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Tight paths in convex geometric hypergraphs
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Abstract: In this paper, we prove a theorem on tight paths in convex geometric hypergraphs,
which is asymptotically sharp in infinitely many cases. Our geometric theorem is a common
generalization of early results of Hopf and Pannwitz [12], Sutherland [19], Kupitz and
Perles [16] for convex geometric graphs, as well as the classical Erdős-Gallai Theorem [6]
for graphs. As a consequence, we obtain the first substantial improvement on the Turán
problem for tight paths in uniform hypergraphs.
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1 Introduction

In this paper, we address extremal questions for tight paths in uniform hypergraphs and in convex
geometric hypergraphs. For k≥ 1 and r≥ 2, a tight k-path is an r-uniform hypergraph (or simply r-graph)
Pr

k = {vivi+1 . . .vi+r−1 : 0≤ i < k}. Let ex(n,Pr
k ) denote the maximum number of edges in an n-vertex

r-graph not containing a tight k-path. It appears to be difficult to determine ex(n,Pr
k ) in general, and even

the asymptotics as n→ ∞ are not known. The following is a special case of a conjecture of Kalai [9] on
tight trees, generalizing the well-known Erdős-Sós Conjecture [7]:
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cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.19086/aic.12044

ar
X

iv
:2

00
2.

09
45

7v
1 

 [
m

at
h.

C
O

] 
 2

1 
Fe

b 
20

20

http://dx.doi.org/10.19086/aic
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.19086/aic.12044
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Conjecture 1.1 (Kalai). For n≥ r ≥ 2 and k ≥ 1, ex(n,Pr
k )≤

k−1
r

( n
r−1

)
.

A construction based on combinatorial designs shows this conjecture if true is tight – the existence of
designs was established by Keevash [13] and also more recently by Glock, Kühn, Lo and Osthus [10].
It is straightforward to see that any n-vertex r-graph H that does not contain a tight k-path has at most
(k−1)

( n
r−1

)
edges. Patkós [18] gave an improvement over this bound in the case k < 3r/4. In the special

case k = 4 and r = 3, it is shown in [8] that ex(n,P3
4 ) =

(n
2

)
for all n≥ 5. In this paper, we give the first

non-trivial upper bound on ex(n,Pr
k ) valid for all k and r:

Theorem 1.2. For n≥ 1, r ≥ 2, and k ≥ 1,

ex(n,Pr
k )≤

{ k−1
2

( n
r−1

)
if r is even

1
2(k+ b

k−1
r c)

( n
r−1

)
if r is odd

The case r = 2 of this result is the well-known Erdős-Gallai Theorem [6] on paths in graphs. We
prove Theorem 1.2 by introducing a novel method for extremal problems for paths in convex geometric
hypergraphs.

Convex geometric hypergraphs. A convex geometric hypergraph (or cgh for short) is an r-graph
whose vertex set is a set Ωn of n vertices in strictly convex position in the plane, and whose edges are
viewed as convex r-gons with vertices from Ωn. Given an r-uniform cgh F , let ex�(n,F) denote the
maximum number of edges in an n-vertex r-uniform cgh that does not contain F . Extremal problems
for convex geometric graphs (or cggs for short) have been studied extensively, going back to theorems
in the 1930’s on disjoint line segments in the plane. We refer the reader to the papers of Braß, Károlyi
and Valtr [3], Capoyleas and Pach [5] and the references therein for many related extremal problems on
convex geometric graphs and to Aronov, Dujmovič, Morin, Ooms and da Silveira [1], Braß [2], Brass,
Rote and Swanepoel [4], and Pach and Pinchasi [17] for problems in convex geometric hypergraphs, and
their connections to important problems in discrete geometry, as well as the triangle-removal problem
(see Aronov, Dujmovič, Morin, Ooms and da Silveira [1] and Gowers and Long [11]).

