
Discrete Applied Mathematics 276 (2020) 50–59

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Hypergraphs not containing a tight treewith a bounded trunk
II: 3-treeswith a trunk of size 2
Zoltán Füredi a,∗,1, Tao Jiang b,2, Alexandr Kostochka c,d,3, Dhruv Mubayi e,4,
Jacques Verstraëte f,5

a Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13-15, H-1053, Budapest, Hungary
b Department of Mathematics, Miami University, Oxford, OH 45056, USA
c University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
d Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
e Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
f Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, USA

a r t i c l e i n f o

Article history:
Received 19 August 2018
Received in revised form 26 August 2019
Accepted 25 September 2019
Available online 19 October 2019

Keywords:
Turán problem
Extremal hypergraph theory
Hypergraph trees

a b s t r a c t

A tight r-tree T is an r-uniform hypergraph that has an edge-ordering e1, e2, . . . , et such
that for each i ≥ 2, ei has a vertex vi that does not belong to any previous edge and
ei − vi is contained in ej for some j < i. Kalai conjectured in 1984 that every n-vertex
r-uniform hypergraph with more than t−1

r

( n
r−1

)
edges contains every tight r-tree T with

t edges.
A trunk T ′ of a tight r-tree T is a tight subtree T ′ of T such that vertices in V (T )\V (T ′)

are leaves in T . Kalai’s Conjecture was proved (Frankl and Füredi, 1987) for tight r-trees
that have a trunk of size one. In a previous paper (Füredi et al., 2019) we proved an
asymptotic version for all tight r-trees that have a trunk of bounded size. In this paper
we continue that work to establish the exact form of Kalai’s Conjecture for all tight
3-trees of at least 8 edges that have a trunk of size two.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction. Trees, trunks, and Kalai’s conjecture

For an r-uniform hypergraph (r-graph, for short) H , the Turán number exr (n,H) is the largest m such that there exists
an n-vertex r-graph G with m edges that does not contain H . Estimating exr (n,H) is a difficult problem even for r-graphs
with a simple structure. Here we consider Turán-type problems for so called tight r-trees. A tight r-tree (r ≥ 2) is an
r-graph whose edges can be ordered so that each edge e apart from the first one contains a vertex ve that does not
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belong to any preceding edge but the set e − ve is contained in some preceding edge. Such an ordering is called a proper
ordering of the edges. A usual graph tree is a tight 2-tree.

A vertex v in a tight r-tree T is a leaf if it has degree one in T . A trunk T ′ of a tight r-tree T is a tight subtree of T such
that in some proper ordering of the edges of T the edges of T ′ are listed first and vertices in V (T ) \ V (T ′) are leaves in T .
Hence, each e ∈ E(T ) \ E(T ′) contains an (r − 1)-subset of some e′

∈ E(T ′) and a leaf in T (that lies outside V (T ′)). In the
case of r = 2 each e ∈ E(T ) \ E(T ′) is a pendant edge. Every tight tree T with at least two edges has a trunk (for example,
T minus the last edge in a proper ordering is a trunk). Let c(T ) denote the minimum size of a trunk of T . We write e(H)
for the number of edges in H .

In this paper we consider the following classical conjecture.

Conjecture 1.1 (Kalai 1984, see in [1,3]). Let T be a tight r-tree with t edges. Then

exr (n, T ) ≤
t − 1
r

(
n

r − 1

)
.

The coefficient (t − 1)/r in this conjecture, if it is true, is optimal as one can see using constructions obtained from
partial Steiner systems due to Rödl [4]. The conjecture turns out to be difficult even for very special cases of tight trees,
in fact for r = 2 it is the famous Erdős–Sós conjecture. The following partial result on Kalai’s conjecture was proved in
1987.

Theorem 1.2 ([1]). Let T be a tight r-tree with t edges and c(T ) = 1. Suppose that G is an n-vertex r-graph with
e(G) > t−1

r

( n
r−1

)
. Then G contains a copy of T .

A more detailed introduction and more references, the reader can find in our previous paper [2]. In that paper we also
showed that Conjecture 1.1 holds asymptotically for tight r-trees with a trunk of a bounded size. Our result is as follows.
Define a(r, c) := (r r + 1 −

1
r )(c − 1).

Theorem 1.3 ([2]). Let T be a tight r-tree with t edges and c(T ) ≤ c. Then

exr (n, T ) ≤

(
t − 1
r

+ a(r, c)
)(

n
r − 1

)
.

The goal of this paper is to prove the conjecture in exact form for infinitely many 3-trees.

Theorem 1.4. Let T be a tight 3-tree with t edges and c(T ) ≤ 2. If t ≥ 8 then

ex3(n, T ) ≤
t − 1
3

(
n
2

)
.

Besides ideas and observations from [2], discharging is quite helpful here.

2. Notation and preliminaries. Shadows and default weights

In this section, we introduce some notation and list a couple of simple observations from [2]. For the sake of
self-containment, we present their simple proofs as well.

The shadow of an r-graph G is ∂(G) := {S : |S| = r − 1, and S ⊆ e for some e ∈ e(G)}.
The link of a set D ⊆ V (G) in an r-graph G is defined as LG(D) := {e \ D : e ∈ E(G),D ⊆ e}.
The degree of D, dG(D), is the number of the edges of G containing D. If G is an r-graph and |D| = r −1, the elements of

LG(D) are vertices. In this case, we also use NG(D) to denote LG(D). Many times we drop the subscript G. For 1 ≤ p ≤ r −1,
the minimum p-degree of G is

δp(G) := min{dG(D) : |D| = p, and D ⊆ e for some e ∈ E(G)}.

