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HYPERGRAPHS NOT CONTAINING A TIGHT TREE WITH
A BOUNDED TRUNK\ast 

ZOLT\'AN F\"UREDI\dagger , TAO JIANG\ddagger , ALEXANDR KOSTOCHKA\S , DHRUV MUBAYI\P , AND

JACQUES VERSTRA\"ETE\| 

Abstract. An r-uniform hypergraph is a tight r-tree if its edges can be ordered so that every
edge e contains a vertex v that does not belong to any preceding edge and the set e - v lies in some
preceding edge. A conjecture of Kalai personal communication published in Frankl and F\"uredi, J.
Combin. Theory Ser. A, 45 (1987), pp. 226--262, generalizing the Erd\H os--S\'os conjecture for trees,
asserts that if T is a tight r-tree with t edges and G is an n-vertex r-uniform hypergraph containing
no copy of T , then G has at most t - 1

r

\bigl( n
r - 1

\bigr) 
edges. A trunk T \prime of a tight r-tree T is a tight subtree

such that every edge of T  - T \prime has r  - 1 vertices in some edge of T \prime and a vertex outside T \prime . For
r \geq 3, the only nontrivial family of tight r-trees for which this conjecture has been proved is the
family of r-trees with trunk size one in J. Combin. Theory Ser. A, 45 (1987), pp. 226--262. Our
main result is an asymptotic version of Kalai's conjecture for all tight trees T of bounded trunk size.
This follows from our upper bound on the size of a T -free r-uniform hypergraph G in terms of the
size of its shadow. We also give a short proof of Kalai's conjecture for tight r-trees with at most four
edges. In particular, for 3-uniform hypergraphs, our result on the tight path of length 4 implies the
intersection shadow theorem of Katona Acta Math. Acad. Sci. Hungar., 15 (1964), pp. 329--337.
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1. Results and history of tight trees. In this paper, we study a Tur\'an-
type extremal problem for hypergraphs. For integers n \geq r \geq 2 and an r-uniform
hypergraph (r-graph, for short) H, the Tur\'an number exr(n,H) is the largest m such
that there exists an n-vertex r-graph G with m edges that does not contain H. One of
the well-known conjectures in extremal graph theory is the Erd\H os--S\'os conjecture (see
[2]) that every n-vertex graph G with more than n(t - 1)/2 edges contains every tree T
with t edges as a subgraph. In other words, they conjecture that ex2(n, T ) \leq n(t - 1)/2
for each tree with t edges. The conjecture, if true, would be best possible whenever
t divides n, as seen by taking G to be the disjoint union of Kt's. There are many
partial results on the conjecture. The most significant progress on the conjecture was
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made by Ajtai et al. [1], who announced a solution to the conjecture for all sufficiently
large t.

In 1984, Kalai [14] made a more general conjecture for r-graphs. To describe the
conjecture, we need the following notion of hypergraph trees. Let r \geq 2 be an integer.
An r-graph T is called a tight r-tree if its edges can be ordered as e1, . . . , et so that

(1) \forall i \geq 2 \exists v \in ei and 1 \leq s \leq i - 1 such that v /\in 
\bigcup i - 1

j=1 ej and ei  - v \subset es.

Note that a graph tree is a tight 2-tree. We write e(H) for the number of edges
in H.

Conjecture 1.1 (Kalai, 1984, in [5]). Let r \geq 2 and let T be a tight r-tree with
t \geq 2 edges. Then exr(n, T ) \leq t - 1

r

\bigl( 
n

r - 1

\bigr) 
.

A partial (n, k, q)-Steiner system is a family \scrF of k-subsets of an n-set X such
that every q-subset of X is contained in at most one member of \scrF . R\"odl [22] showed
that for all fixed k > q \geq 2, as n \rightarrow \infty , there exist partial (n, k, q)-Steiner systems of
size (1  - o(1))

