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ALMOST SIMILAR CONFIGURATIONS

IMRE BÁRÁNY AND ZOLTÁN FÜREDI

Abstract. Let h(n) denote the maximum number of triangles with angles between 59◦ and
61◦ in any n-element planar set. Our main result is an exact formula for h(n). We also prove
h(n) = n3/24 + O(n logn) as n → ∞. However, there are triangles T and n-point sets P
showing that the number of ε-similar copies of T in P can exceed n3/15 for any ε > 0.

1. An exact result

Conway, Croft, Erdős, and Guy [4] studied the distribution of angles determined by a planar
set of n points. Motivated by their questions and results we consider the following problem.

Let T be a fixed triangle with angles α, β, γ. Another triangle 4 with angles α′, β′, γ′ is called
ε-similar to T if |α−α′|, |β−β′|, and |γ−γ′| < ε. Here ε > 0 is a small angle, smaller than any
angle of T . Let h(n, T, ε) denote the maximal number of triangles in a planar set of n points
that are ε-similar to T .

The following construction gives a lower bound on h(n, T, ε) (see Figure 1). Place the points
in three groups of as equal sizes as possible, with each group very close to the vertices of T . This
only gives the lower bound n3/27−O(n). Iterating this yields a better bound: splitting each of
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n/9

Figure 1. The iterated threepartite construction
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the three groups into three further groups gives the inequality (with notation f(n) = h(n, T, ε))

f(a+ b+ c) ≥ abc+ f(a) + f(b) + f(c)

where a, b, c are the sizes of the three groups. Define the sequence h(n) (for n = 0, 1, 2, . . . ) as
the maximum lower bound what we can have using the above iterated threepartite construction.
Let h(0) = h(1) = h(2) = 0, h(3) = 1 and for all n ≥ 1 let

h(n) := max{abc+ h(a) + h(b) + h(c) :

a+ b+ c = n, a, b, c ≥ 0 integers}.

We show now by induction that h(n) ≤ 1
24(n3 − n).

h(n) = abc+ h(a) + h(b) + h(c)

≤ abc+
a3 − a

24
+
b3 − b

24
+
c3 − c

24

=
n3 − n

24
+

3

4

(
abc− a2b+ b2a+ b2c+ c2b+ c2a+ a2c

6

)
.(1.1)

An application of the inequality between the arithmetic and geometric means yields that the
second term is nonpositive. This proof shows also that in the inequality h(n) ≤ 1

24(n3 − n)
equality holds for n ≥ 3 if and only if n is a power for 3.

Standard induction shows that for some absolute constant C > 0 for all n we have

n3

24
− Cn log n < h(n) ≤ 1

24
(n3 − n).

It follows that for every triangle T and for every ε > 0

(1.2) h(n, T, ε) ≥ h(n) ≥ n3

24
−O(n log n).

The constructions in Section 3 show that for some specific triangles better lower bounds hold.
However, we prove in Section 8 the following theorem showing that the bound in (1.2) is very
precise for almost equilateral triangles.

Theorem 1.1. Let T be the equilateral triangle. There exists an ε0 ≥ 1◦ such that for all
ε ∈ (0, ε0) and all n we have h(n, T, ε) = h(n).

In particular, when n is a power of 3, h(n, T, ε) = 1
24(n3 − n).

This implies that the following corollary.

Theorem 1.2. Let T be a triangle whose angles are between 60◦ − ε0/2 and 60◦ + ε0/2 and
suppose that 0 < ε < ε0/2. Then h(n, T, ε) = h(n).

In particular, h(n, T, ε) = 1
24(n3 − n) if n is a power of 3.

For a general triangle T the following result holds.

Theorem 1.3. Let T be a non-degenerate triangle and ε > 0. Then the limit

h(T, ε) := lim
n→∞

h(n, T, ε)

n3

exists and is at least 1
24 .

Moreover, for all n

(1.3) h(T, ε)(n3 − n) ≥ h(n, T, ε) ≥ h(T, ε)n(n− 1)(n− 2).
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Since h(T, ε) ≤ 1
6 the difference between the upper and lower bound is at most n(n− 1)/2.

Proof. We claim that for n ≥ 3

(1.4)
h(n, T, ε)(

n
3

) ≥ h(n+ 1, T, ε)(
n+1

3

) .

This inequality implies that the limit exists. The lower bound 1/24 follows from (1.2). To
prove (1.4) let X ⊂ R2 be a point set with |X| = n + 1 containing h(n + 1, T, ε) triangles
ε-similar to T . Consider the average density of (T, ε) triangles in the n-subsets of X

1

n+ 1

(∑
x∈X

h(X \ {x}, T, ε)

)
=
n− 2

n+ 1
h(X,T, ε) =

(
n

3

)
h(n+ 1, T, ε)(

n+1
3

) .

Since the left hand side is at most h(n, T, ε) we obtain (1.4).
Denote h(n, T, ε) by f(n). Then (1.4) is exactly (14.1) (with s = 3). The iterative construc-

tions in Section 3, more exactly (3.3) shows that the sequence f(n) satisfies condition (14.2).
The proof of (1.3) is completed by Claim 14.1 given in the Appendix (Section 14). �

2. Only 0.3% error for most of the triangles

The space of triangles, or rather, triangle shapes can be identified with triples (α, β, γ) with
α, β, γ > 0 and α+ β + γ = π. Let S be the subset of the plane α+ β + γ = π, in R3, defined
by the inequalities α ≥ β ≥ γ > 0. The domain S represents every triangle by a single point.
Thus we can talk about almost all triangles in the measure theory sense. Theorem 1.2 gives the
exact value for h(n, T, ε0) for at least Ω(ε2

0) fraction of S. It shows that (as n → ∞) at most
about one quarter of the

(
n
3

)
triangles could be almost equilateral and this bound is the best

possible.
We measure an angle α either in degrees or in radians, whatever is more convenient. We

hope this is always clear from the context.
The next result uses extremal set theory, actually Turán theory of hypergraphs and flag

algebra computations to give an upper bound for h(n, T, ε) for almost every triangle T that is
only 0.5% larger than the lower bound in (1.2).

Theorem 2.1. For almost every triangle T there is an ε > 0 such that

h(n, T, ε) ≤ 0.25108

(
n

3

)
(1 + o(1)).