Concerning results on convex geometric graphs, let Mk denote the cgg consisting of k pairwise disjoint
line segments. Generalizing results of Hopf and Pannwitz [12] and Sutherland [19], Kupitz [15] and
Kupitz and Perles [16] showed that for n≥ k ≥ 2,

ex�(n,Mk)≤ (k−1)n.

Perles proved the following even stronger theorem. Define a k-zigzag Pk to be a k-path v0v1 . . .vk with ver-
tices in Ωn such that in a fixed cyclic ordering of Ωn, the vertices appear in the order v0,v2,v4, . . . ,v5,v3,v1,
v0 (see the left picture in Figure 1).

Theorem 1.3 (Perles). For n,k ≥ 1, ex�(n,Pk)≤ (k−1)n/2.

The bound in Theorem 1.3 is tight when k divides n since any disjoint union of cliques of order k
does not contain any path with k edges. In particular, since P2k−1 contains Mk, Theorem 1.3 implies
ex�(n,Mk)≤ ex�(n,P2k−1)≤ (k−1)n. It appears to be challenging to determine for all k and r the exact
value of the extremal function or the extremal cghs without k-zigzag (see Keller and Perles [14] for a
discussion of extremal constructions in the case r = 2).
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In this paper, we generalize Theorem 1.3 to convex geometric hypergraphs, and use its proof
technique to prove Theorem 1.2. We let ≺ denote a fixed cyclic ordering of the vertices of Ωn, and let
[u,v] = {w ∈ Ωn : u≺ w≺ v} denote a segment of Ωn. If I1, I2, . . .⊂ Ωn, then we write I1 ≺ I2 ≺ ·· · if
all vertices of I j are followed in the ordering ≺ by all vertices of I j+1 for j ≥ 1. We use the following
definition of a path in a convex geometric hypergraph:

Definition 1.4 (Zigzag paths). For k ≥ 1 and even r ≥ 2, a tight k-path v0v1 . . .vk+r−2 with vertices
in Ωn is a k-zigzag, denoted Pr

k, if there exist disjoint segments I0 ≺ I1 ≺ ·· · ≺ Ir−1 of Ωn such that
{vi : i≡ j (mod r)} ⊆ I j for 0≤ j < r and

(i) if j is even, then v j ≺ v j+r ≺ v j+2r ≺ ·· · .
(ii) if j is odd, then v j � v j+r � v j+2r � ·· · .

In words, the vertices of the zigzag with subscripts congruent to j (mod r) appear in increasing
order of subscripts if j is even, followed by the vertices with subscripts congruent to j+1 (mod r) in
decreasing order of subscripts with respect to the cyclic ordering ≺. In the case of graphs, a k-zigzag is
simply P2

k = Pk from Theorem 1.3. We give examples of zigzag paths P2
6 and P4

5 in Figure 1 below (the
last edge of each path is indicated in bold).

Figure 1: Zigzag paths

The following result generalizes Theorem 1.3 to r-uniform cghs when r is even:

Theorem 1.5. Let n,k ≥ 1, and let r ≥ 2 be even. Then

ex�(n,Pr
k)≤

(k−1)(r−1)
r

(
n

r−1

)
.

This theorem is asymptotically sharp in infinitely many cases, and is a common generalization
Theorem 1.3 and the Erdős-Gallai Theorem [6]. The proof of Theorem 1.5 is also the basis for our proof
of Theorem 1.2.
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Organization. This paper is organized as follows. In Section 2, we give a method for extending
a k-zigzag in an r-uniform cgh to a (k+ 1)-zigzag. This is used in the short proof of Theorem 1.5 in
Section 3. In Section 4, we give constructions of dense cghs without k-zigzags, and in Section 5, we
prove Theorem 1.2 using the proof technique of Theorem 1.5.