\bigl( 
n
q

\bigr) 
/
\bigl( 
k
q

\bigr) 
. Kalai observed that the r-graph obtained by taking a partial

(n, r+ t - 2, r - 1)-Steiner system \scrF of maximum size and replacing each member of
\scrF with a complete r-graph on r + t - 2 vertices contains no tight r-tree with t edges
and has ( t - 1

r  - o(1))
\bigl( 

n
r - 1

\bigr) 
edges. Thus, Conjecture 1.1, if true, is asymptotically

optimal. The same construction using the recent work of Keevash [16] (see also [11])
on the existence of designs show that in fact for every r \geq 2 and t there are infinitely
many n for which there is an n-vertex r-graph G with e(G) = t - 1

r

\bigl( 
n

r - 1

\bigr) 
that contains

none of the tight r-trees with t edges. For example, this bound can be achieved for
all n > n0(r, t) when some divisibility properties hold, e.g., n  - r + 2 is divisible by
(t+ r  - 1)!. This gives a lower bound t - 1

r

\bigl( 
n

r - 1

\bigr) 
 - Or,t(n

r - 2) for all n.
A weaker upper bound

(2) exr(n, T ) \leq (e(T ) - 1)

\biggl( 
n

r  - 1

\biggr) 
for each tight r-tree T

is implicit in several earlier works and is explicit in [8].

Proposition 1.2 (see [8, Proposition 5.4]). Let r \geq 2 and T be a tight r-tree with
t edges. If G is a T -free r-graph on n-vertices, then e(G) \leq (t - 1)| \partial (G)| \leq (t - 1)

\bigl( 
n

r - 1

\bigr) 
,

where \partial (G) = \{ S \subseteq V (G) : | S| = r  - 1 and S \subseteq e for some e \in E(G)\} .
To prove Conjecture 1.1, we need to improve the bound in (2) by a factor of

r. This turns out to be difficult even for very special cases of tight trees. It is only
recently that the authors [9] were able to improve the bound in (2) by roughly a factor
of 2 in the case where T is the tight r-uniform path with t edges. (For short paths,
t < (3/4)r, Patk\'os [21] proved better coefficients. Detailed calculations are available
at http://www.renyi.hu/\sim patkos/tight-paths-fixed.pdf.)

So far, the only family of tight trees for which Kalai's conjecture is verified is the
family of so-called star-shaped trees. A tight r-tree T is star-shaped if it contains an
edge e0 such that | e \cap e0| = r  - 1 for each e \in T \setminus \{ e0\} .

Theorem 1.3 (see [5]). Let n, r, t \geq 2 be integers. Let G be an n-vertex r-graph
with e(G) > t - 1

r

\bigl( 
n

r - 1

\bigr) 
. Then G contains every star-shaped tight r-tree with t edges.

Given a tight r-tree T and a tight subtree T \prime of T , we say that T \prime is a trunk of T
if there exists an edge-ordering of T satisfying (1) such that the edges of T \prime are listed
first and for each e \in E(T ) \setminus E(T \prime ) there exists e\prime \in E(T \prime ) such that | e \cap e\prime | = r  - 1.
Let c(T ) be the minimum number of edges in a trunk of T . Hence, a star-shaped tight

http://www.renyi.hu/~patkos/tight-paths-fixed.pdf
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tree is a tight tree T with c(T ) = 1, and Theorem 1.3 says that Kalai's conjecture
holds for tight r-trees T with c(T ) = 1. Note from the definition above that for a
tight tree T having c(T ) \leq c is equivalent to saying that all but at most c edges of T
contain a vertex of degree 1.

The primary goal of this paper is to extend Theorem 1.3 to tight trees of bounded
trunk size. Our main theorem says that for all fixed integers r \geq 2 and c \geq 1, Kalai's
conjecture holds asymptotically in e(T ) for tight r-trees T with c(T ) \leq c.

Theorem 1.4. Let n, r, t, c be positive integers, where n \geq r \geq 2 and t \geq c \geq 1.
Let a(r, c) = (rr + 1  - 1

r )(c  - 1). Let T be a tight r-tree with t edges and c(T ) \leq c.
Then

(3) exr(n, T ) \leq 
\biggl( 
t - 1

r
+ a(r, c)

\biggr) \biggl( 
n

r  - 1

\biggr) 
.

Note that Theorem 1.3 follows from Theorem 1.4 by setting c = 1. The main
point of Theorem 1.4 is that the coefficient in front of

\bigl( 
n

r - 1

\bigr) 
is (t  - 1)/r + Or,c(1),

while the coefficient in Kalai's conjecture is (t - 1)/r.
We also give a (simple) proof of the fact that Kalai's conjecture holds for tight

r-trees with at most four edges.