For an r-graph G and D ∈ ∂(G), let w(D) :=
1

dG(D)
. For each e ∈ E(G), let

w(e) :=

∑
D∈( e

r−1)

w(D) =

∑
D∈( e

r−1)

1
dG(D)

.

We call w the default weight function on E(G) and ∂(G). Frankl and Füredi [1] (and later some others) used the following
simple property of this function.

Proposition 2.1. Let G be an r-graph. Let w be the default weight function on E(G) and ∂(G). Then∑
e∈E(G)

w(e) = |∂(G)|.
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Proof. By definition,

∑
e∈E(G)

w(e) =

∑
e∈E(G)

⎛⎝ ∑
D∈( e

r−1)

1
dG(D)

⎞⎠ =

∑
D∈∂(G)

⎛⎝ ∑
e∈E(G),D⊆e

1
dG(D)

⎞⎠ =

∑
D∈∂(G)

1 = |∂(G)|. □

The following proposition is folklore.

Proposition 2.2. Let q be a nonnegative real number and G be an r-graph with e(G) > q|∂(G)|. Then G contains a
subhypergraph G′ with δr−1(G′) ≥ ⌊q⌋ + 1.

Proof. Starting from G, if there exists D ∈ ∂(G) of degree at most ⌊q⌋ in the current r-graph, we remove the edges of this
r-graph containing D. Let G′ be the final r-graph. Since we have deleted at most q|∂(G)| < e(G) edges, G′ is nonempty. By
the stopping rule, δr−1(G′) ≥ ⌊q⌋ + 1. □

In the calculations below we will frequently use the following observation.
If d is an integer, α is a real number with d > α then d − 2 ≥ ⌊α⌋ − 1.

3. The case of high degree central edge

We prove Theorem 1.4 in two major steps in this and the next section. In both cases the idea behind the proof is to
find in the host 3-graph G a special pair of edges {e, f } with good properties where we plan to map the trunk of size 2
of T .

We use two different weight arguments together with discharging to find such special pairs in the next lemma and in
Lemma 4.1. It is natural to have a two part proof because in one case we need to start with a pair of triples e, f , |e ∩ f | = 2
with high codegree (deg(e∩ f ) is ‘high’) and in the other case, in Section 4, we need a pair e, f with a moderate codegree
but high ‘leaf’ degrees.

Given edges e = abc and f = adc in a 3-graph G sharing pair ac , for a pair {x, y} ⊂ {a, b, c, d}, let d′

e,f (x, y) denote the
number of z ∈ V (G) \ {a, b, c, d} such that xyz ∈ G. By definition

d′

e,f (x, y) ≥ d(x, y) − 2 for every{x, y} ⊂ {a, b, c, d}. (1)

Lemma 3.1. Let m ≥ 4 be a positive integer and let G be a 3-graph satisfying e(G) > m
3 |∂(G)| and δ2(G) > m

3 . Let w be the
default weight function on E(G) and ∂(G). Then there exist edges e = abc and f = adc in G satisfying

(a) w(e) < 3
m and w(ac) < 1

m ,
(b) min{d′

e,f (a, b), d
′

e,f (c, b)} ≥
⌊m

3

⌋
,

(c) max{d′

e,f (a, b), d
′

e,f (c, b)} ≥
⌊ 2m

3

⌋
, and

(d) either w(f ) < 3
m +

1
d(ac) or max{d′

e,f (a, d), d
′

e,f (c, d)} ≥ m − 1.

Proof. For convenience, let w0 =
3
m . By Proposition 2.1,

∑
e∈G w(e) = |∂(G)|. So,

1
e(G)

∑
e∈G

w(e) =
|∂(G)|
e(G)

<
1

m/3
= w0. (2)

Hence the average weight of an edge in G is less than w0. We call an edge e ∈ E(G) light if w(e) < w0 and heavy otherwise.
A pair {x, y} of vertices in G is good, if d(xy) ≥ m + 1.

To find the desired pair of edges e, f we first do some marking of edges. For every light edge e, fix an ordering, say
a, b, c , of its vertices so that d(ab) ≤ d(bc) ≤ d(ac). We call ab, bc, ac the low, medium, high sides of e, and might denote
them by S1, S2, and S3, respectively.

Since e is light, w(e) =
∑

1≤i≤3(1/d(Si)) =
1

d(ab) +
1

d(bc) +
1

d(ac) < w0 =
3
m . It follows that

d(ac) > m, d(bc) >
2m
3

, d(ab) >
m
3

. (3)

In particular, ac is good. We define markings involving e based on three cases.
Case M1: d(ab) ≥ ⌊m/3⌋ + 2 and d(bc) ≥ ⌊2m/3⌋ + 2. In this case, we let e mark every edge containing ac apart from

itself.
Case M2: d(ab) ≤ ⌊m/3⌋ + 1. By (3), d(ab) = ⌊m/3⌋ + 1. We let e mark all the edges acx ̸= e containing ac such that

abx is not an edge in G.
Case M3: d(bc) ≤ ⌊2m/3⌋ + 1. By (3), d(bc) = ⌊2m/3⌋ + 1. Let e mark all the edges acx ̸= e containing ac such that

bcx is not an edge in G.
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If m ≥ 4 and both M2 and M3 hold, then
3
m

<
1

⌊m/3⌋ + 1
+

1
⌊2m/3⌋ + 1

=
1

d(S1)
+

1
d(S2)

< w(e),

a contradiction. Thus for m ≥ 4 each light edge abc satisfies exactly one of M1, M2 and M3.
We perform the above marking procedure for each light edge e. Suppose e marked p = p(e) edges. In each of Cases

M1, M2, M3, e marks at least one edge. Indeed, in case M1 we have p(e) = d(ab) − 1 ≥ m; in case M2 we have
p(e) ≥ d(ac)−d(ab) ≥ (m+1)−(⌊m/3⌋+1) > 0; and in case M3 we have p(e) ≥ d(ac)−d(bc) ≥ (m+1)−(⌊2m/3⌋+1) > 0.
So p > 0.

