contained in at 
most one hyperedge in H ′[T ], thus |H ′[T ]| ≤

(
n

�−1
)
. Since |E(H ′)| =

∑
T |E(H ′[T ])|, we 

obtained

|E(H)| = O(|E(H ′)|) = O(nk−l)
(

n

�− 1

)
= O(nk−1), (3.1)

completing the proof of (1.3.a).
Finally, let us assume k ≥ 2r − 1, i.e., � ≥ r. We claim that in this case H ′[T ] is 

also Q�(�)-free. Indeed, if we add T to the hyperedges of a copy of Q�(�) from H ′[T ], 
we obtain a Qk(�) in H ′. Since Qk(�) contains a Qk(r), this is a contradiction. Thus we 
have |E(H ′[T ])| = o(n�−1) by Corollary 2.3. We complete the proof as in (3.1)

|E(H)| = O(|E(H ′)|) = O(nk−l) × o(n�−1) = o(nk−1). �
3.2. Proof of Theorem 1.3, the polynomial range

In this subsection we prove the lower bound (1.3.b) by giving a construction.
Since k ≤ 2r − 2, we have r − 1 ≥ k + 1 − r ≥ 1. Let X and Y be two disjoint sets, 

|X| = 
n/2� and |Y | = �n/2�. Let H1 be an (|X|, r− 1, r− 2)-packing of maximum size, 
i.e., an (r − 1)-uniform hypergraph such that any two hyperedges share at most r − 3
vertices. By (2.2) we have |E(H1)| = Θ(nr−2). Let H2 be the complete (k − r + 1)-
uniform hypergraph with vertex set Y . Finally, let H3 be the k-graph with vertex set 
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X ∪ Y having as hyperedges all the k-sets that are unions of a hyperedge of H1 and a 
hyperedge of H2. Then H3 has Θ(nk−1) hyperedges. We claim that H3 is Qk(r)-free.

Assume, on the contrary, that there is a copy of Qk(r) in H3, E(Qk(r)) =
{f1, f2, . . . , fr}. Note that | ∩ fi| = k − r < (k − r + 1) ≤ r − 1 and the symmetric 
differences {fi � fj : 1 ≤ i < j ≤ r} are all distinct 4-element sets. Consider, first, the 
case when for some i �= j we have fi ∩X = fj ∩X. Then all ft ∩X are identical. Indeed, 
if there exists an ft ∩X �= fi ∩X, then these two (r− 1)-sets have symmetric difference 
at least 4, so it should be exactly 4, and then (fi∩X) � (ft∩X) and (fj ∩X) � (ft∩X)
are identical 4-element sets, a contradiction. Then | ∩ fi| ≥ r − 1, a contradiction.

From now on, we may suppose that the (r− 1)-element sets {fi ∩X} are all distinct. 
Then, because |(fi∩X) �(fj∩X)| ≥ 4 we have that fi∩Y = fj∩Y for all 1 ≤ i < j ≤ r. 
Hence | ∩ fi| ≥ k − r + 1, a final contradiction. �
3.3. Proof of Theorem 1.3, a non-polynomial lower bound

In this subsection we prove the lower bound (1.3.d) by giving a construction. We will 
show that if n = kp, where k ≥ 5 and p is a prime, then ex(n, Qk(3)) ≥ pk−2sk(p). As 
ex(n, Qk(3)) is monotone in n and there is a prime between n/2k and n/k, this and (2.4)
give the desired bound Ω(nk−1−o(1)) for ex(n, Qk(3)).

Let the vertex set V consist of the pairs (i, j) with 1 ≤ i ≤ k and 0 ≤ j ≤ p −1. Choose 
two integers 0 ≤ α, β ≤ p − 1 and a k-good set S ⊂ {0, . . . , p − 1} of size sk(p). Suppose 
that m1, . . . , mk ∈ {1, . . . , k} are distinct integers (i.e., a permutation of [k]). We define 
a k-partite k-graph F = F (S, α, β) on V with parts Pi := {(i, j) : 0 ≤ j ≤ p −1}. A k-set 
{(1, x1), (2, x2), . . . , (k, xk)} is a hyperedge of F if the following two equations hold.

(
k∑

i=1
xi

)
= α (mod p),

(
k∑

i=1
mixi

)
∈ S + β (mod p).

We have |F (S, α, β)| = pk−2sk(p). Indeed, we can pick an s ∈ S and k − 2 values 
x3, . . . , xk arbitrarily, and since m1 �= m2, the above two equations uniquely determine 
x1 and x2.

Claim 3.1. F is Qk(3)-free.

Proof of Claim. Suppose, on the contrary, that there is a copy of Qk(3) in F , and let 
A, B, C be the sets of vertices as in Definition 1.2. Without loss of generality we may 
assume that A = {(i, xi) : 4 ≤ i ≤ k}, bi = (i, xi) (i = 1, 2, 3), and ci = (i, yi) (i = 1, 2, 3). 
Then the constraints in the definition of F imply the following six equations.
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(
k∑

i=1
xi

)
+ yj − xj = α (mod p) for j = 1, 2, 3

(
k∑

i=1
mixi

)
+ mj(yj − xj) = sj + β (mod p) for j = 1, 2, 3

for some s1, s2, s3 ∈ S. Define u := α− (
∑k

i=1 xi) and v := (
∑k

i=1 mixi) − β. We obtain

yj − xj = u, (mod p) for j = 1, 2, 3 (3.2)

and

v + mju = sj (mod p) for j = 1, 2, 3. (3.3)

These imply

(v + m1u− s1)(m2 −m3) + (v + m2u− s2)(m3 −m1) + (v + m3u− s3)(m1 −m2) = 0.

Rearranging

(m3 −m2)s1 + (m1 −m3)s2 + (m2 −m1)s3 = 0 (mod p).

As S is a k-good set and 1 ≤ |mi − mj | ≤ k, we have s1 = s2 = s3. Then (3.3) gives 
v+m1u = v+m2u = v+m3u implying u = 0. Then (3.2) gives xj = yj (for j = 1, 2, 3), 
a contradiction. �
3.4. Another lower bound in the case of k = 2r − 1

We give another construction which gives the lower bound Ω(rr(n)nk−2) ≤ exk(n,
Qk(r)) in the case of k = 2r − 1. The construction in Section 3.3 yielded a slightly 
weaker lower bound Ω(sk(n) × nk−2).

We start with an r-graph H1 with a set V1 of 
n/2� vertices and Ω(rr(n)nr−2) hy-
peredges that is both Qr(r)-free and Ir(r − 1)-free. The existence of such hypergraphs 
was proved by Frankl and Rödl [10], see Theorem 2.2. Then we add a set V2 of �n/2�
new vertices and take all the k-edges which contain an r-edge of H1 and r − 1 vertices 
from V2. This hypergraph H obviously has Ω(rr(n)nk−2) hyperedges. It is not difficult 
to see, like we did in Subsection 3.2, that H is Qk(r)-free.
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