Notation. We let Ωn denote a generic set of n points in strictly convex position in the plane, and
let ≺ denote a cyclic ordering of Ωn. For u,v ∈ Ωn, we write [u,v] = {w : u ≺ w ≺ v}; this is the set
of vertices in the segment of Ωn from u to v (including u and v) in the ordering ≺. For u,v ∈ Ωn, let
`(u,v) = min{|[u,v]|−1, |[v,u]|−1}. In other words, `(u,v) is the number of sides in a shortest segment
of Ωn between u and v. Throughout this paper, cghs have vertex set in Ωn with cyclic ordering ≺. For
an r-uniform cgh F , let ex�(n,F) denote the maximum number of edges in an r-uniform cgh on Ωn

that does not contain an ordered substructure isomorphic to F . We write V (H) for the vertex set of
a hypergraph H, and represent the edges as unordered lists of vertices. We identify a hypergraph H
with its edge-set, denoting by |H| the number of edges in H. For v ∈ V (H), the neighborhood of v is
N(v) =

⋃
v∈e∈H(e\{v}). Let ∂H denote the shadow of an r-graph H, namely {e\{x} : x ∈ e ∈ H}.

2 Extending zigzags

2.1 Extending zigzags in graphs

We start with a short proof of Theorem 1.3 for zigzags of odd length, along the lines of Perles’ proof,
which gives an idea of the proof of Theorem 1.5.

Proposition 2.1. Let k ≥ 0. If G is an n-vertex cgg with no (2k+1)-zigzag, then |G| ≤ kn.

Proof. Proceed by induction on k; for k = 0, the statement is clear. Suppose k≥ 1 and G is an n-vertex cgg
with no (2k+1)-zigzag. For v ∈V (G), let f (v) be the first vertex of N(v) after v in the ordering ≺. Let
E = {v f (v) : v ∈V (G)}. If v0v1 . . .v2k−1 is a (2k−1)-zigzag in F = G\E, then f (v0)v0 . . .v2k−1 f (v2k−1)
is a (2k+1)-zigzag in G. So F has no (2k−1)-zigzag, and |F | ≤ (k−1)n by induction. Since |E| ≤ n,
|G|= |F |+ |E| ≤ kn.

A key point is that a zigzag v0v1 . . .vk can be extended to a (k+1)-zigzag v0v1 . . .vkv if v is adjacent
to vk and v ∈ [vk,vk−1] if k is even, whereas v ∈ [vk−1,vk] if k is odd (the reader may find it helpful to refer
to Figure 1). In the next section, we generalize these ideas to uniform cghs.

2.2 Extending zigzags in hypergraphs

Fixing an even r ≥ 2, we write vk as shorthand for (vk−1,vk, . . . ,vk+r−2). We use this as notation for the
ordering of the last edge of a k-zigzag:

Definition 2.2. The end of a k-zigzag v0v1 . . .vk+r−2 is vk = (vk−1,vk, . . . ,vk+r−2). Let I(vk) = [vk−1,vk]
if k is odd and I(vk) = [vk+r−2,vk−1] if k is even, and

X(vk) = {v ∈ I(vk) : vvkvk+1 . . .vk+r−2 ∈ H}
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Referring to Figure 1, in the picture on the left X(v6) is the set of v in the segment from v6 to v5
clockwise such that v6v is an edge. In the picture on the right, X(v5) is the set of v in the segment from v4
to v5 clockwise such that v5v6v7v is an edge. In the next proposition, we see that any vertex in X(vk) can
be used to “extend” a k-zigzag ending in vk to a (k+1)-zigzag:

Proposition 2.3. Let vk ∈ V (H)r be the end of a k-zigzag P in H. Then for any vk+r−1 ∈ X(v), P∪
{vkvk+1 . . .vk+r−1} is a (k+1)-zigzag ending in vk+1.

Proof. Let P= v0v1 . . .vk+r−2 and let I0 ≺ I1 ≺ ·· · ≺ Ir−1 be the segments in Definition 1.4. Let vk−1 ∈ I j,
so j≡ k−1 (mod r). If k is odd, then j is even, and the vertices of I j∪ I j+1 appear in the order v j ≺ ·· · ≺
vk−1 ≺ vk ≺ ·· · ≺ v j+1 by Definition 1.4(i). Then for any vk+r−1 ∈ X(vk), e = vkvk+1 . . .vk+r−2vk+r−1 ∈H
and adding e to P and vk+r−1 to I j before vk−1 in the clockwise orientation, we obtain a (k+1)-zigzag.
Similarly, if k is even, then j is odd so the vertices of I j−1∪ I j appear in the order v j−1 ≺ ·· · ≺ vk+r−2 ≺
vk−1 ≺ ·· · ≺ v j by Definition 1.4(ii), and we add e to P and vk+r−1 after vk−1 in I j in the clockwise
orientation.