Claim 1. If e is a light edge and f is an edge marked by e then (a)–(c) hold. Further, if f is light, then the lemma holds for (e, f ).

Proof of Claim 1. Suppose e = abc , where a, b, c are ordered as described earlier and suppose f = acd. Then (a) holds by e
being light and by (3). Also (b) holds, since either d(ab) ≥ ⌊m/3⌋+2 or d(ab) = ⌊m/3⌋+1 and d′

e,f (a, b) = d(ab)−1 (because
abd /∈ G by M2). Similarly, (c) holds, since either d(bc) ≥ ⌊2m/3⌋ + 2 or d(bc) = ⌊2m/3⌋ + 1 and d′

e,f (b, c) = d(bc) − 1
(because bcd /∈ G by M3). Now, if f is also a light edge then (d) holds since w(f ) < 3

m . □

By Claim 1, we may henceforth assume that every marked edge is heavy. We will now use a discharging procedure to
find our pair (e, f ). Let the initial charge ch(e) of every edge e in G equal to w(e). Then

∑
e∈G ch(e) =

∑
e∈G w(e) = |∂(G)|.

We will redistribute charges among the edges of G so that the total sum of charges does not change and the resulting
charge of each heavy edge remains at least w0.

The discharging rule is as follows. Suppose a heavy edge f was marked by exactly q = q(f ) light edges. If q = 0, then
let the new charge ch∗(f ) equal ch(f ). Otherwise, let f transfer to each light edge e that marks it a charge of (ch(f )−w0)/q
so that ch∗(f ) = w0. The total charge does not change in this discharging process. Hence, by (2), there is an edge e with
ch∗(e) < w0. By our discharging rule, e must be a light edge.

Among all the p edges e marked, let f be one that gave the least charge to e. By definition, f gave e a charge of at most
(ch∗(e) − ch(e))/p < (w0 − ch(e))/p. We claim that the pair (e, f ) satisfies the lemma. Suppose e = abc , where a, b, c are
ordered as before, and suppose f = acd. By Claim 1, (a), (b), and (c) hold. It remains to prove (d). If all three pairs in f are
good, then w(f ) < 3

m , contradicting f being heavy. So, at most two of the pairs in f are good. By our earlier discussion,
ac is good. If one of ad and cd is also good, then the second part of (d) holds. So we may assume that ac is the only good
pair in f . Let q be the number of the light edges that marked f . By the marking process, a light edge only marks edges
containing its high side and the high side is a good pair. Since ac is the only good pair in f , each of the q light edges that
marked f contains ac and has ac as its high side.

First, suppose that Case M1 was applied to e. Then all the edges containing ac other than e were marked, which by
our assumption must be heavy. In particular, this implies that q = 1. By our rule, f gave e a charge of ch(f ) − w0. By
our choice of f , each of the p(e) = d(ac) − 1 (≥ m) edges of G containing ac (other than e) gave e a charge of at least
ch(f ) − w0. Hence, w0 > ch∗(e) ≥ ch(e) + p(ch(f ) − w0), so

q(f ) × (w0 − w(e)) > p(e) × (w(f ) − w0). (4)

Using q(f ) = 1, p(e) = d(ac) − 1 > 1, w0 = 3/m, we get
q(f )
p(e)

(w0 − w(e)) ≤
1

d(ac) − 1
·
3
m

≤
1

d(ac)
,

from which the first part of (d) follows.
Note that (4) holds in cases M2 and M3, too.
Suppose that Case M2 was applied to e. Then d(ab) = ⌊m/3⌋ + 1. If q > ⌊m/3⌋ + 1, then one of light edges containing

ac , say acx, satisfies that abx /∈ G. By M2, e marked acx, contradicting our assumption that no light edge was marked. So
q ≤ ⌊m/3⌋ + 1. We obtain

p(e)
d(ac)

≥
d(ac) − d(ab)

d(ac)
= 1 −

d(ab)
d(ac)

≥
3(⌊m/3⌋ + 1) − m

m
−

d(ab)
d(ac)

= d(ab)
(

3
m

−
1

d(ab)
−

1
d(ac)

)
> d(ab) (w0 − w(e)) ≥ q(f ) (w0 − w(e)) .

This and (4) imply the first part of (d).
Similarly if Case M3 was applied to e then q ≤ ⌊2m/3⌋ + 1 = d(bc). We obtain

p(e)
d(ac)

≥
d(ac) − d(bc)

d(ac)
= 1 −

d(bc)
d(ac)

≥
3(⌊2m/3⌋ + 1) − 2m

m
−

d(bc)
d(ac)

= d(bc)
(

3
m

−
2

d(bc)
−

1
d(ac)

)
≥ d(bc) (w0 − w(e)) ≥ q(f ) (w0 − w(e)) .

