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Let n ≥ k ≥ r+3 and H be an n-vertex r-uniform hypergraph. 
We show that if

|H| > n− 1
k − 2

(k − 1
r

)

then H contains a Berge cycle of length at least k. This bound 
is tight when k−2 divides n −1. We also show that the bound 
is attained only for connected r-uniform hypergraphs in which 
every block is the complete hypergraph K(r)

k−1.
© 2018 Elsevier Inc. All rights reserved.

1. Definitions, Berge F subhypergraphs

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets of a 
finite set. We associate an r-graph H with its edge set and call its vertex set V (H). 
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Usually we take V (H) = [n], where [n] is the set of first n integers, [n] := {1, 2, 3, . . . , n}. 
We also use the notation H ⊆

([n]
r

)
.

Definition 1.1 (Anstee and Salazar [1], Gerbner and Palmer [7]). For a graph F with 
vertex set {v1, . . . , vp} and edge set {e1, . . . , eq}, a hypergraph H contains a Berge F if 
there exist distinct vertices {w1, . . . , wp} ⊆ V (H) and edges {f1, . . . , fq} ⊆ E(H), such 
that if ei = vi1vi2 , then {wi1 , wi2} ⊆ fi. The vertices {w1, . . . , wp} are called the base 
vertices of the Berge F .

Of particular interest to us are Berge cycles.

Definition 1.2. A Berge cycle of length � in a hypergraph is a set of � distinct vertices 
{v1, . . . , v�} and � distinct edges {e1, . . . , e�} such that {vi, vi+1} ⊆ ei with indices taken 
modulo �.

A Berge path of length � in a hypergraph in a hypergraph is a set of � + 1 vertices 
{v1, . . . , v�+1} and � hyperedges {e1, . . . , e�} such that {vi, vi+1} ⊆ ei for all 1 ≤ i ≤ �.

Let H be a hypergraph and p be an integer. The p-shadow, ∂pH, is the collection of 
the p-sets that lie in some edge of H. In particular, we will often consider the 2-shadow 
∂2H of a r-uniform hypergraph H in which each edge of H yields a clique on r vertices. 
We say a hypergraph is connected if its 2-shadow is a connected graph. A component of 
a hypergraph is a maximum connected subhypergraph.

2. Background

Erdős and Gallai [3] proved the following result on the Turán number of paths.

Theorem 2.1 (Erdős and Gallai [3]). Let k ≥ 2 and let G be an n-vertex graph with no 
path on k vertices. Then e(G) ≤ (k − 2)n/2.

This theorem is implied by a stronger result for graphs with no long cycles.

Theorem 2.2 (Erdős and Gallai [3]). Let k ≥ 3 and let G be an n-vertex graph with no 
cycle of length k or longer. Then e(G) ≤ (k − 1)(n − 1)/2.

Győri, Katona, and Lemons [9] extended Theorem 2.1 to Berge paths in r-graphs. 
The bounds depend on the relationship of r and k.

Theorem 2.3 (Győri, Katona, and Lemons [9]). Suppose that H is an n-vertex r-graph 
with no Berge path of length k. If k ≥ r + 2 ≥ 5, then e(H) ≤ n

k

(
k
r

)
, and if r ≥ k ≥ 3, 

then e(H) ≤ n(k−1) .
r+1
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Both bounds in Theorem 2.3 are sharp for each k and r for infinitely many n. The 
remaining case of k = r + 1 was settled later by Davoodi, Győri, Methuku, and Tomp-
kins [2]: if H is an n-vertex r-graph with |E(H)| > n, then it contains a Berge path of 
length at least r+1. Furthermore, Győri, Methuku, Salia, Tompkins and Vizer [10] have 
found a better upper bound on the number of edges in n-vertex connected r-graphs with 
no Berge path of length k. Their bound is asymptotically exact when r is fixed and k
and n are sufficiently large.

The goal of this paper is to present similar results for cycles.