Definition 2.4. Let Sk(H) be the set of ends vk ∈V (H)r of k-zigzags in H, and

Tk(H) = {vk ∈ Sk(H) : X(vk) = /0}.

Informally, Tk(H) is the set of ends of k-zigzags which cannot be “extended” to (k+1)-zigzags. The
two key propositions for the proof of Theorem 1.5 are as follows.

Proposition 2.5. For vk ∈ Sk(H)\Tk(H), let vk+r−1 ∈ X(vk) be as close as possible to vk−1 in the segment
I(vk). Then f (vk) = vk+1 is an injection from Sk(H)\Tk(H) to Sk+1(H). In particular,

|Sk+1(H)| ≥ |Sk(H)\Tk(H)|. (2.1)

Proof. By Proposition 2.3, f (vk) ∈ Sk+1(H). Furthermore, f (vk) = f (wk) implies vk+1 = wk+1, which
gives vi = wi for k≤ i≤ k+ r−1. If vk−1 6= wk−1, then either wk−1 is closer to vk−1 than wk+r−1 in I(vk),
or vk−1 is closer to wk−1 than vk+r−1 in I(vk). These contradictions imply vk−1 = wk−1, and so vk = wk
and f is an injection.

Proposition 2.6. For vk ∈ Tk(H), the map g(vk) = (vk,vk+1, . . . ,vk+r−2) is an injection from Tk(H) to
cyclically ordered elements of ∂H. In particular,

|Tk(H)| ≤ (r−1)|∂H|. (2.2)

Proof. If g(vk) = g(wk), then wi = vi for k ≤ i≤ k+ r−2. Suppose vk−1 6= wk−1. Then either vk+r−2 ≺
wk−1 ≺ vk−1, and vk−1 ∈ X(wk), or vk−1 ≺wk−1 ≺ vk, and wk−1 ∈ X(vk). In either case, vk 6∈ Tk or wk 6∈ Tk,
a contradiction. So vk−1 = wk−1, which implies vk = wk.
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3 Proof of Theorem 1.5 on zigzags

The following theorem implies Theorem 1.5, since if H is an n-vertex r-uniform cgh not containing a
k-zigzag, then Sk(H) = /0, and we always have |∂H| ≤

( n
r−1

)
.

Theorem 3.1. Let k ≥ 1 and let r ≥ 2 be even. Then for any r-uniform cgh H,

|Sk(H)| ≥ r|H|− (r−1)(k−1)|∂H|. (3.1)

Proof. We prove (3.1) by induction on k. Let k = 1 and e ∈ H. By Definition 1.4(i), there are r possible
orderings of the vertices of e giving a 1-zigzag: having chosen the first vertex, the ordering of the
remaining vertices of e is determined. Therefore |S1(H)| ≥ r|H|. For the induction step, suppose k ≥ 1
and (3.1) holds. By (2.1) and (2.2),

|Sk+1(H)| ≥ |Sk(H)\Tk(H)| ≥ r|H|− (r−1)(k−1)|∂H|− |Tk(H)|
≥ r|H|− (r−1)k|∂H|.

This proves (3.1).

4 Stack-free constructions

Let k≥ 1 and let r≥ 2 be even. A k-stack, denoted Mr
k, consists of edges {vir,vir+1, . . . ,vir+r−1 : 0≤ i< k}

where v0v1 . . .v(k−1)r−1 is an r-uniform zigzag path; in other words we pick every rth edge from a zigzag
path Pr

(k−1)r+1. An example for r = 4 and k = 7 is shown below, where the extreme points on the perimeter
form Ω28.