This and (4) imply the first part of (d). □
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Our next aim is to state a Proposition about how one can find a tight tree T in a 3-graph G considering only the degrees
of the pairs in ∂2(G). We will do it by defining an embedding of T into G. An embedding of an r-graph H into an r-graph
G is an injection φ : V (H) → V (G) such that for each e ∈ E(H), φ(e) ∈ E(G).

Consider a tight 3-tree T of size t = m + 1 with a trunk {e1, e2}. Suppose e1 = xyu and e2 = xyv so that e1 ∩ e2 = xy.
By our assumption, each edge in E(T ) \ {e1, e2} contains a pair in e1 or e2 and a vertex outside e1 ∪ e2. For each pair A
contained in e1 or e2, let N ′

T (A) = NT (A) \ {x, y, u, v} and µ(A) = |N ′

T (A)|. Then µ(xy) = dT (xy) − 2, and µ(A) = dT (A) − 1
for each A ∈ {xu, xv, yu, yv}. By definition,

µ(xy) + µ(xu) + µ(xv) + µ(yu) + µ(yv) = t − 2 = m − 1. (5)

Suppose that G is a 3-graph, e, f ∈ E(G), e = acb and f = acd, so that e ∩ f = ac. For each pair B contained in e or f ,
let N ′

G(B) = NG(B) \ {a, b, c, d} and d′

G(B) = |N ′

G(B)|. (In fact, d′

G(B) is the same as d′

e,f (B) but here we want to distinguish
the two hypergraphs we consider).

Proposition 3.1. Suppose there is a permutation A1, . . . , A5 of the five pairs contained in xyu or xyv, and another permutation
B1, . . . , B5 of the five pairs contained in abc or abd, and a bijection φ : {x, y, u, v} → {a, b, c, d} such that φ(Aℓ) = φ(Bℓ) for
each 1 ≤ ℓ ≤ 5, φ({x, y}) = {a, c}, and∑

1≤i≤ℓ

µ(Ai) ≤ d′

G(Bℓ) for 1 ≤ ℓ ≤ 5. (6)

Then φ can be extended to an embedding of T into G.

Proof of Proposition 3.1. We can embed T into G as follows. Note that φ maps e1 and e2 to {e, f }. Then we map N ′

T (A1)
into N ′

G(B1) followed by N ′

T (A2) into N ′

G(B2) \ φ(N ′

T (A1)). The five inequalities of (6) ensure that we can map N ′

T (Aℓ) into
N ′

G(Bℓ) \ φ(N ′

T (A1) ∪ · · · ∪ N ′

T (Aℓ−1)). □

The next lemma proves a special case of Theorem 1.4.

Lemma 3.2. Let T be a tight 3-tree with t ≥ 5 edges. Suppose T has a trunk {e1, e2} of size 2 such that dT (e1∩e2) ≥ ⌊
t−1
3 ⌋+2.

Let G be an n-vertex 3-graph that does not contain T . Then e(G) ≤
t−1
3 |∂(G)|.

Proof of Lemma 3.2. For convenience, let m = t−1. Let G be a 3-graph with e(G) > m
3 |∂(G)|. Then G contains a subgraph

G′ such that e(G′) > m
3 |∂(G′)| and δ2(G′) > m

3 . For convenience, we assume G itself satisfies these two conditions. Let w

be the default weight function on E(G) and ∂(G). Then G satisfies the conditions of Lemma 3.1. Let the edges e = abc and
f = adc satisfy the claim of that lemma, where a, b, c are ordered as in Lemma 3.1. In particular, by (a), e is light and ac
is good, i.e., d(ac) ≥ m + 1. By our assumptions, d(ab) ≤ d(bc). By parts (b) and (c),

d′

e,f (a, b) ≥

⌊m
3

⌋
and d′

e,f (c, b) ≥

⌊
2m
3

⌋
. (7)

We rename pairs {a, d} and {c, d} as D1 and D2 so that d′

e,f (D1) = min{d′

e,f (a, d), d
′

e,f (c, d)} and d′

e,f (D2) = max{d′

e,f (a, d),
d′

e,f (c, d)}. We claim that in these terms,

d′

1 := d′

e,f (D1) ≥

⌊m
3

⌋
− 1 and d′

2 := d′

e,f (D2) ≥

⌊
2m
3

⌋
− 1. (8)

By (1) and the fact that δ2(G) > m
3 , d

′

1, d
′

2 ≥ ⌊
m
3 ⌋ − 1. We will use part (d) of Lemma 3.1 to show the lower bound for d′

2.
If the second part of (d) holds, then d′

2 ≥ m−1 and we are done. So suppose the first part of Lemma 3.1(d) holds instead,
i.e., (1/d(D1)) + 1/(d(D2)) < 3/m. Then max{d(D1), d(D2)} > 2m/3 implies max{d′

1, d
′

2} ≥ ⌊
2m
3 ⌋ − 1. Note that in (8) we

cannot have equalities in both lower bounds simultaneously, because that one leads to the contradiction
1

⌊m/3⌋ + 1
+

1
⌊2m/3⌋ + 1

≤ w(f ) −
1

d(ac)
<

3
m

.

By our assumption, T has a trunk {e1, e2} with dT (e1∩e2) ≥ ⌊
m
3 ⌋+2. Suppose e1 = xyu and e2 = xyv so that e1∩e2 = xy.