Theorem 1.5. Let n \geq r \geq 2 be integers and T be a tight r-tree with t \leq 4 edges.
Then

exr(n, T ) \leq 
t - 1

r

\biggl( 
n

r  - 1

\biggr) 
.

The proofs of (stronger versions of) Theorems 1.4 and 1.5 are postponed to sec-
tions 4 and 5.

2. Tight trees and shadows. An important notion in extremal set theory is
that of a shadow. Given an r-graph G, the shadow of G is

\partial (G) = \{ S : | S| = r  - 1, and S \subseteq e for some e \in E(G)\} .

In fact, Frankl and F\"uredi [5] proved the following stronger version of Theorem 1.3.

Theorem 2.1 (see [5]). If T is any star-shaped tight r-tree with t edges and G
is a T -free r-graph, then e(G) \leq t - 1

r | \partial (G)| .
There were several other results in the literature that bound the size of an H-free

r-graph in terms of the size of its shadow. One of the first results of this kind is
the following intersection shadow theorem of Katona. An r-graph G is intersecting if
every two edges of it intersect, i.e., if G contains no matching of size two.

Theorem 2.2 (see [15]). Let r \geq 2. If G is an intersecting r-graph, then e(G) \leq 
| \partial (G)| .

More recently, Frankl [4] showed that if G is an r-graph that does not contain
a matching of size s + 1, then e(G) \leq s| \partial (G)| . Sometimes it is easier to prove the
bounds in terms of the shadow size than in terms of n using induction. Instead of
Theorems 1.4 and 1.5 we will prove bounds on e(G) in terms of | \partial (G)| in Theorems 4.1
and 5.1, from which Theorems 1.4 and 1.5 will follow.

Based on our results, we propose the following conjecture, which we will show is
equivalent to Kalai's conjecture.

Conjecture 2.3. Let r \geq 2, t \geq 1 be integers. Let T be a tight r-tree with t
edges. If G is an r-graph that does not contain T , then e(G) \leq t - 1

r | \partial (G)| .
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The lower bound constructions obtained from designs mentioned earlier show that
the bound in Conjecture 2.3, if true, would be tight. Since for every r-graph G on n
vertices one has | \partial (G)| \leq 

\bigl( 
n

r - 1

\bigr) 
Conjecture 2.3 obviously implies Conjecture 1.1. We

will show in Theorem 2.4 that Conjecture 1.1 also implies Conjecture 2.3.

Theorem 2.4. If T is a tight tree, then the limit

\alpha (T ) := lim
n\rightarrow \infty 

exr(n, T )/

\biggl( 
n

r  - 1

\biggr) 
exists and is equal to its supremum. Moreover,

\alpha (T ) = sup

\biggl\{ 
e(G)

| \partial (G)| 
: G is a T -free r-graph

\biggr\} 
.

In particular for \alpha := \alpha (T ) we have exr(n, T ) \leq \alpha 
\bigl( 

n
r - 1

\bigr) 
and e(G) \leq \alpha | \partial (G)| for every

n and for every T -free r-graph G.

To prove Theorem 2.4, we need another result from the literature. Let n \geq 
k \geq q \geq 1. Let H be a q-uniform hypergraph on k vertices. A (n, k,H)-packing
of size m is a collection \{ H1, . . . ,Hm\} of copies of H with vertex sets V1, . . . Vm,
respectively, such that with V :=

\bigcup m
i=1 Vi we have | V | \leq n and each q-set in V is an

edge of at most one Hi. Note that when H is the complete q-graph on k-vertices, an
(n, k,H)-packing is equivalent to a partial (n, k, q)-Steiner system mentioned in the
introduction. Clearly, an (n, k,H)-packing has size at most

\bigl( 
n
q

\bigr) 
/e(H). Generalizing

R\"odl's result [22] mentioned earlier, Frankl and F\"uredi [6] proved for any given q-graph
H on k vertices, as n \rightarrow \infty , there exist (n, k,H)-packings of size (1 - o(1))

\bigl( 
n
q

\bigr) 
/e(H).