There is a simple construction of an r-uniform cgh with no k-stack when k is odd with (k−1)(r−
1)
( n

r−1

)
+O(nr−2) edges. If k ≥ 3 is odd, let H be the cgh consisting of r-sets e from Ωn such that

`(u,v)≤ k−1 for some u,v∈ e. It is straightforward to see that |H|= (r−1)(k−1)
( n

r−1

)
+O(nr−2), and

H contains no k-stack since the “middle” edge e in the stack – drawn in bold in Figure 2 – has `(u,v)≥ k
for all u,v ∈ e.

In this section, we extend this construction to all values of k, thereby proving the following theorem,
which may be of independent interest. In particular, this construction does not contain Pr

(k−1)r+1, and
shows Theorem 1.5 is asymptotically tight for zigzags of length 1 (mod r).

Theorem 4.1. Let k ≥ 1 and r ≥ 2 be even. Then

ex�(n,Mr
k) = (k−1)(r−1)

(
n

r−1

)
+O(nr−2).

Proof. We have ex�(n,Mr
k)≤ (k−1)(r−1)

( n
r−1

)
from Theorem 1.5. The main part of the proof is the

construction of an r-uniform cgh with (k−1)(r−1)
( n

r−1

)
+O(nr−2) edges that does not contain a k-stack.
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M4
7

Figure 2: Stack

It will be convenient to let Ωn = {0,1,2, . . . ,n−1} in cyclic order, and view our edges as ordered r-tuples
(v0,v1, . . . ,vr−1) where 0≤ v0 < v1 < .. . < vr−1 ≤ n−1.

Our construction H = H(n,r,k) has the form H =
⋃k−1

j=0 H j, where
(i) H0 = {(v0,v1,v2, . . . ,vr−1) : v0 = 0},
(ii) H j =

⋃r−1
h=0{(v0,v1, . . . ,vr−1) 6∈ H0 : `(vh,vh+1) = j} for 1≤ j ≤ k−2,

(iii) Hk−1 =
⋃r/2−1

h=1 {(v0,v1, . . . ,vr−1) 6∈ H0 : `(v2h−1,v2h) ∈ {k−1,k}}.

Claim 1. |H|= (k−1)(r−1)
( n

r−1

)
+O(nr−2).

Proof. By definition, |H0|=
(n−1

r−1

)
, and H0∩

⋃k−1
j=1 H j = /0. For any j : 1≤ j ≤ k−2, as n→ ∞,

|H j|= (n−1)
(

n− j−1
r−2

)
+O(nr−2) = (r−1)

(
n

r−1

)
+O(nr−2)

and also

|Hk−1|= 2(r/2−1)
(

n−1
r−1

)
+O(nr−2) = (r−2)

(
n

r−1

)
+O(nr−2).

If 1≤ i < j ≤ k−1, |Hi∩H j|= O(nr−2). By inclusion-exclusion,

|H| ≥ |H0|+
k−1

∑
j=1
|H j|−∑

i< j
|Hi∩H j|= (k−1)(r−1)

(
n

r−1

)
+O(nr−2).

This proves the claim.

Claim 2. Mr
k 6⊆ H.
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Proof. Suppose H contains a k-stack. The key is to consider the “middle” two edges of the stack,
say e and f . Then the vertex 0 is in at most one of e and f . If v0 is the first vertex of e and w0 is
the first vertex of f after 0 in the clockwise direction, then without loss of generality we may assume
v0 < w0. Now consider the pairs w1w2, w3w4 up to wr−1wr which are in f . We claim all of these pairs
have length at least k+1, contradicting the definition of H, since f would then not be a member of H.
To see the claim, fix h : 1≤ h < r/2. Notice that there are k/2 edges of the stack (excluding f ) which
contain a pair of vertices in the segment [w2h−1,w2h], and these pairs are vertex disjoint. However, then
`(w2h−1,w2h)≥ 2(k/2+1)−1 = k+1, and this holds for 1≤ h < r/2.