The proof is in Sections 9 and 10. We also have a slightly better bound which is less than
0.3% larger than the lower bound in (1.2).

Theorem 2.2. For almost every triangle T there is an ε > 0 such that

h(n, T, ε) ≤ 0.25072

(
n

3

)
(1 + o(1)).

The proof is computer aided and somewhat technical so we only give a sketch in Section 11.

3. Constructing many almost similar triangles

The construction is recursive just as in Section 1.
Let Q = {q1, . . . , qr} be a finite set in the plane, and let F(Q,T, ε) be the 3-uniform hy-

pergraph with vertex set {1, . . . , r} and ijk be an edge of F iff the triangle qiqjqk is ε-similar
to T . Then there is a positive real ρ = ρ(Q,T, ε) > 0 such that the following holds. If
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D1, . . . , , Dr are disks with centres at q1, . . . , qr with radii less than ρ then every triangle pipjpk
with pi ∈ Di, pj ∈ Dj , pk ∈ Dk and ijk ∈ F is ε-similar to T but all other pipjpk triangles are
not, except in the case i = j = k.

Definition 3.1 (The fusion of smaller systems). Suppose we are given a triangle T , an ε > 0,
and a point set Q = {q1, . . . , , qr} together with further sets P1, . . . , Pr of sizes |Pi| = yi ≥ 0,
n = y1 + . . . + yr. We are going to define a set P of n points, called fusion (more precisely a
(T, ε)-fusion) of P1, . . . , Pr and Q as follows.

Consider appropriately small disks D1, . . . , , Dr with centres at q1, . . . , qr (i.e., their radii are
less then ρ = ρ(Q,T, ε)). Place a homothetic copy P ′i of Pi into Di. Finally, set P := ∪P ′i .

In this case we have

(3.1) h(P, T, ε) =
∑

1≤i≤r
h(Pi, T, ε) +

∑
ijk∈F

yiyjyk.

Define the multilinear polynomial p(y1, . . . , yr) of degree 3 as

p(y1, . . . , yr) :=
∑
{yiyjyk : ijk ∈ F , 1 ≤ i < j < k ≤ r}.

Using (T, ε)-optimal Pi’s one obtains

(3.2) h(n, T, ε) ≥
∑

1≤i≤r
h(yi, T, ε) + p(y1, . . . , yr).

In particular, if the size of Q is a (i.e., r = a), and Q is also (T, ε)-optimal (i.e., h(Q,T, ε) =
h(a, T, ε)), moreover each yi = b then (3.2) yields

(3.3) h(ab, T, ε) ≥ a× h(b, T, ε) + h(a, T, ε)b3.

Let us be given a triangle T , an ε > 0, an r-element planar set Q (r ≥ 3), and a vector of
positive reals x = (x1, . . . , xr) such that x1 + · · ·+ xr = 1. Suppose further that h(Q,T, ε) > 0.
We define a sequence of sets Pn of n points with many (T, ε) triangles recursively using the
fusion. We start with P0 = ∅, |P1| = 1, and |P2| = 2 arbitrary sets of sizes at most two.

For any given n ≥ 3 one can find non-negative integers y1(n), . . . , yr(n) such that

(3.4) yi(n) = bnxic or dnxie with
∑

yi = n.

Define Pn (Pn = Pn(Q,T, ε,x)) as the fusion of Py1 , . . . , Pyr (placed into the appropriately
small disks D1, . . . , Dr with centres q1, . . . , qr). Note that xi = 0 would mean that the point qi
is not used in the construction in which case the underlying triple system F is different. So we
suppose that xi > 0 for all i and set x0 = max{xi : i = 1, . . . , r} < 1.

The point set Pn is not determined uniquely (because y1(n), . . . , yr(n) are not necessarily
unique). Nevertheless h(Pn, T, ε) can be estimated quite well.

Lemma 3.2. For every triangle T there is ε(T ) > 0 such that for all ε ∈ (0, ε(T ))∣∣∣∣h(Pn, T, ε)− n3 p(x)

1− (x3
1 + · · ·+ x3

r)

∣∣∣∣ ≤ r

1− x0
n2.

The proof of Lemma 3.2 will be given in Section 14 and is based on Claim 14.2 by considering
the sequence g(n) := h(Pn, T, ε).

We will, of course, choose x1, . . . , xr ≥ 0 to maximize the function

(3.5) f(x) = f(x1, . . . , xr) =
p(x)

1− (x3
1 + · · ·+ x3

r)
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under the condition that x1 + · · ·+ xr = 1.

4. Triangles with higher densities

In this section we give several examples of triangles T where h(n, T, ε) is larger than in the
case of almost equilateral triangles.

Example 1. T is right angled and Q = {q1, q2, q3, q4} is the set of four vertices of a rectangle
such that any three vertices of P ⊂ Q form a triangle congruent to T , see Figure 2, left. The
function f(x) is symmetric in its 4 variables and its maximum is taken at x1 = x2 = x3 = x4 =
1/4 where f(x) = 1/15. Consequently

q1 q2

q3q4

q1 q2

q3q4

q5

Figure 2. Examples 1 and 2

h(n, T, ε) ≥ n3

15
−O(n2),

a much larger lower bound than in (1.2).

Example 2. T is an isosceles right angled triangle and Q = {q1, q2, q3, q4, q5} are the four
vertices and the centre of a square, see Figure 2, right. The corresponding function is symmetric
again in the variables x1, x2, x3, x4 and takes its maximum when x1 = x2 = x3 = x4 = x, say.
Then x5 = 1− 4x and

f(x) =
4x3 + 4x2(1− 4x)

1− 4x3 − (1− 4x)3
=

x− 3x2

3(1− 4x+ 5x2)

where x ∈ [0, 1/4]. The value of the maximum is 1/(6
√

2 + 6) = 1/14.4852 · · · and is reached
at x = (3−

√
2)/7. This gives

h(n, T, ε) =
n3

14.4852 · · ·
+O(n2).

Most likely this isosceles triangle gives the largest value for h(n, T, ε).
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Example 3. The angles of T are 120◦, 30◦, 30◦ and Q = {q1, q2, q3, q4} are the three vertices
and the centre of an equilateral triangle, see Figure 3, left. Here f(x) is again symmetric in its
first three variables, so we choose x1 = x2 = x3 = x and then x4 = 1− 3x and x ∈ [0, 1/3] and

f(x) =
3x2(1− 3x)

1− 3x3 − (1− 3x)3
=

x(1− 3x)

3− 9x+ 8x2
.