3. Main result: hypergraphs without long Berge cycles

Our main result is an analogue of the Erdős–Gallai theorem on cycles for r-graphs.

Theorem 3.1. Let r ≥ 3 and k ≥ r + 3, and suppose H is an n-vertex r-graph with 
no Berge cycle of length k or longer. Then e(H) ≤ n−1

k−2
(
k−1
r

)
. Moreover, equality is 

achieved if and only if ∂2H is connected and for every block D of ∂2H, D = Kk−1 and 
H[D] = K

(r)
k−1.

Note that a Berge cycle can only be contained in the vertices of a single block of the 
2-shadow. Hence the aforementioned sharpness examples cannot contain Berge cycles of 
length k or longer.

In the original version of this paper, we conjectured that the statement of Theorem 3.1
holds for k = r + 2 too. Very recently, Ergemlidze, Győri, Methuku, Salia, Tompkins, 
and Zamora [4] confirmed this and proved exact bounds for k = r + 1 as well.

Theorem 3.2 (Ergemlidze et al. [4]). Let k ≥ 4 and let H be an n-vertex r-graph with no 
Berge-cycles of length k or longer. If k = r + 1, then e(H) ≤ n − 1, and if k = r + 2, 
then e(H) ≤ n−1

k−2
(
k−1
r

)
.

Similarly to the situation with paths, the case of short cycles, k ≤ r + 1, is different. 
Exact bounds for k ≤ r − 1 and asymptotic bounds for k = r were found in [12].

Theorem 3.3 (Kostochka and Luo [12]). Let r ≥ 5 and r ≥ k + 1, and suppose H is an 
n-vertex r-graph with no Berge cycle of length k or longer. Then e(H) ≤ (k−1)(n−1) .
r



58 Z. Füredi et al. / Journal of Combinatorial Theory, Series B 137 (2019) 55–64
For convenience, below we will use notation

Cr(k) := 1
k − 2

(
k − 1
r

)
. (1)

(So C2(k)(n − 1) = (k − 1)(n − 1)/2.) Theorem 3.1 yields the following implication for 
paths.

Corollary 3.4. Let r ≥ 3 and n ≥ k + 1 ≥ r + 4. If H is a connected n-vertex r-graph 
with no Berge path of length k, then e(H) ≤ Cr(k)(n− 1).

This gives a k−2
k−r times stronger bound than Theorem 2.3 for connected r-graphs for 

all r ≥ 3 and n ≥ k+ 1 ≥ r+ 4 and not only for sufficiently large k and n. In particular, 
Corollary 3.4 implies the following slight sharpening of Theorem 2.3 for k ≥ r + 3 in 
which we also describe the extremal hypergraphs.

Corollary 3.5. Let r ≥ 3 and n ≥ k ≥ r + 3. If H is an n-vertex r-graph with no Berge 
path of length k, then e(H) ≤ n

k

(
k
r

)
with equality only if every component of H is the 

complete r-graph K(r)
k .

In the next section, we introduce the notion of representative pairs and use it to derive 
useful properties of Berge F -free hypergraphs for rather general F . In Section 5, we cite 
Kopylov’s Theorem and prove two useful inequalities. In Section 6 we prove our main 
result, Theorem 3.1, and in the final Section 7 we derive Corollaries 3.4 and 3.5.

4. Representative pairs, the structure of Berge F -free hypergraphs

Definition 4.1. For a hypergraph H, a system of distinct representative pairs (SDRP) of 
H is a set of distinct pairs A = {{x1, y1}, . . . , {xs, ys}} and a set of distinct hyperedges 
A = {f1, . . . fs} of H such that for all 1 ≤ i ≤ s

— {xi, yi} ⊆ fi, and
— {xi, yi} is not contained in any f ∈ H − {f1, . . . , fs}.