5 Proof of Theorem 1.2 on tight paths

Proof for r even. Let H be an n-vertex r-graph with no tight k-path, where r is even. We aim to prove
the following, which gives Theorem 1.2 for r even:

|H| ≤ k−1
2
|∂H|. (5.1)

We follow the approach used to prove Theorem 1.5 on a carefully chosen subgraph G of H. This
subgraph is defined via a random partition of V (H): let s = r/2 and let χ : V (G)→{0,1, . . . ,s−1} be
a random s-coloring of the vertices of H such that P(χ(v) = i) = 1/s for 0≤ i≤ s−1 and each vertex
v ∈V (H), and such that vertices are colored independently. Let Bi = {v ∈V (H) : χ(v) = i}, and define
the following (random) subgraph of H:

G = {e ∈ H : |e∩Bi|= 2 for 0≤ i≤ s−1}.

In other words, each edge of G has two vertices in each of the sets Bi. For 0≤ i≤ s−1, let

∂iG = {e ∈ ∂G : |e∩Bi|= 1} ⊂ {e ∈ ∂H : |e∩Bi|= 1, |e∩B j|= 2 for j 6= i}.

Then we have the following expected values:

E(|G|) = r!
2ssr |H| and E(|∂iG|)≤

(r−1)!
2s−1sr−1 |∂H|. (5.2)

The next step is to introduce some geometric structure on G. Let≺ denote a cyclic ordering of the vertices
of each of B0,B1, . . . ,Bs−1.

Definition 5.1 (Good paths). We call a tight path v0v1 . . .vk+r−2 in G good if
(i) for 0≤ j < k+ r−2, v j,v j+1 ∈ Bi whenever j ≡ 2i (mod r).
(ii) the cyclic order in Bi is always v j ≺ v j+r ≺ v j+2r ≺ . . .≺ v j+1+2r ≺ v j+1+r ≺ v j+1.

An r-uniform good path with k edges is shown in Figure 3, for r = 6 and k = 4.
We now follow the ideas in Section 2. By Definition 5.1(i), v j ∈ Bi if and only if i = h( j) =

b j/2c (mod s). Let i = h(k− 1), so that vk−1 ∈ Bi. We write [u,v] = {w ∈ Bi : u ≺ w ≺ v}. Define
I(vk) = [vk−1,vk]⊆ Bi if k is odd and I(vk) = [vk+r−2,vk−1]⊆ Bi if k is even, and

X(vk) = {v ∈ I(vk) : vvkvk+1 . . .vk+r−2 ∈ H}
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Figure 3: Good paths

Note that the definition of X(vk) is identical to that in Section 2 but with respect to the ordering ≺ of Bi,
where i = h(k−1), and in particular, I(vk),X(vk)⊆ Bi. In Figure 3, X(v4) consists of all verteices v ∈ B1
clockwise from v8 to v3 such that v4v5v6v7v8v ∈ G. Let Sk(G) be the set of the ends of good k-paths in G,
and let Tk(G) = {vk ∈ Sk(H) : X(vk) = /0}.

Claim 1. For k ≥ 1, if i = h(k−1), then

|Tk(G)| ≤ 2s−1|∂iG|. (5.3)

Proof. If vk ∈ Sk(G), then vk−1 ∈ Bi since i = h(k−1). For vk ∈ Tk(G), define g(vk) = (vk,vk+1, . . . ,
vk+r−2). Then vkvk+1 . . .vk+r−2 ∈ ∂iG and (vk,vk+1, . . . ,vk+r−2) is uniquely determined by specifying the
order of the pairs {vk,vk+1, . . . ,vk+r−2}∩B j for each j 6= i. Therefore g(vk) injectively maps elements
of Tk(G) to ordered elements of ∂iG, where each element of ∂iG is ordered in 2s−1 ways. We conclude
|Tk(G)| ≤ 2s−1|∂iG|.