This function is maximized at x = (9−
√

24)/19 which gives

h(n, T, ε) ≥ n3

18.7979 · · ·
+O(n2).

q1 q2

q4

q3

q1

q3

q2

q4

Figure 3. Examples 3 and 4

Example 4. The angles of T are α = 40.2 · · ·◦, 2α = 80.4 · · ·◦ and π − 3α = 59.3 · · ·◦ where
α is the root of the equation (sin 3α)3 = sinα(sin 2α)2. Let Q = {q1, q2, q3, q4} be a convex
quadrilateral (see Figure 3, right) such that q4q1q2 and q4q2q3 are similar to T . This means that
the angles at q4, ∠q1q4q2 = ∠q2q4q3 are equal to α, and the angles at q1 and q2, i.e., ∠q2q1q4

and ∠q3q2q4 are equal to 2α. Then the triangle q3q4q1 is also similar to T , so the structure of
similar triangles in this Q is the same as in the previous Example 3. The same calculation leads
to

h(n, T, ε) ≥ n3

18.7979 · · ·
+O(n2).

Example 5. T is the triangle with angles 90◦, 60◦, 30◦, Q is the set of vertices of the regular
hexagon. Putting weights 1/6 on each vertex the method gives

h(n, T, ε) ≥ n3

17.5
−O(n2).

This is better than what we can get from the standard iterated threepartite construction, but
slightly weaker than Example 1.

5. Non-threepartite constructions

The next four examples give only h(n, T, ε) ≥ n3

24 +O(n2) for various T but we include them
here for two reasons. First, although their order of magnitude is the same, their structure is
completely different, which shows that any proof to describe the extremal families could not
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Figure 4. Examples 5 and 8

Figure 5. Examples 6 and 7

be too simple. Second, in cases when n is a power of 5 (or 7, resp.) these examples yield
h(n, T, ε) ≥ 1

24(n3 − n) slightly exceeding h(n).

Example 6. T has angles 108◦, 36◦, 36◦ and Q = {q1, q2, q3, q4, q5} are the vertices of a
regular pentagon, see Figure 5, left. The function f(x) is symmetric in its five variables and
setting all xi = 1/5 gives f(x) = 1/24. We have

h(n, T, ε) ≥ n3

24
+O(n2).

Example 7. T has angles 72◦, 72◦, 36◦ and Q = {q1, q2, q3, q4, q5} are the vertices of a regular
pentagon as in Example 6, see Figure 5, right. The same argument yields

h(n, T, ε) ≥ n3

24
+O(n2).

Example 8. The angles of T are 4
7π,

2
7π,

1
7π and Q is the set of vertices of a regular 7-gon.

The corresponding f(x) is symmetric and setting xi = 1/7 gives h(n, T, ε) ≥ n3

24 −O(n2).

Example 9. T is arbitrary but not equilateral and Q = {0, 1, z, 1/(1−z), (z−1)/z} where z
is a complex number such that (0, 1, z) is similar to T , see Figure 9. It is well known (and easy
to prove) that {1/(1 − z), 0, 1}, {1, (z − 1)/z, 0} and {1/(1 − z), (z − 1)/z, z} are also similar
to T . The function f(x) takes its maximum when x = (1/3, 1/3, 1/9, 1/9, 1/9) and this gives
f(x) = 1/24. We have

h(n, T, ε) ≥ n3

24
+O(n2).
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6. Generalizations and extensions

The definition of ε-similar triangles can be carried over to planar sets of k points, k ≥ 4.
So let A ⊂ R2 be a fixed set of k points, A = {a1, . . . , ak} and δ > 0. Another set B =
{b1, . . . , bk} ⊂ R2 and A are δ-similar if there is a λ > 0 such that for all i 6= j

(6.1) 1− δ ≤ λ |aiaj |
|bibj |

≤ 1 + δ.

This is essentially the same as what we used for triangles. For any triangle T and ε > 0 there
exists a δ1 = δ1(T, ε) such that a triangle T ′ which is δ-similar to T according to (6.1) with
δ < δ1 is also ε-similar to T (in the way we use this in all other sections). On the other hand,
for every δ > 0 there exists an ε1 = ε1(T, δ) such that a triangle T ′ which is ε-similar to T ,
ε < ε1, is also δ-similar to T according to (6.1).

Define H(n,A, δ) as the maximal number of δ-similar copies of A present in an n-element set
in R2. Placing k groups of points, each of size n/k, very close to the points of A and iteration
shows that for all A and δ > 0

(6.2) H(n,A, δ) ≥ nk

kk − k
+O(nk−1).

Claim 14.1 applies here as well and shows that the limit

(6.3) lim
n→∞

H(n,A, δ)(
n
k

)
exists and the inequality above shows that it is at least k!/(kk − k) > 0.

The case of truly similar copies, that is when δ = 0, is different. Then H(n,A, 0) ≤ 2n(n−1).

Elekes and Erdős [5] showed that H(n,A, 0) ≥ cn2−o(1) for every set A, and H(n, T, 0) ≥ n2/18
for every triangle T . Laczkovich and Ruzsa [9] proved the remarkable result that H(n,A, 0) =
Ω(n2) if and only if the cross ratio of any four elements of A is algebraic. Here A is considered
as a k-element set of complex numbers and the cross ratio of four complex numbers z1, z2, z3, z4

is
(z1 − z3)/(z3 − z2)

(z1 − z4)/(z4 − z2)
.

See more in [1].
The same question comes up in higher dimensions as well. Elekes and Erdős [5] and Pach [11]

proved that for every d-dimensional simplex 4d

n(d+1)/d−o(1) ≤ H(n,4d, 0) = O(n(d+1)/d).

For results on equilateral triangles in Rd, d ≤ 5 see [2].