Recall that for each pair B contained in e1 or e2, N ′

T (B) = NT (B) \ {x, y, u, v} and µ(B) = |N ′

T (B)|. Then µ(xy) = dT (xy) − 2,
and µ(B) = dT (B) − 1 for each B ∈ {xu, xv, yu, yv}. Since µ(xy) = dT (xy) − 2 ≥ ⌊

m
3 ⌋ > m

3 − 1, Eq. (5) implies

µ(xu) + µ(xv) + µ(yu) + µ(yv) <
2m
3

. (9)

We consider four cases, and in each case we find an embedding of T into G using Proposition 3.1. We take A5 = xy (so
B5 = ac) so the case ℓ = 5 always holds in condition (6) by dG(ac) ≥ m + 1.

Case 1.1. d′

e,f (D2) ≥
⌊ 2m

3

⌋
and D2 = cd. By symmetry we may assume that µ(yu) + µ(yv) ≥ µ(xu) + µ(xv) and that

µ(xu) ≥ µ(xv). Then by (9), µ(xv) + µ(xu) ≤
⌊m

3

⌋
, and µ(xv) ≤

⌊m
6

⌋
≤

⌊m
3

⌋
− 1.
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We embed T into G by mapping x, y, u, v to a, c, b, d, respectively, and define A1 = xv (B1 = ad = D1), A2 = xu
(B2 = ab), {A3, A4} = {yv, yu} ({B3, B4} = {cd, bc}). Then the first parts of (8) and (7) imply that condition (6) holds for
ℓ = 1, 2 and the second part of (7), (i.e., d′

e,f (c, b) ≥ ⌊
2m
3 ⌋) and our constraint in this case (d′

e,f (c, d) ≥
⌊ 2m

3

⌋
) imply that (6)

holds for ℓ = 3, 4, too.
Case 1.2. d′

e,f (D2) ≥
⌊ 2m

3

⌋
and D2 = ad. By symmetry we may assume that µ(yu) + µ(xv) ≥ µ(xu) + µ(yv) and that

µ(xu) ≥ µ(yv). Then by (9), µ(xu) + µ(yv) ≤
⌊m

3

⌋
, and µ(yv) ≤

⌊m
6

⌋
≤

⌊m
3

⌋
− 1.

We embed T into G by mapping x, y, u, v to a, c, b, d, respectively, and define A1 = yv (B1 = cd = D1), A2 = xu
(B2 = ab), {A3, A4} = {xv, yu} ({B3, B4} = {ad, bc}). Then we have the same upper bounds for

∑
1≤i≤ℓ µ(Ai) and the same

lower bounds for d′(Bℓ) as in Case 1.1 so (6) holds for each ℓ.
From now on, we may suppose that d′

e,f (D2) ≤
⌊ 2m

3

⌋
− 1. Then the inequality (8) and the note after it imply that

d′

e,f (D2) =
⌊ 2m

3

⌋
− 1 and d′

1 := d′

e,f (D1) ≥
⌊m

3

⌋
.

Case 2.1. d′

e,f (D1) ≥
⌊m

3

⌋
and D1 = ad. By symmetry we may assume that µ(yu) + µ(yv) ≥ µ(xu) + µ(xv) and that

µ(yu) ≥ µ(yv). Then by (9) µ(xv) + µ(xu) ≤
⌊m

3

⌋
, and µ(yu) ≥ 1 so µ(xv) + µ(xu) + µ(yv) ≤

⌊ 2m
3

⌋
− 1.

We embed T into G by mapping x, y, u, v to a, c, b, d, respectively, and define {A1, A2} = {xv, xu} ({B1, B2} = {ad, ab})
A3 = yv (B3 = cd = D2), and A4 = yu (B4 = bc). Then the first part of (7) and our constraint in this case
(d′

e,f (ad) ≥
⌊m

3

⌋
) imply that condition (6) holds for ℓ = 1, 2. The condition d′

e,f (D2) =
⌊ 2m

3

⌋
− 1 and the second part

of (7), (i.e., d′

e,f (c, b) ≥ ⌊
2m
3 ⌋) imply that (6) holds for ℓ = 3, 4, too.

Case 2.2. d′

e,f (D1) ≥
⌊m

3

⌋
and D1 = cd. By symmetry we may assume that µ(yu) + µ(xv) ≥ µ(xu) + µ(yv) and that

µ(yu) ≥ µ(xv). Then by (9), µ(xu) + µ(yv) ≤
⌊m

3

⌋
, and µ(yu) ≥ 1 so µ(xu) + µ(yv) + µ(xv) ≤

⌊ 2m
3

⌋
− 1.

We embed T into G by mapping x, y, u, v to a, c, b, d, respectively, and define {A1, A2} = {xu, yv} ({B1, B2} = {ab, cd})
A3 = xv (B3 = ad), and A4 = yu (B4 = bc). Then we have the same upper bounds for

∑
1≤i≤ℓ µ(Ai) and the same lower

bounds for d′(Bℓ) as in Case 2.1 so (6) holds for each ℓ. This completes the proof of Lemma 3.2. □

4. Proof of Theorem 1.4

We prove a shadow version of Theorem 1.4, which immediately implies Theorem 1.4.

Theorem 1.4′. Let t ≥ 8 be an integer. Let T be a tight 3-tree with t edges and c(T ) ≤ 2. If G is an r-graph that does not
contain T , then e(G) ≤

t−1
3 |∂(G)|.

For an edge e, we denote by dmin(e) the minimum codegree over all three pairs of vertices in e.