Claim 2. For k ≥ 1,

|Sk(G)| ≥ 2s|G|−2s−1
k−2

∑
i=0
|∂h(i)G|. (5.4)

Proof. For k = 1, we observe for e ∈G, there are two ways to label the pair e∩Bi for each i ∈ [s], and
therefore |S1(G)| ≥ 2s|G|. Suppose (5.4) holds for some k ≥ 1. Then we copy the proofs of Propositions
2.3 and 2.5 to obtain |Sk+1(G)| ≥ |Sk(G)\Tk(G)|. By the induction hypothesis (5.4) and Claim 1,

|Sk+1(G)| ≥ |Sk(G)\Tk(G)| ≥ 2s|G|−2s−1
k−2

∑
i=0
|∂h(i)G|− |Tk(G)|

≥ 2s|G|−2s−1
k−1

∑
i=0
|∂h(i)G|.
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This completes the induction step and proves (5.4).

Proof of (5.1). Finally we prove (5.1). Taking expectations on both sides of (5.4), and using (5.2)
and the linearity of expectation:

E(|Sk(G)|)≥ 2sE(|G|)−2s−1
k−2

∑
i=0

E(|∂h(i)G|)≥
r!
sr |H|−

(r−1)!(k−1)
sr−1 |∂H|. (5.5)

Since G⊆ H has no tight k-path, Sk(G) = /0. Using this in (5.5), we obtain (5.1).

Proof for r odd. Let H be an n-vertex r-graph containing no tight k-path. We aim to show

|H| ≤ 1
2

(
k+
⌊k−1

r

⌋)
|∂H|. (5.6)

To prove (5.6), we reduce the case r is odd to the case r is even, and apply (5.1) from the last proof. Form
the (r+1)-graph H+ by adding a set X of vertices to V (H), and let H+ = {{x}∪ e : x ∈ X ,e ∈ H}. It is
convenient to let φ(`) = d(`+ r)/(r+1)e for `≥ 1.

It is straightforward to check that if P = v0v1 . . .v`+r−1 is a tight `-path in H+, then |V (P)∩X | ≤ φ(`).
In addition, the sequence of vertices vi ∈V (P)\X in increasing order of subscripts forms a tight path in H
of length at least `+1−φ(`). Setting `= k+ b(k−1)/rc+1, we have `+1−φ(`) = k, and therefore
H+ has no tight `-path. By (5.1) applied to H+,

|H+| ≤ `−1
2
|∂H+|.

Since |H+|= |X ||H| and |∂H+|= |X ||∂H|+ |H|, we find

|X ||H| ≤ `−1
2
|X ||∂H|+ `−1

2
|H|.

Choosing |X | > (`− 1)|H|/2 and dividing by |X |, we obtain |H| ≤ (`− 1)|∂H|/2. Since (`− 1)/2 =
(k+ b(k−1)/rc)/2, this proves (5.6).

6 Concluding remarks

• It turns out using Steiner systems with arbitrarily large block sizes [10, 13]) that for each fixed k,r ≥ 2,
both of the following limits exist:

z(k,r) := lim
n→∞

ex�(n,Pr
k)( n

r−1

) and p(k,r) := lim
n→∞

ex(n,Pr
k )( n

r−1

) .

The first limit is determined by Theorem 1.5 and the construction in Section 4 for k ≡ 1 (mod r), and for
r ≥ 4 the problem is wide open in all remaining cases, even for k = 2.

• For k ≤ r+ 1, an improvement over Theorem 1.2 is possible, slightly improving the results of
Patkós [18]: we prove by induction on r that if r ≥ k−1, the

ex(n,Pr
k )≤

k2

2r

(
n

r−1

)
.
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If r = k−1, this follows from Theorem 1.2. Suppose r ≥ k and we have proved the bound for (r−1)-
graphs. Let H be an r-graph with no tight k-path and pick a vertex v ∈V (H) contained in at least r|H|/n
edges of H. Consider the link hypergraph Hv = {e ∈ ∂H : e∪{v} ∈ H}. Then Hv has no tight k-path,
otherwise adding v to each edge we get a tight k-path in H. By induction,

r|H|
n
≤ |Hv| ≤

k2

2(r−1)

(
n−1
r−2

)
≤ k2

2n

(
n

r−1

)
and this implies |H| ≤ k2

2r

( n
r−1

)
, as required.