7. Optimal configurations

Let T be any given triangle and assume ε > 0 is small. A point set P ∈ R2 with |P | = n
gives rise to a 3-uniform hypergraph H(P, T, ε): its vertex set is P and xyz ∈ H if the triangle
with vertices x, y, z ∈ P is ε-similar to T . So we have

h(n, T, ε) ≥ |H(P, T, ε)|
and P is called optimal (or optimal for T ) if here equality holds. We write deg(x) resp. deg(x, y)
for the degree of x and codegree of xy, that is deg(x) resp. deg(x, y) is the number of triples in
H containing x and both x and y.
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We write B(x, r) for the Euclidean ball centred at x and having radius r. There is a small
η0 = η0(P ) > 0 (depending only on P ) such that for any η ∈ (0, η0) the following holds. If
xyz ∈ H, then the triangle with vertices x′, y′, z′ is ε-similar to T for any x′ ∈ B(x, η), y′ ∈
B(y, η), z′ ∈ B(z, η).

Assume next that x, y ∈ P , deg(x, y) = 0 and deg(x) ≥ deg(y), and let x′ ∈ B(x, η) an
arbitrary point, distinct from x. Define P ′ = P ∪ {x′} \ {y}.

Lemma 7.1. Under these conditions, |H(P ′, T, ε)| ≥ |H(P, T, ε)|. If deg(x) > deg(y) then
|H(P ′, T, ε)| > |H(P, T, ε)|.

The proof is simple: The triples in H not containing y remain triples in H′. Write deg′(.) for
the degrees in H′ = H(P ′, T, ε). Since xuv ∈ H (here u, v are distinct from y) implies x′uv ∈ H′
and xuv ∈ H′, we have deg′(x′) ≥ deg(x) and deg′(x) = deg(x) ≥ deg(y). So indeed, |H′| ≥ |H|,
and the inequality is strict if deg(x) > deg(y). �

Assume next that deg(x, y) = deg(x, z) = 0. By the previous claim we can replace both y
and z by x′, x′′ ∈ B(x, η) so that with P ′′ = P ∪{x′, x′′}\{y, z} the new hypergraph H′′ satisfies
|H′′| ≥ |H|. Actually, x′ and x′′ can be chosen so that the triangle xx′x′′ is ε-similar to T so
|H′′| > |H|. We obtained the following:

Corollary 7.2. If the planar set P of n points is optimal, then deg(x) = deg(y) for every
x, y ∈ P with deg(x, y) = 0. Moreover, if deg(x, y) = deg(u, v) = 0, then {x, y} and {u, v} are
disjoint or they coincide.

We are going to fix an optimal planar set P of n points such that the diameter of P is one, and
all pairs of points x, y ∈ P with deg(x, y) = 0 are very close to each other. This is accomplished
with the next technical lemma.

Lemma 7.3. There is an optimal planar set P of n points and an η ∈ (0, 10−3) such that the
diameter of P has length one, the points u, v ∈ P with deg(u, v) = 0 satisfy |uv| < η and every
disk of radius η contains at most two points from P .

Proof. Start with an optimal planar set Q of n points and let x0, y0 ∈ Q be the pair with
maximal distance |x0y0| among all pairs u, v with deg(u, v) ≥ 1. As a homothety does not
change ε-similarity we assume that |x0y0| = 1.

Next choose η > 0 smaller than η0(P ), and smaller than 10−3, and smaller than one tenth the
minimal distance among pairs in Q. Apply Lemma 7.1 to every pair u, v ∈ P with deg(u, v) = 0.
Such pairs are disjoint and deg(u) = deg(v) by Corollary 7.2. So we can replace v by u′ ∈ B(u, η)
or u by v′ ∈ B(v, η). The choice between u′ and v′ is arbitrary except when x0 or y0 is present in
the pair. Then we keep x0 (resp. y0) and replace the other element of the pair by x′0 ∈ B(x0, η)
(and by y′0). We get a new set Q′ of n points still maximizing h(n, T, ε). The diameter of Q′

is between 1 and 1 + 2η. Apply another homothety so that the diameter of the new set P of n
points obtained from Q′ has diameter one. Then P satisfies the requirements. �

8. Proof of Theorem 1.1

In this section all angles are measured in radians and we fix ε = 1/50. We need some
definitions. We call a triangle ε-equilateral if it is ε-similar to the equilateral triangle. For
distinct x, y ∈ R2 define q+(x, y) (resp. q−(x, y)) as the point in R2 obtained by rotating y
about x by π/3 anti-clockwise (resp. clockwise), see Figure 6 for q+(x, y). Then, for distinct
points u, v, the points u, v, q±(u, v) are the vertices of an equilateral triangle. Assume uvw is
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x y

z

u

D

w = q+(x, y)

Figure 6. The domain D, z, and w = q+(x, y)

an ε-equilateral triangle. Then w is close to either q+(u, v) or to q−(u, v). More formally, a
simple computation using ε = 1/50 shows that

(8.1) w ∈ B(q+(u, v), 1.2ε|uv|) ∪B(q−(u, v), 1.2ε|uv|).

We begin now the proof of Theorem 1.1. Fix a maximizer set P of n points, P ⊂ R2 as in
Lemma 7.3. The diameter of P is realized on points x, y ∈ P so |xy| = 1 and deg(x, y) ≥ 1
since pairs u, v ∈ P with deg(u, v) = 0 are at distance less than η < 10−3. So there is z ∈ P
with xyz ∈ H. Fix such a z and set s = 1.2ε = 0.024. According to (8.1), z is close to either
q+(x, y) or to q−(x, y). We may assume that it is close to w = q+(x, y) and so z ∈ B(w, s)
implying that

P ⊂ B(x, 1) ∩B(y, 1) ∩B(z, 1)

⊂ B(x, 1) ∩B(y, 1) ∩B(w, 1 + s) := D

because B(z, 1) ⊂ B(w, 1 + s).
Here D is a convex set, see Figure 6. Rotating D about x by angle π/3 anti-clockwise, resp.

clockwise, we obtain the sets D+(x) and D−(x). The sets D+(y), D+(w) and D−(y), D−(w) are
defined analogously. Set further x∗ = q+(w, y), y∗ = q+(x,w) and w∗ = q+(y, x) (see Figure 7)
and define

M(x) = B(x, 1 + 2s) ∩B(x∗, 1 + 2s),

M(y) = B(y, 1 + 2s) ∩B(y∗, 1 + 2s),

M(w) = B(w, 1 + 2s) ∩B(w∗, 1 + 2s).

Set further N(w) = M(x) ∩M(y), N(y) = M(x) ∩M(w), and N(x) = M(w) ∩M(y).