Lemma 4.2. Let H be a hypergraph, let (A, A) be an SDRP of H of maximum size. Let 
B := H \ A and let B = ∂2B be the 2-shadow of B. For a subset S ⊆ B, let BS denote 
the set of hyperedges that contain at least one edge of S. Then for all nonempty S ⊆ B, 
|S| < |BS |.

Proof. Suppose there exists a nonempty set S ⊆ B such that |S| ≥ |BS |. Choose a 
smallest such S.
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We claim that |S| = |BS |. Indeed, if |S| > |BS | then |S| ≥ 2 because BS �= ∅ by 
definition. Take any edge e ∈ S. The set S \ e is nonempty and |S \ e| = |S| − 1 ≥
|BS | ≥ |BS\e|, a contradiction to the minimality of S.

Consider the case |S| = |BS |. By the minimality of S, each subset S′ ⊂ S satisfies 
|S′| < |BS′ |. Therefore by Hall’s theorem, one can find a bijective mapping of S to BS , 
where say the edge ei ∈ S gets mapped to hyperedge fi in BS for 1 ≤ j ≤ |S|. Then 
(A ∪ {ei, . . . , e|S|}, A ∪ {f1, . . . , f|S|}) is a larger SDRP of H, a contradiction. �
Lemma 4.3. Let H be a hypergraph and let (A, A) be an SDRP of H of maximum size. 
Let B := H \ A, B = ∂2B, and let G be the graph on V (H) with edge set A ∪ B. If G
contains a copy of a graph F , then H contains a Berge F on the same base vertex set.

Proof. Let {v1, . . . , vp} and {e1, . . . , eq} be a set of vertices and a set of edges forming a 
copy of F in G such that the edges e1, . . . , eb belong to B. By Lemma 4.2, each subset 
S of {e1, . . . , eb} satisfies |S| < |BS |. So we may apply Hall’s Theorem to match each of 
these ei’s to a hyperedge fi ∈ B. The edges ei ∈ A can be matched to distinct edges of 
A given by the SDRP. Since A ∩ B = ∅ this yields a Berge F in H on the same base 
vertex set. �

We note that this Lemma 4.3 was proved independently by Gerbner, Methuku, and 
Palmer [6].

We have |H| = |A| + |B|. Note that the number of r-edges in B is at most the number 
of copies of Kr in its 2-shadow. Therefore Lemma 4.3 gives a new proof for the following 
result of Gerbner and Palmer [8]: for any graph F ,

ex(n,Kr, F ) ≤ exr(n,Berge F ) ≤ ex(n, F ) + ex(n,Kr, F ).

Here exr(n, {F1, F2, . . . }) denotes the Turán number of {F1, F2, . . . }, the maximum 
number of edges in an r-uniform hypergraph on n vertices that does not contain a copy 
of any Fi.

The generalized Turán function ex(n, Kr, F ) is the maximum number of copies of Kr

in an F -free graph on n vertices.

5. Kopylov’s theorem and two inequalities

Definition. For a natural number α and a graph G, the α-disintegration of a graph G is 
the process of iteratively removing from G the vertices with degree at most α until the 
resulting graph has minimum degree at least α+ 1 or is empty. This resulting subgraph 
H(G, α) will be called the (α + 1)-core of G. It is well known (and easy) that H(G, α)
is unique and does not depend on the order of vertex deletion. If H(G, α) is the empty 
graph, then we say H is α-disintegrable.
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The following theorem is a consequence of Kopylov [11] about the structure of graphs 
without long cycles. We state it in the form that we need.3

Theorem 5.1 (Kopylov [11]). Let n ≥ k ≥ 5 and let t = �k−1
2 �. Suppose that G is a 

2-connected n-vertex graph with no cycle of length at least k. Suppose that it is saturated, 
i.e., for every nonedge xy the graph G ∪{xy} has a cycle of length at least k. Then either

(5.1.1) the t-core H(G, t) is empty, i.e., G is t-disintegrable; or
(5.1.2) |H(G, t)| = s for some t + 2 ≤ s ≤ k − 2, it is a complete graph on s

vertices, and H(G, t) = H(G, k − s), i.e., the rest of the vertices can be removed by a 
(k − s)-disintegration.