Lemma 4.1. Let G be a 3-graph satisfying e(G) > γ |∂(G)|. Let w be the default weight function on E(G) and ∂(G). Then there
exists a pair of edges e, f with |e ∩ f | = 2 such that

1. w(e) < 1
γ
,

2. |e ∩ f | = dmin(e),
3. w(f ) < 1

γ
+

3
dmin(e)−1 (

1
γ

− w(e)).

Proof of Lemma 4.1. For convenience, let w0 =
1
γ
. As in the proof of Lemma 3.1, call an edge e with w(e) < w0 light and

an edge e with w(e) ≥ w0 heavy. As before, the average of w(e) over all e is |∂(G)|/e(G) < w0. For each light edge e, let
us mark a pair of vertices in it of codegree dmin(e). If e is a light edge with a marked pair xy and f is another light edge
containing xy, then our statements already hold. So we assume that no marked pair of any light edge lies in another light
edge. Let us initially assign a charge of w(e) to each edge e in G. Then the average charge of an edge in G is less than w0.
We now apply the following discharging rule. For each heavy edge f , transfer 1

3 (w(f ) − w0) of the charge to each light
edge e whose marked pair is contained in f . Note that for each f there are at most 3 such e. In particular, a heavy edge f
still has charge at least w0 after the discharging.

Since discharging does not change the total charge, there exists some edge e with charge less than w0. By the previous
sentence, e is a light edge in G. Let xy be its marked pair. There are dmin(e)− 1 other edges containing it, each of which is
heavy. Each such edge f has given a charge of 1

3 (w(f ) − w0) to w0. For e to still have a charge less than w0, one of these
edges f satisfies 1

3 (w(f ) − w0) <
w0−w(e)
dmin(e)−1 . Hence w(f ) < 1

γ
+

3
dmin(e)−1 (

1
γ

− w(e)). □

To make the application of Lemma 4.1 smoother we collect all calculations in one statement.

Proposition 4.1. Suppose that R1, R2, d,m are integers, R2 ≥ R1 ≥ 2, and d ≥ 2 satisfying

1
R1

+
1
R2

+
1
d

<
3
m

+
3

d − 1

(
3
m

−
1
d

)
. (10)

If m ≥ 7 then

R2 ≥

⌊
2m
3

⌋
+ 1, max {d, R1} ≥

⌊m
2

⌋
+ 1. (11)
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Moreover,

1
R1

+
1
m

+
1
d

<
3
m

+
3

d − 1

(
3
m

−
1
m

−
1
d

)
, (12)

m ≥ 7, and d ≤ m imply

R1 ≥

⌊
2m
3

⌋
+ 1. (13)

Finally,

1
R1

+
1
R2

+
1
d

<
3
m

+
3

d − 1

(
3
m

−
1
m

−
1
d

)
, (14)

m ≥ 7, and d ≤ m imply

R2 ≥

⌊
5m
6

⌋
+ 1. (15)

Proof of Proposition 4.1. Standard algebra and calculus. To prove the first part of (11) define

h(d) :=
3

d − 1

(
3
m

−
1
d

)
−

1
d

=
9d − 2m − md

m(d2 − d)
,

where we consider d to be a real variable, d > 1. Then (10) is equivalent to

1
R1

+
1
R2

<
3
m

+ h(d).

This and R2 ≥ R1 > 0 imply 2/R2 < (3/m) + h(d). For m ≥ 9 and d > 1 we have h(d) < 0, so we get 2/R2 < 3/m,
i.e., R2 > 2m/3, as required. In the case of m = 8 we have h(d) < 1/40 for all d > 1 (it is equivalent to 0 < d2 − 6d+ 80)
so we get 2/R2 < (3/8)+ (1/40) = 2/5, as required. In the case of m = 7 we can prove that h(d) < 1/14 for all d > 1 (it
is equivalent to 0 < d2 − 5d + 28) so we get 2/R2 < (3/4) + (1/14) = 2/4 and we are done.

To prove the second part of (11) we calculate the derivative of h(d)

∂

∂d
h(d) =

(m − 9)d2 + (4d − 2)m
m(d2 − d)2

.

For m ≥ 9 this is obviously positive for all d > 1. In the case m = 8 and 1 < d ≤ 8 both the numerator (−d2 + 32d− 16)
and the denominator are positive. Similarly, for the casem = 7 and 1 < d ≤ 7 we get that the numerator (−2d2+28d−14)
is positive. Hence h(d) is strictly increasing for 1 < d ≤ m. So h(d) takes its maximum in the interval (1, ⌊m/2⌋] at the
upper end. A simple calculation shows that h(⌊m/2⌋) ≤ −1/m. Suppose that d ≤ ⌊m/2⌋. Then (12) and the monotonicity
of h imply

1
R1

<
1
R1

+
1
R2

<
3
m

+ h(d) ≤
3
m

+ h
(⌊m

2

⌋)
≤

2
m

,

and we are done.
To prove (13) define

h2(d) :=
3

d − 1

(
2
m

−
1
d

)
−

1
d

=
6d − 2m − dm

m(d2 − d)
,

where we consider d to be a real variable, d > 1. Then (12) is equivalent to

1
R1

<
2
m

+ h2(d).