Lemma 8.1. P ⊂ N(x) ∪N(y) ∪N(w).
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x y

w
y∗ x∗

M(x)

M(w)

Figure 7. The sets M(x) and M(w) and their intersection

Proof. Assume u ∈ P . If deg(x, u) = 0, then u ∈ B(x, η) ⊂ N(x). The same argument
applies when deg(y, u) = 0. If deg(z, u) = 0, then u ∈ B(z, η) and B(z, η) ⊂ N(w).

Thus we assume deg(x, u),deg(y, u),deg(z, u) ≥ 1. Here deg(x, u) ≥ 1 means there is v ∈ P
with xyv ∈ H implying by (8.1) that v ∈ B(q+(x, u), s)∪B(q−(x, u), s). In other words, rotating
u about x by angle π/3 or −π/3 we arrive at a point at distance at most s from v ∈ P ⊂ D.
Going backwards, that is, rotating D about x by π/3 and −π/3 we obtain the sets D+(x) and
D−(x) such that

u ∈ [(D ∩D+(x)) ∪ (D ∩D−(x))] +B(0, s)

= [(D ∩D+(x)) +B(0, s)] ∪ [(D ∩D−(x)) +B(0, s)],

where addition is the usual Minkowski addition. Here D+(x) = B(x, 1)∩B(y, 1 + s)∩B(w∗, 1),
and then

(D ∩D+(x)) +B(0, s) ⊂ B(w, 1 + 2s) ∩B(w∗, 1 + s) ⊂M(w).

One proves similarly that

(D ∩D−(x)) +B(0, s) ⊂ B(y, 1 + s) ∩B(y∗, 1 + 2s) ⊂M(y),

implying that u ∈M(y) ∪M(w). The same way u ∈M(w) ∪M(x) follows from deg(y, u) ≥ 1,
see Figure 7.

Finally, deg(z, u) ≥ 1 implies that there is t ∈ P such that zut ∈ H and then by (8.1)

t ∈ B(q+(z, u), s) ∪B(q−(z, u), s) ⊂ B(q+(w, u), 2s) ∪B(q−(w, u), 2s)

where the last containment follows from q±(z, u) ∈ B(q±(w, u), s). Then

u ∈ [(D ∩D+(w)) +B(0, 2s)] ∪ [(D ∩D−(w)) +B(0, 2s)]

and D+(w) = B(y, 1) ∩B(w, 1 + s) ∩B(x∗, 1). This shows that

(D ∩D+(w)) +B(0, 2s) ⊂ B(x, 1 + 2s) ∩B(x∗, 1 + 2s) = M(x).

One proves the same way that (D ∩D−(w)) +B(0, s) ⊂M(y), so u ∈M(x) ∪M(y).
We have shown so far that

(8.2) u ∈ [M(x) ∪M(y)] ∩ [M(y) ∪M(w)] ∩ [M(w) ∪M(x)],
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not quite what we wanted but we are not far. It is easy to check that relation (8.2) holds if
and only if u is contained in at least two of the sets M(x),M(y),M(w). Observe now that
M(x)∩M(y)∩M(w) = ∅. Indeed, if these three sets had a point in common, then their union
would cover the triangle xyw because the edges xy, yw, wx resp. are contained in M(w), M(x),
and M(y). But none of the sets contains the centre of the triangle xyw.

This implies that (8.2) holds if and only if u is contained eitherM(x)∩M(y) or inM(y)∩M(w)
or in M(w) ∩M(x). �

Now we return to the proof of Theorem 1.1. Suppose P has a points in N(x), b points in
N(y) and c in N(w). By the lemma n = a + b + c. Write f(n) = h(n, T, ε). We are going to
show that f(n) ≤ h(n).

We prove next that no triangle in H has two points in N(w) and one in N(y). This is quite
simple: assume x1y1z1 ∈ H is a triple with x1, y1 ∈ N(w) and in z1 ∈ N(y). A simple and
generous computation shows that the diameter of N(w) is smaller than 5s +

√
2s = 0.32. On

the other hand, the distance between N(w) and N(y) is 1−
√

6s = 0.346 · · · . So the ratio of the
lengths of one edge (x1z1 or y1z1) to another edge (namely x1y1) is at least 0.346 · · · /0.32 > 1.08.
On the other hand, the ratio of the length of any two edges in an ε-equilateral triangle is at
most sin(π/3 + ε)/ sin(π/3 − ε) = 1.0233 · · · < 1.03 (where ε = 1/50). Consequently x1y1z1 is
not an ε-equilateral triangle, contrary to x1y1z1 ∈ H.

It follows that there are two kinds of triples in H: either one vertex in each of N(x), N(y),
and N(w) or all three vertices are in one of the sets N(x), N(y), and N(w).

The number of triangles with one vertex in each of N(x), N(y), and N(w) is abc. The number
of triangles with all vertices in N(x), N(y), resp. N(w) is at most f(a), f(b), and f(c). Thus

f(n) ≤ abc+ f(a) + f(b) + f(c)

and the argument (1.1) finishes the proof. �

9. Turán problems for hypergraphs

Turán’s theory of extremal graphs and hypergraphs has several applications in geometry (see,
e.g., [10]) and elsewhere [6]. Here we explain what we need for Theorem 2.1, for the case of 3-
uniform hypergraphs. Let L be a finite family of 3-uniform hypergraphs, the so-called forbidden
hypergraphs. Turán’s problem is to determine the maximal number of edges that a 3-uniform
hypergraph H on n vertices can have if it does not contain any member of L as a subhypergraph.
This maximal number is usually denoted by ex(n,L).

Define K−4 = {124, 134, 234} which is the complete 3-uniform hypergraph on four vertices
minus one edge, and C5 = {123, 234, 345, 451, 512} which is the 5-cycle, and let L = {K−4 , C5}.
We need the following result of Falgas-Ravry and Vaughan [7]:

(9.1) (0.25 + o(1))

(
n

3

)
≤ ex(n, {K−4 , C5}) ≤ 0.251073

(
n

3

)
.

The upper bound part of this result will be used in the proof of Theorem 2.1 (weaker version).
First some preparation is needed.