Note that in the second case 2 ≤ k − s ≤ t.

Lemma 5.2. Let k, r, t, s, a nonnegative integers, and suppose k ≥ r + 3 ≥ 6, t =
�(k − 1)/2�, and 0 ≤ a ≤ s ≤ t. Then

a +
(
s− a

r − 1

)
≤ 1

k − 2

(
k − 1
r

)
:= Cr(k).

This is the part of the proof where we use k ≥ r + 3 because this inequality does not 
hold for k = r + 2 (then the right hand side is (r + 1)/r while the left hand side could 
be as large as �(r + 1)/2�).

Proof. Keeping k, r, t, s fixed the left hand side is a convex function of a (defined on the 
integers 0 ≤ a ≤ s). It takes its maximum either at a = s or a = 0. So the left hand 
side is at most max{s, 

(
s

r−1
)
}. This is at most max{t, 

(
t

r−1
)
}. We have eliminated the 

variables a and s.
We claim that t ≤ 1

k−2
(
k−1
r

)
. Indeed, keeping k, t fixed, the right hand side is mini-

mized when r = k − 3, and then it equals to (k − 1)/2. This is at least �(k − 1)/2� = t.
Finally, we claim that 

(
t

r−1
)
≤ 1

k−2
(
k−1
r

)
. If t < r − 1, then there is nothing to prove. 

For t ≥ r − 1 rearranging the inequality we get

r ≤ k − 1
t

× k − 3
t− 1 × · · · × k − r

t− r + 2 .

Each fraction on the right hand side is at least 2. Since r < 2r−1, we are done. �
Lemma 5.3. Let w, r ≥ 2, k ≥ r + 3 and let H be a w-vertex r-graph. Let ∂2H denote 
the family of pairs of V (H) not contained in any member of H (i.e., the complement of 
the 2-shadow). Then

3 A proof and a recent application can be found in [13].
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|H| + |∂2H| ≤ ar(w) :=

⎧⎪⎪⎨
⎪⎪⎩

(
w

2

)
for 2 ≤ w ≤ r + 2,(

w

r

)
for r + 2 ≤ w.

Moreover, for 2 ≤ w ≤ k − 1, |H| + |∂2H| = ar(w) if and only if w = k − 1 and either 
w > r + 2 and H is complete, or w = r + 2 and one of H or ∂2H is complete.

Also, if 2 ≤ w ≤ k − 1, we have ar(w) ≤ (w − 1)
(
k−1
r

)
/(k − 2) = Cr(k)(w − 1).

Proof. The case of w ≥ r + 2 is a corollary of the classical Kruskal–Katona theorem, 
but one can give a direct proof by a double counting. If ∂2H is empty, then |H| =

(
w
r

)
if and only if H =

(
V (H)

r

)
. Otherwise, let H denote the r-subsets of V (H) that are not 

members of H, H =
(
V (H)

r

)
\ H. Each pair of ∂2H is contained in 

(
w−2
r−2

)
members of H

and each e ∈ H contains at most 
(
r
2
)

edges of ∂2H. We obtain

|∂2H|
(
w − 2
r − 2

)
≤ |H|

(
r

2

)
.