Again calculus shows that h2(d) is strictly increasing for 1 < d ≤ m. So it takes its maximum in the interval (1,m] at the
upper end. We obtain 1/R1 < (2/m) + h2(m) = (m + 2)/(m2

− m). This implies R1 > (m2
− m)/(m + 2) > ⌊2m/3⌋ (for

m ≥ 7), as required.
Finally, to prove (15), the monotonicity of h2 and (14) give

2
R2

≤
1
R1

+
1
R2

<
3
m

+ h2(m) =
2m + 1
m2 − m

.

This implies R2 > 2(m2
− m)/(2m + 1) > ⌊5m/6⌋ (for m ≥ 7) and we are done. □
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Proof of Theorem 1.4′. Let T be a tight 3-tree with t ≥ 8 edges that contains a trunk {e1, e2} of size 2. For convenience,
let m = t − 1. Suppose e1 = xyu and e2 = xyv, so that e1 ∩ e2 = xy. If dT (xy) ≥ ⌊

m
3 ⌋ + 2, then we apply Lemma 3.2 and

are done. Hence we may assume that

dT (xy) ≤

⌊m
3

⌋
+ 1.

For each pair A contained in e1 or e2, let N ′

T (A) = NT (A) \ {x, y, u, v} and let µ(A) = |N ′

T (A)|. Then µ(xy) = dT (xy) − 2 and
µ(A) = dT (A) − 1 for the other pairs. Also, as we have seen in (5), we have

µ(xu) + µ(yu) + µ(xv) + µ(yv) + µ(xy) = m − 1. (16)

Since µ(xy) = dT (xy) − 2 ≤
m
3 − 1,

µ(xy) +
i
4
(m − 1 − µ(xy)) ≤

m
3

+
im
6

− 1 ∀i : 0 ≤ i ≤ 4. (17)

Let G be a 3-graph with e(G) > m
3 |∂(G)|. We prove that G contains T . As before we may assume that δ2(G) > m

3 . Let
w be the default weight function on E(G) and ∂(G). There exist edges e and f in G such that they satisfy the properties
proven in Lemma 4.1 with γ = 3/m, i.e, d(e ∩ f ) = dmin(e), w(e) < 3

m , and so on. Suppose e = acb and f = acd, so that
e ∩ f = ac . For each pair B contained in e or f , let N ′

G(B) = NG(B) \ {a, b, c, d} and d′

G(B) = |N ′

G(B)|. Then d′

G(B) ≥ dG(B) − 2
and for all B

d′(B) ≥

⌊m
3

⌋
− 1. (18)

Let us view e, f as glued together at ac with e on the left and f on the right. Let

Lmin = min{dG(ab), dG(bc)}, Rmin = min{dG(ad), dG(cd)},
Lmax = max{dG(ab), dG(bc)}, Rmax = max{dG(ad), dG(cd)}.

Since d(ac) = dmin(e), Lmax ≥ Lmin ≥ dG(ac). Since w(e) < 3
m , we have

Lmax > m. (19)

Lemma 4.1 gives

1
Rmin

+
1

Rmax
+

1
d

= w(f ) <
3
m

+
3

d − 1

(
3
m

− w(e)
)

≤
3
m

+
3

d − 1

(
3
m

−
1
d

)
, (20)

where d = d(ac).
We consider three cases. In each case, we find an embedding of T into G.
Case 1. Lmin > m. This implies d′

G(ab), d
′

G(bc) ≥ m − 1. By symmetry, we may assume that dG(ad) ≥ dG(cd) so that
dG(ad) = Rmax and dG(cd) = Rmin. The inequality (20) shows that the condition (10) holds in Proposition 4.1 with R1 = Rmin
and R2 = Rmax. So (11) (and the lower bound (18)) give

d′

G(bc), d′

G(cd) ≥

⌊m
3

⌋
− 1, max{d′

G(bc), d
′

G(cd)} ≥

⌊m
2

⌋
− 1,

d′

G(ad) ≥

⌊
2m
3

⌋
− 1, d′

G(ab), d′

G(bc) ≥ m − 1. (21)

Now, consider T . By symmetry, we may assume that µ(xu) + µ(yu) ≥ µ(xv) + µ(yv) and that µ(xv) ≥ µ(yv). Then
µ(yv) ≤

1
4 (m − 1 − µ(xy)). This, together with (17) implies

µ(xy) ≤

⌊m
3

⌋
− 1, µ(yv) ≤

⌊
m − 1

4

⌋
≤

⌊m
3

⌋
− 1,

µ(xy) + µ(yv) ≤

⌊m
2

⌋
− 1, µ(xy) + µ(xv) + µ(yv) ≤

⌊
2m
3

⌋
− 1. (22)

Now we embed T into G by applying Proposition 3.1. First, we map x, y, u, v to a, c, b, d, respectively. This maps e1 to
e and e2 to f . Then define {A1, A2} = {xy, yv} (so {B1, B2} = {bc, cd}), A3 = xv (so B3 = ad) and {A4, A5} = {ux, uy}
(so {B4, B5} = {bc, ab}). If we define A2 so that d′(B1) ≤ d′(B2) then (6) holds, so this mapping can be extended to an
embedding of T .