Given a triangle T with angles α, β, γ an equation of the form

n1α+ n2β + n3γ + n4π = 0

is called a non-trivial linear equation of T if the vector (n1, n2, n3, n4) is linearly independent
from (1, 1, 1,−1), their coordinates are integers, and all are at most 5 in absolute value. Note
that the equation α+ β + γ − π = 0 is satisfied by every triangle.
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Here we extend the definition of the hypergraph F(Q,T ) used in Section 3: given a finite
multiset Q = {q1, . . . , qr} ⊂ R2 and a triangle T , the vertex set of F(Q,T ) is {1, . . . , r} and ijk
is an edge of F(Q,T ) iff either qiqjqk is similar to T or qi = qj = qk. The multiset Q is trivial
if all of its points coincide. Otherwise we say that Q realizes the hypergraph F and that F can
be realized by T .

Lemma 9.1. Assume Q = {q1, q2, q3, q4} is a nontrivial multiset and F(Q,T ) contains a copy
of K−4 . Then the angles of T satisfy a non-trivial linear equation.

Lemma 9.2. Assume Q = {q1, . . . , q5} is a nontrivial multiset and F(Q,T ) contains a copy of
C5. Then the angles of T satisfy a non-trivial linear equation.

The proof of these lemmas are postponed into the next Section.

Proof of Theorem 2.1. Assume T is a triangle whose angles do not satisfy any non-trivial
linear equation. Then there is an ε(T ) > 0 such that no triangle which is ε-similar to T satisfies
any non-trivial linear equation. The reason is that, in the space of triangle shapes, S, T is at
positive distance from the closed set defined by the finitely many non-trivial linear equations.

This implies that, given a planar set P of n points, the hypergraph H(P, T, ε) contains no
copy of K−4 and no copy of C5, provided ε < ε(T ). �

Conjecture 9.3 (Falgas-Ravry and Vaughan, Conjecture 8 in [7]). limn→∞ ex(n, {K−4 , C5})
(
n
3

)−1
=

1/4.

This conjecture (if true) implies that h(n, T, ε) = (1 + o(1))n3/24 for all triangles T whose
angles do not satisfy any non-trivial linear equation and for small enough 0 < ε < ε(T ).

10. Proof of the two lemmas, realizations of K−4 and C5

In both lemmas the triangles in F(Q,T ) cover all pairs of Q. So if Q contains any point with
multiplicity at least 2 then it contains a triangle of size 0, and one can easily see that all other
triangles are of size 0, i.e., Q is a trivial multiset. From now on, we may assume that Q is a
proper set and T has angles α, β, and γ.

Proof of Lemma 9.1. Four distinct points q1, . . . , q4 are given such that the three triangles
of the form qiqjq4, 1 ≤ i < j ≤ 3, are similar to T . First, consider the case when q4 lies on the
boundary of the convex hull of Q. Then (with a possible relabeling of q1, q2, and q3) we obtain

∠q1q4q2 + ∠q2q4q3 = ∠q1q4q3.

Here all three angles belong to {α, β, γ} so we obtain either an equation like α+β = γ (implying
γ = π/2) or an equation of the form 2β = α. In each case we got a non-trivial linear equation.

Actually, one can show that in this case T is either right angled or the unique triangle T
defined in Example 4 whose angles are approximately 40.2◦, 80.4◦, and 59.3◦.

From now on, we may suppose that q4 is in the interior of conv Q. Then conv Q is a triangle
with vertices q1, q2, and q3 and we have

∠q1q4q2 + ∠q2q4q3 + ∠q3q4q1 = 2π.

Here all the three angles belong to {α, β, γ} so all three must be the same and equal to α, say
(otherwise we get a contradiction like α+β+ γ = 2π or 2π > 2α+β = 2π). Then 3α = 2π is a
non-trivial linear equation. It is easy to see in this case that the angles of T are 2π/3, π/6, π/6,
the case in Example 3. �
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Figure 8. For Lemma 9.2

Proof of Lemma 9.2. Let δi denote the angle qi−1qiqi+1, subscripts taken mod 5. Here
δi ∈ {α, β, γ} because qi−1qiqi+1 is an angle of a triangle similar to T . The polygonal path
q1q2q3q4q5q1 is closed, see Figure 8, implying that

(10.1) ± δ1 ± δ2 ± δ3 ± δ4 ± δ5 ≡ 0 mod 2π,

where we have to select the appropriate signs according to the polygonal path. We claim that
each of the 25 choices of signs lead to a non-trivial linear equation.

Denote by n1 the coefficient of α in (10.1), and n2 and n3 are defined analogously. It follows
that

(10.2) n1α+ n2β + n3γ = n4π,

where each ni is an integer, |n1| + |n2| + |n3| ≤ 5, |n4| ≤ 4. Moreover |n1| + |n2| + |n3| is odd
and |n4| is even, so the vector (n1, n2, n3,−n4) is linearly independent from (1, 1, 1,−1). �

11. The two ingredients of the proof of Theorem 2.2

To prove the stronger version of Theorem 2.1 further forbidden hypergraphs are needed. Let
L consist of the following 9 hypergraphs:

(1) K−4 = {123, 124, 134}
(2) C−5 = {123, 124, 135, 245}, a cycle C5 minus an edge,
(3) C+

5 = {126, 236, 346, 456, 516}, called 5-wheel,
(4) L2 = {123, 124, 125, 136, 456}
(5) L3 = {123, 124, 135, 256, 346}
(6) L4 = {123, 124, 156, 256, 345}
(7) L5 = {123, 124, 145, 346, 356}
(8) L6 = {123, 124, 145, 346, 356}
(9) P−7 = {123, 145, 167, 246, 257, 347}, the set of lines on the Fano plane with one line

removed.

For the proof of Theorem 2.1 we need the following fact.

Claim 11.1. limn→∞ ex(n,L)
(
n
3

)−1
< 0.25072.

The proof of this claim is based on the flag-algebra method due to Razborov [12]. It requires
computations by a computer: we used the “Flagmatic” package developed by Falgas-Ravry and
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Figure 9. {123, 124, 125, 345} can be realized by all triangles.