Since 
(
w−2
r−2

)
≥

(
r

r−2
)

=
(
r
2
)
, |∂2H| ≤ |H| with equality only when w = r+2. Furthermore, 

if ∂2H and H are both nonempty, then for any xy ∈ ∂2H and uv ∈ ∂2H (with possibly 
x = u), any r-tuple e containing {x, y} ∪ {u, v} is in H but contributes strictly less than (
r
2
)

edges to ∂2H, implying |∂2H| < |H|. This completes the proof of the case.
The case w ≤ r + 1 is easy, and the calculation showing ar(w) ≤ Cr(k)(w − 1) with 

equality only if w = k − 1 is standard. �
6. Proof of Theorem 3.1, the main upper bound

Proof. Let H be an r-uniform hypergraph on n vertices with no Berge cycle of length k
or longer (k ≥ r+3 ≥ 6). Let (A, A) be an SDRP of H of maximum size. Let B := H\A, 
B = ∂2B. By Lemma 4.3 the graph G with edge set A ∪ B does not contain a cycle of 
length k or longer.

Let V1, V2, . . . , Vp be the vertex sets of the standard (and unique) decomposition of 
G into 2-connected blocks of sizes n1, n2, . . . , np. Then the graph A ∪B restricted to Vi, 
denoted by Gi, is either a 2-connected graph or a single edge (in the latter case ni = 2), 
each edge from A ∪B is contained in a single Gi, and 

∑p
i=1(ni − 1) ≤ (n − 1).

This decomposition yields a decomposition of A = A1 ∪ A2 ∪ · · · ∪ Ap and B =
B1 ∪ B2 ∪ · · · ∪ Bp, Ai ∪ Bi = E(Gi). If an edge e ∈ Bi is contained in f ∈ B, then 
f ⊆ Vi (because f induces a 2-connected graph Kr in B), so the block-decomposition of 
G naturally extends to B, Bi := {f ∈ B : f ⊆ Vi} and we have B = B1 ∪ · · · ∪ Bp, and 
Bi = ∂2Bi.

We claim that for each i,

|Ai| + |Bi| ≤ Cr(k)(ni − 1), (2)
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and hence

|H| = |A| + |B| =
p∑

i=1
|Ai| + |Bi| ≤

p∑
i=1

Cr(k)(ni − 1) ≤ Cr(k)(n− 1),

completing the proof.
To prove (2) observe that the case ni ≤ k − 1 immediately follows from Lemma 5.3. 

From now on, suppose that ni ≥ k.
Consider the graph Gi and, if necessary, add edges to it to make it a saturated graph 

with no cycle of length k or longer. Let the resulting graph be G′. Kopylov’s Theorem 
(Theorem 5.1) can be applied to G′. If G′ is t-disintegrable, then make (ni − k + 2)
disintegration steps and let W be the remaining vertices of Vi (|W | = k − 2). For the 
edges of Ai and Bi contained in W we use Lemma 5.3 to see that

|Ai[W ]| + |Bi[W ]| < Cr(k)(|W | − 1).

In the t-disintegration steps, we iteratively remove vertices with degree at most t until we 
arrive to W . When we remove a vertex v with degree s ≤ t from G′, a of its incident edges 
are from A, and the remaining s − a incident edges eliminate at most 

(
s−a
r−1

)
hyperedges 

from Bi containing v. Therefore v contributes at most a +
(
s−a
r−1

)
≤ Cr(k) (by Lemma 5.2) 

to |Bi| + |Ai|.
It follows that

|Ai| + |Bi| <
( ∑

v∈G′−W

Cr(k)
)

+ Cr(k)(|W | − 1) = Cr(k)(ni − 1).

This completes this case.
Next consider the case (5.1.2), W := V (H(G, t)), |W | = s ≤ k − 2. We proceed as in 

the previous case, making (ni − s) disintegration steps. Apply Lemma 5.3 for |Ai[W ]| +
|Bi[W ]| and Lemma 5.2 for the (k − s)-disintegration steps (where k − s ≤ t) to get the 
desired upper bound (with strict inequality). This completes the proof of (2).
The extremal systems. Suppose that e(H) = |A| + |B| = Cr(k)(n − 1). Then ∑p

i=1(ni − 1) = n − 1 (so A ∪ B is connected) and |Ai| + |Bi| = Cr(k)(ni − 1) for 
each 1 ≤ i ≤ p. From the previous proof and Lemma 5.3, we see that this holds if and 
only if for each i, ni = k − 1, and either Bi or Ai is complete. In particular, this implies 
that each block of A ∪ B is a Kk−1. We will show that each Gi corresponds to a block 
in H that is K(r)

k−1 with vertex set Vi.
In the case that Bi is complete for all 1 ≤ i ≤ p, we are done. Otherwise, if some 