• It is possible when r ≥ 3 is odd to obtain a very slight improvement over Theorem 1.2, namely

ex(n,Pr
k )≤

1
r
(
√

a+
√

b)2
(

n
r−1

)
where a = b(k− 1)/rc and b = (r− 1)(k− 1− a)/2 and n is sufficiently large. For the purpose of
comparison, we obtain

p(k,r)≤ k ·
(1

2
+

√
2−1
r

+ c
)

where c = O(r−2). For r = 3, we find that the upper bound is at most 1
9(3+

√
8)k ·

(n
2

)
.

• The proof in Section 5 shows that if s = r/2, n is a multiple of s, and G is an n-vertex r-graph such
that V (G) is partitioned into sets B0,B1, . . . ,Bs−1 with |Bi|= n/s and |e∩Bi|= 2 for 0≤ i < s and every
edge e ∈ G, then |G| ≤ 2s−1(k−1)(n/r)r−1, and this is asymptotically tight if k ≡ 1 (mod r). Indeed, let
B0,B1, . . . ,Bs−1 be disjoint sets of size n/s, and let Ai ⊂ Bi have size (k−1)/r. Then let Gi consist of all
r-sets with one vertex in Ai, one vertex in Bi\Ai, and two vertices in each B j\A j for 0≤ j < s, j 6= i. Let
G =

⋃s−1
i=0 Gi. Then |e∩ f | ≤ r−2 for e ∈ Gi and f ∈ G j with i 6= j, so if G contains a tight k-path, then

the tight k-path is contained in some Gi. However, Ai is a transversal of each Gi, so Gi cannot contain a
tight k-path. Therefore G has no tight k-path, and furthermore

|G|=
s−1

∑
i=0
|Gi|= s

k−1
r

n
s

(
n/s
2

)s−1

+O(nr−2) = 2s−1(k−1)
(n

r

)r−1
+O(nr−2).

• In forthcoming work, we consider extremal problems for various other analogs of paths and
matchings in the setting of convex geometric hypergraphs, having considered only zigzag paths and
stacks of even uniformity in this paper.
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[1] B. Aronov, V. Dujmovič, P. Morin, A. Ooms, L. da Silveira, More Turán-type theorems for triangles
in convex point sets, Electron. J. Combin. 26 (2019), no. 1, Paper 1.8, 26 pp. 2

[2] P. Braß, Turán-type extremal problems for convex geometric hypergraphs, Contemporary Mathe-
matics, 342, 25–34, 2004. 2

[3] P. Braß, G. Károlyi, P. Valtr, A Turán-type extremal theory of convex geometric graphs, Goodman-
Pollack Festschrift, Springer 2003, 277–302. 2

[4] P. Braß, G. Rote, K. Swanepoel, Triangles of extremal area or perimeter in a finite planar point set,
Discrete Comp. Geom., 26 (1), 51–58, 2001. 2

[5] V. Capoyleas, J. Pach, A Turán-type theorem for chords of a convex polygon, J. Combin. Theory
Ser. B, 56, 9–15. 2
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Jacques Verstraëte
Department of Mathematics
University of California at San Diego
9500 Gilman Drive, La Jolla, California 92093-0112, USA.
jverstra math ucsd edu.

ADVANCES IN COMBINATORICS, 2020:1, 14pp. 14

http://dx.doi.org/10.19086/aic

	1 Introduction
	2 Extending zigzags
	2.1 Extending zigzags in graphs
	2.2 Extending zigzags in hypergraphs

	3 Proof of Theorem 1.5 on zigzags
	4 Stack-free constructions
	5 Proof of Theorem 1.2 on tight paths
	6 Concluding remarks