Vaughan [7, 13] (thanks to them). To get an upper bound we needed the following command,
where the nine lines with ’forbid’ encode the nine forbidden members of L.

flagmatic --r 3 --n 7 --dir output

--forbid-k4-

--forbid 5:123124135245

--forbid 6:123124135146156

--forbid 6:123124125136456

--forbid 6:123124135256346

--forbid 6:123124156256345

--forbid 6:123124135146356

--forbid 6:123124145346356

--forbid 7:123145167246257347 --verbose

We asked our friends Manfred Scheucher (Graz, Austria) and John Talbot (Univ. College,
London, UK) (thanks to both of them as well) who had Flagmatics implemented on their laptops
to type in the above command. In both cases, independently, the computers after 20 minutes
and about 80 iterations returned the upper bound 0.25072. �

The other tool we need to complete the proof of Theorem 2.1 is to show that, for almost every
triangle shape T , there is an ε(T ) > 0 such that for every finite set P ⊂ R2 the hypergraph
H(P, T, ε) contains no hypergraph from L. For this purpose define, for every L ∈ L, the set S(L)
of triangle shapes 4 that can realize L ∈ L as F(Q,4) with a suitable (non-trivial multi)set
Q ⊂ R2 of the same size as the vertex set of L. Note that there are many hypergraphs, e.g.,
F3,2 := {123, 124, 125, 345}, which can be realized by all triangles, esp. when we allow multiple
vertices (see Figure 9). So S(F3,2) = S.
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q1
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q3
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Figure 10. A realization of the 5-wheel, C+
5 .

We remark that every triple system on at most 6 vertices which is not a subfamily of the
standard iterated threepartite construction contains a member (1)–(8) from our list L.

Lemma 11.2. For every L ∈ L and for almost every triangle shape T there is an ε(T ) > 0
such that the distance between T and S(L) is larger than ε(T ).

This is in fact 9 lemmas, one for each L ∈ L. Out of them the case L = K−4 is just Lemma 9.1.
Also the case L = C+

5 can be handled as Lemma 9.2. Indeed, if F(Q,4) realizes C+
5 with the

central vertex q6, and the triangles are q1q2q6, q2q3q6, q3q4q6, q4q5q6, and q5q1q6, then with
notation δi = ∠qiq6qi+1 (i = 1, . . . , 5) we have ±δ1 ± δ2 ± δ3 ± δ4 ± δ5 ≡ 0 mod 2π. This is the
same as (10.1), leading to a non-trivial linear equation.

12. Algebraic conditions for triangle realizations

This section is the continuation of the proof of Lemma 11.2, actually only a sketch.
For the other L ∈ L linear equations do not suffice. We need non-trivial polynomial equations.

We explain the proof method in detail only for C−5 . The other cases are similar and technical,
and we leave them to the interested reader.

It is more convenient to work with a different representation of triangle shapes, namely with
complex numbers. Given a triangle T its shape is identified with a complex number z ∈ C \ R
such that the triangle with vertices 0, 1, z is similar to T . In fact there are twelve complex
numbers w such that the triangle 0, 1, w is similar to T (unless T is isosceles). The set of these
twelve points is T (z) and, as one can check easily,

T (z) = {z, 1− z, 1/z, 1− 1/z, 1/(1− z), z/(z − 1) and their conjugates}.
Figure 9 shows some of these points. It follows that if a, b ∈ C are distinct, and w ∈ T (z) then
a, b and v = w(b− a) + a form a triangle similar to T . It is also true that if a, b, u is a triangle
similar to T , then u must be obtained in this way, so it is a ratio of two linear functions of z,
or its conjugate, z. The coefficients of the linear functions depend on a and b. Set z = x+ iy.
Hence the real and imaginary part of u are a ratio of two quadratic polynomials in variables x
and y.

Assume next that F(Q,T ) is C−5 and Q = {q1, . . . , q5}. If q1 = q2, then the size of the triangle
q1q2q3 is 0. Eventually we obtain that Q should be a trivial multiset. So we may suppose that
q1 6= q2. Then (after a proper affine transformation) we may suppose that q1 = 0 and q2 = 1.

As q1q2q3 is similar to T , q3 is one of those twelve points that can be expressed as the ratio
of two linear functions in z or in z. Again, since q1q3q5 is similar to T , q5 can be expressed as
a ratio of two quadratic functions in z or in z. Consequently, the real and imaginary part of q5
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Figure 11. The two cases in Lemma 12.1

can be written as the ratio of two degree four polynomials in variables x, y. Note that typically
there are many, but of course finitely many, such points. An upper bound is 122.

Analogously, via the chain of triangles q1q2q4, q2q4q5, the real and imaginary parts of q5

are equal to the ratio of two (degree four) polynomials in x, y, again in at most 122 ways. So
the coordinates of q5 are computed in two different ways. Each one of the at most 122 × 122

possibilities gives two (degree 8) polynomial equations (with integer coefficients) for the pair
x, y. Such a pair of equations is non-trivial if it is not the identity.

The target is then to show that for each of the 124 = 20,736 such pairs of equations there
is a z not satisfying it. Then, by continuity, there is a small neighborhood of z not satisfying
the equations, so its solution set could not be full dimensional, it is an algebraic curve on C.
The union of these 124 curves is exactly S(C−5 ). Hence it is a small closed set and almost all T
avoids it. This part of the proof is geometric and is the content of the next lemma.

Lemma 12.1. Assume Q = {q1, q2, q3, q4, q5} ⊂ R2 is a non-trivial multiset and T is the
equilateral triangle. Then F(Q,T ) does not contain C−5 .

Proof. Recall that if q1 and q2 coincide then all the points in Q coincide. So q1 6= q2 and
q1q2q3 and q1q2q4 are non-degenerate equilateral triangles. So either q3 = q4 or they are on
opposite side of the line through q1, q2. On Figure 11 these two cases are shown, the points are
from a triangular grid, and we use the notation there.

Observe first that in both cases q5 is either p1 or q2 because 135 ∈ C−5 . When q3 = q4, q5

coincides with either q1 or p2 because 245 ∈ C−5 . This is a contradiction since the sets {p1, q2}
and {q1, p2} are disjoint.

When q3 and q4 are distinct, q5 must coincide with either q1 or p3, a contradiction again
because the sets {p1, q2} and {q1, p3} are disjoint. �

13. More problems

Remark. Theorem 1.1 was proved with ε = 0.02 that is for triangles whose angles are
between 58.9◦ and 61.1◦. The computations were generous and the statement of the theorem
must be valid for a larger interval of angles, for instance between 56◦ and 64◦.