Ai is complete (ni = k − 1 = r + 2 by Lemma 5.3) then there are 
(
k−1
2
)

=
(
k−1
k−3

)
=(

k−1
r

)
hyperedges in A intersecting Vi in at least two vertices. If all such hyperedges are 

contained in Vi, again we get H[Vi] = K
(r)
k−1. So suppose there exists a f ∈ A which is 

paired with an edge xy ∈ Ai in the SDRP, but for some z /∈ Vi, {x, y, z} ⊆ f . Then z
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belongs to another block Gj of A ∪B. In A ∪B, there exists a path from x to z covering 
Vi ∪ Vj which avoids the edge xy. Thus by Lemma 4.3, there is a Berge path from x to 
z with at least 2(k − 1) − 1 base vertices which avoids the hyperedge f (since edge xy
was avoided). Adding f to this path yields a Berge cycle of length 2(k − 1) − 1 > k, 
a contradiction. �
7. Corollaries for paths

In order to be self-contained, we present a short proof of a lemma by Győri, Katona, 
and Lemons [9].

Lemma 7.1 (Győri, Katona, and Lemons [9]). Let H be a connected hypergraph with no 
Berge path of length k. If there is a Berge cycle of length k on the vertices v1, . . . , vk then 
these vertices constitute a component of H.

Proof. Let V = {v1, . . . , vk}, E = {e1, . . . , ek} form the Berge cycle in H. If some 
edge, say e1 contains a vertex v0 outside of V , then we have a path with vertex set 
{v0, v1, . . . , v�} and edge set E. Therefore each ei is contained in V . Suppose V �= V (H). 
Since H is connected, there exists an edge e0 ∈ H and a vertex vk+1 /∈ V such that for 
some vi ∈ V , say i = k, {vk, vk+1} ⊆ e0. Then {v1, . . . , vk, vk+1}, {e1, . . . , ek−1, e0} is a 
Berge path of length k. �
Proof of Corollary 3.4. Suppose n ≥ k + 1 and H is a connected n-vertex r-graph with 
e(H) > Cr(k)(n− 1). Then by Theorem 3.1, H has a Berge cycle of length � ≥ k. If 
� ≥ k + 1, then removing any edge from the cycle yields a Berge path of length at least 
k. If � = k, then by Lemma 7.1, H again has a Berge path of length k. �

Now Theorem 3.1 together with Corollary 3.4 directly imply Corollary 3.5.

Proof of Corollary 3.5. Suppose k ≥ r + 3 ≥ 6 and H is an r-graph. Let H1, H2, . . . , Hs

be the connected components of H and |V (Hi)| = ni for i = 1, . . . , s.
If ni ≤ k − 1, then |Hi| ≤

(
ni

r

)
< ni

k

(
k
r

)
. If ni ≥ k + 1, then by Corollary 3.4, 

|Hi| ≤ Cr(k)(ni − 1) < ni

k

(
k
r

)
. Finally, if ni = k, then |Hi| ≤

(
k
r

)
= ni

k

(
k
r

)
, with equality 

only if Hi = K
(r)
k . This proves the corollary. �

Concluding remarks and acknowledgments. In this paper, upper bounds were deter-
mined for the maximum number of edges in an r-uniform hypergraph with no Berge 
cycle of length k or greater when k ≥ r + 3. These bounds are sharp only when n − 1
is divisible by k − 2. Very recently in [5], the present authors developed and extended 
ideas from this paper to prove exact bounds and classify extremal examples for all n and 
k ≥ r + 4.
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