From now on, we may suppose that Lmin ≤ m. By symmetry, we may assume that dG(ab) ≥ dG(bc) so that dG(ab) = Lmax
and dG(bc) = Lmin. Since d(ac) = dmin(e), dG(ac) ≤ Lmin ≤ m. Since 1

Lmin
+

1
dG(ac)

< w(e) < 3
m we get 1

dG(ac)
< 2

m . We also
get 2

Lmin
< 3

m . Summarizing (as in (3)) we have

d′

G(ab) ≥ m − 1, d′

G(bc) ≥

⌊
2m
3

⌋
− 1, d′

G(ac) ≥

⌊m
2

⌋
− 1. (23)
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Case 2. Lmin ≤ m and Rmax > m. There will be two subcases. First suppose that dG(ad) ≥ dG(cd) (i.e., dG(ad) = Rmax).
Then, besides (23), from (18) we get

d′

G(ad) ≥ m − 1, d′

G(cd) ≥

⌊m
3

⌋
− 1. (24)

Consider T . By symmetry, we may assume that µ(xu)+ µ(xv) ≥ µ(yu)+ µ(yv) and that µ(yu) ≥ µ(yv). Then by these
assumptions and (17), we have

µ(yv) ≤

⌊
m − 1

4

⌋
, µ(xy) + µ(yv) ≤

⌊m
2

⌋
− 1, µ(xy) + µ(yv) + µ(yu) ≤

⌊
2m
3

⌋
− 1. (25)

Now we embed T into G by applying Proposition 3.1. First, we map x, y, u, v to a, c, b, d, respectively. Then define A1 = yv
(so B1 = cd), A2 = xy (so B2 = ac), A3 = yu (so B3 = bc) and {A4, A5} = {xu, xv} (so {B4, B5} = {ab, ad}). So (6) holds and
this mapping can be extended to an embedding of T .

Next, suppose that dG(cd) ≥ dG(ad). Then, instead of (24), we have

d′

G(cd) ≥ m − 1, d′

G(ad) ≥

⌊m
3

⌋
− 1. (26)

Consider T . By symmetry, we may assume that µ(xu) + µ(yv) ≥ µ(xv) + µ(yu) and that µ(yu) ≥ µ(xv). By these
assumptions and (17), we have

µ(xv) ≤

⌊
m − 1

4

⌋
, µ(xy) + µ(xv) ≤

⌊m
2

⌋
− 1, µ(xy) + µ(xv) + µ(yu) ≤

⌊
2m
3

⌋
− 1. (27)

Now we embed T into G as follows. First, we map x, y, u, v to a, c, b, d, respectively. Then define A1 = xv (so B1 = ad),
A2 = xy (so B2 = ac), A3 = yu (so B3 = bc) and {A4, A5} = {xu, yv} (so {B4, B5} = {ab, cd}). So (6) holds by (23), (26)
and (27) and this mapping can be extended to an embedding of T .

Case 3. Lmin ≤ m and Rmax ≤ m.
Let d := dmin, we have d ≤ Lmin ≤ m so w(e) ≥ (1/m) + (1/d). Then Lemma 4.1 gives

1
R1

+
1
m

+
1
d

= w(F ) <
3
m

+
3

d − 1

(
3
m

− w(e)
)

<
3
m

+
3

d − 1

(
3
m

−
1
m

−
1
d

)
.

Then Proposition 4.1 (13) yields a lower bound for Rmin. Similarly, from (15) we get a lower bound for Rmax, i.e.,

Rmin ≥

⌊
2m
3

⌋
+ 1, Rmax ≥

⌊
5m
6

⌋
+ 1. (28)

There will be two subcases. First, suppose that dG(ad) ≥ dG(cd), (i.e., dG(ad) = Rmax). Then, besides (23), from (28) we
get

d′

G(ad) ≥

⌊
5m
6

⌋
− 1, d′

G(cd) ≥

⌊
2m
3

⌋
− 1. (29)

Consider T . By symmetry, we may assume that µ(xu) + µ(xv) ≥ µ(yu) + µ(yv) and that µ(xu) ≥ µ(xv). In particular,

µ(xu) ≥
1
4

(m − 1 − µ(xy)) ≥
1
4

(
m − 1 −

m
3

+ 1
)

=
m
6

and

µ(xu) + µ(xv) ≥
1
2

(m − 1 − µ(xy)) ≥
1
4

(
m − 1 −

m
3

+ 1
)

=
m
3

These, together with µ(xy) ≤ (m/3) − 1, give

µ(xy) ≤

⌊m
3

⌋
− 1, µ(xy) + µ(yu) + µ(yv) ≤

⌊
2m
3

⌋
− 1,

µ(xv) + µ(xy) + µ(yu) + µ(yv) ≤

⌊
5m
6

⌋
− 1. (30)

By (23), (29), and (30), we can greedily embed T into G applying Proposition 3.1 by mapping x, y, u, v to a, c, b, d,
respectively, and mapping in order A1 = xy to B1 = ac , {A2, A3} = {yu, yv} to {B2, B3} = {bc, cd} (in arbitrary order)
A4 = xv to B4 = ad, and A5 = xu to B5 = ab.

Next, suppose that dG(cd) ≥ dG(ad). Then, instead of (29), we have d′(cd) ≥
⌊ 5m

6

⌋
− 1 and d′(ad) ≥

⌊ 2m
3

⌋
− 1. By

symmetry, we may assume that µ(xu) + µ(yv) ≥ µ(xv) + µ(yu) and that µ(xu) ≥ µ(yv). Again, µ(xu) ≥ m/6 holds.
We can greedily embed T into G applying Proposition 3.1 by mapping x, y, u, v to a, c, b, d, respectively, and mapping
A1 = xy to B1 = ac , {A2, A3} = {yu, xv} to {B2, B3} = {bc, ad} (in arbitrary order), A4 = yv to B4 = cd, and A5 = xu to
B5 = ab. □
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