The following Turán type conjecture (a weakening of Conjecture 9.3) would solve our problem
asymptotically for all but a few triangles.

Conjecture 13.1. limn→∞ ex(n, {K−4 , C
−
5 })

(
n
3

)−1
= 1/4.
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14. Appendix about recurrence sequences

Suppose that we have an integer s ≥ 2 and a non-negative sequence f(0), f(1), . . . such that
f(0) = · · · = f(s − 1) = 0 and f(s) = 1. Suppose that for all integers n ≥ s this sequence
satisfies

(14.1)
f(n)(

n
s

) ≥ f(n+ 1)(
n+1
s

) .

Then we have the limit γ, 1 ≥ γ ≥ 0, defined as

lim
n→∞

f(n)/

(
n

s

)
=: γ.

Suppose that for all positive integers a, b this sequence satisfies

(14.2) f(ab) ≥ af(b) + f(a)bs.

Claim 14.1. The inequalities (14.1) and (14.2) imply that for all n

γ
ns − n
s!

≥ f(n) ≥ γ
(
n

s

)
.

Note that the difference between the upper and lower bound is at most
(
s
2

)
ns−1/s!.

Proof. The existence of the limit γ and the lower bound follow from (14.1). To prove the
upper bound apply (14.2) with (a, b) = (n, n). We get f(n2) ≥ f(n)(n+ ns). Apply again with
(a, b) = (n2, n) we get

f(n3) ≥ n2f(n) + f(n2)ns ≥ f(n)(n2 + ns+1 + n2s).

Repeating this up to (a, b) = (nt−1, n) we get

f(nt) ≥ f(n)nt−1
(
n0 + ns−1 + · · ·+ n(s−1)(t−1)

)
= f(n)

nt

n

n(s−1)t − 1

ns−1 − 1
.

Divide both sides by nst and take the limits of both as t→∞. Then (14.1) yields

γ

s!
≥ f(n)

ns − n
as stated. �

Next, we consider another recurrence needed for Lemma 3.2. Recall the setting: F is a
(non-empty) 3-uniform hypergraph on r vertices (r ≥ 3) such that ∪F = [r], the multilinear
polynomial p(y1, . . . , yr) of degree 3 is defined by

p(y1, . . . , yr) :=
∑
{yiyjyk : ijk ∈ F , 1 ≤ i < j < k ≤ r}.
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Suppose a vector x = (x1, . . . , xr) is given with
∑
xi = 1 and 0 < xi < 1 for each xi. Set

x0 = maxxi.
For any given n ≥ 3 a partition y1(n) + · · · + yr(n) = n is given where y1(n), . . . , yr(n) are

non-negative integers such that

yi(n) = bnxic or dnxie.

Suppose that the (non-negative) sequence g(0), g(1), . . . satisfies g(0) = g(1) = g(2) = 0, and
in case of n ≥ 3 the following recurrence

g(n) =

 ∑
1≤i≤r

g(yi)

+ p(y1, . . . , yr)

Claim 14.2. For all n ∣∣∣∣g(n)− p(x)

1−
∑
x3
i

n3

∣∣∣∣ < r

1− x0
n2,

Proof. We use induction on n. First, it is clear that g(n) ≤
(
n
3

)
for all n. This implies that

Claim 14.2 holds for all n ≤ 6r/(1− x0). Write yi = xin+ εi where |εi| < 1. The following fact
is easy to check.

Fact 14.3. 0 < p(x)/
(
1−

∑
i x

3
i

)
< 1/6.

Indeed, 6p(x1, . . . , xr) < (x1 + · · ·+ xr)
3 −

∑
x3
i = 1−

∑
x3
i . �

g(n)− p(x)

1−
∑
x3
i

n3 =
∑
i

g(yi) + p(y1, . . . , yr)−
p(x)

1−
∑
x3
i

n3

=
∑
i

(
g(yi)−

p(x)

1−
∑
x3
i

y3
i

)
(14.3)

+
p(x)

1−
∑
x3
i

∑
i

(
y3
i − x3

in
3
)

(14.4)

+
(
p(y1, . . . , yr)− p(x)n3

)
.(14.5)

Concerning (14.3) we use the induction hypothesis∣∣∣∣∣∑
i

(
g(yi)−

p(x)

1−
∑
x3
i

y3
i

)∣∣∣∣∣ ≤ r

1− x0

∑
i

y2
i

=
r

1− x0

(
n2
∑

x2
i +

∑
εi(yi + nxi)

)
<

r

1− x0

(
n2x0 +

∑
(yi + nxi)

)
=

r

1− x0
(n2x0 + 2n) ≤

(
rx0

1− x0
+

1

3

)
n2.

In the last inequality we used that n > 6r/(1− x0).
Concerning (14.4) we have

|y3
i − x3

in
3| = |εi||(y2

i + yinxi + n2x2
i )| ≤ y2

i + yinxi + n2x2
i .
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This gives∣∣∣∣∣∑
i

y3
i − x3

in
3

∣∣∣∣∣ ≤∑
i

(
y2
i + yinxi + n2x2

i

)
< (
∑

yi)
2 + (

∑
yi)(
∑

nxi) + (
∑

nxi)
2 = 3n2.

Applying Fact 14.3 we obtain that the absolute value of (14.4) is at most n2/2.
Concerning (14.5) we have

|yiyjyk − n3xixjxk| =
|n2(xixjεk + xixkεj + xjxkεi) + n(xiεjεk + xjεiεk + xkεiεj) + εiεjεk|

< n2(xixj + xixk + xjxk) + n(xi + xj + xk) + 1.

This gives∑
{i,j,k}∈F

|yiyjyk − n3xixjxk| < n2
∑

xixj + n
∑

xi +
∑

1

< n2(r − 2)(
∑
i

xi)
2/2 + n

(
r − 1

2

)∑
i

xi +

(
r

3

)
≤ n2(r − 2)/2 + n

(
r − 1

2

)
+

(
r

3

)
< n2(r − 2).

In the last inequality we used that n > 6r.
Altogether the sum of the absolute values of the right hand sides of (14.3)–(14.5) is at most

n2

(
rx0

1− x0
+

1

3
+

1

2
+ (r − 2)

)
< n2 r

1− x0

and we are done. �

References
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