Lemma 2.5. Let T be a tight r-tree and suppose that G is a T -free r-graph. Then
for every \varepsilon > 0, there exists n0 = n0(T,G, \varepsilon ) such that for all n > n0

exr(n, T ) >

\biggl( 
e(G)

| \partial (G)| 
 - \varepsilon 

\biggr) \biggl( 
n

r  - 1

\biggr) 
.

Proof of Lemma 2.5. Let G be the given T -free r-graph. Let H = \partial (G). Then H
is an (r  - 1)-graph on k := n(G) vertices. By the abovementioned packing result of
Frankl and F\"uredi [6], there exists an (n, k,H)-packing H1, . . . ,Hm with vertex sets
V1, . . . , Vm such thatm = (1 - o(1))

\bigl( 
n

r - 1

\bigr) 
/e(H). For each i \in [m], let Gi be a copy of G

on Vi such that \partial (Gi) = Hi. By our definition, \partial (G1), . . . , \partial (Gm) are pairwise disjoint
and hence in particular G1, . . . , Gm are pairwise edge-disjoint. Let F =

\bigcup m
i=1 Gi.

Then F is an r-graph on at most n vertices that has (1  - o(1))((e(G)/| \partial (G)| )
\bigl( 

n
r - 1

\bigr) 
edges.

It remains to show that F is T -free. Suppose e1, . . . , et is an ordering of the edges
of T that satisfies (1). Suppose F contains a copy T \prime of T with e1 mapped to an
edge e\prime 1 of Gi for some i \in [m]. Since \partial (Gj) \cap \partial (Gi) = \emptyset for all j \not = i, no edge in
E(F ) \setminus E(Gi) intersects any edge of Gi in an (r  - 1)-set. This forces all the edges of
T \prime to lie in Gi, contradicting Gi being a T -free.

Lemma 2.5 may be viewed as a generalization of Kalai's construction mentioned
in the introduction. Similar ideas as the one used in the proof of Lemma 2.5 have
been used in various earlier works. See [13] for another application of such an idea.

Remark 2.6. It follows from the proof of Lemma 2.5 that the lemma still holds if
T is replaced with any r-graph with a connected (r  - 1)-intersection graph, meaning
that the auxiliary graph defined on E(T ) where e, e\prime \in E(T ) are adjacent if and only
if | e \cap e\prime | = r  - 1 is connected.
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Proof of Theorem 2.4. Define

\alpha (n, T ) := exr(n, T )/

\biggl( 
n

r  - 1

\biggr) 
,

\beta (n, T ) := max

\biggl\{ 
e(G)

| \partial G| 
: G is a T -free r-graph on n vertices

\biggr\} 
.

Since \beta (n, T ) \leq \beta (n + 1, T ) and \beta (n, T ) \leq e(T )  - 1 (by Proposition 1.2) the limit
\beta = \beta (T ) = limn\rightarrow \infty \beta (n, T ) exists, is positive, and is equal to its supremum. Since
\alpha (n, T ) \leq \beta (n, T ) we have supn \alpha (n, T ) \leq \beta . The proof of the theorem can be
completed by applying Lemma 2.5. Indeed, for every \varepsilon > 0, we can take a T -free

r-graph G with e(G)
| \partial (G)| > \beta  - \varepsilon . By Lemma 2.5 there exists an n0 such that \alpha (n, T ) >

\beta  - 2\varepsilon for all n > n0.

As for a corollary of Theorem 2.4, we have the following.

Corollary 2.7. Conjecture 2.3 is equivalent to Kalai's conjecture.

3. Preliminary lemmas. Given an r-graph G and a subset D \subseteq V (G), we
define the link of D in G, denoted by LG(D), to be

LG(D) = \{ e \setminus D : e \in E(G), D \subseteq e\} .

The degree of D, denoted by dG(D), is defined to be | LG(D)| ; equivalently it is the
number of edges of G that contain D. When G is r-uniform and | D| = r - 1, elements
of LG(D) are vertices. In this case, we also use NG(D) to denote LG(D) and call it
the co-neighborhood of D in G. When the context is clear we will drop the subscripts
in LG(D), NG(D), and dG(D). For each 1 \leq p \leq r  - 1, we define the minimum
nonzero p-degree of G to be

\delta p(G) = min\{ dG(D) : | D| = p, and D \subseteq e for some e \in E(G)\} .

Hence, by this definition, each p-set D in G either has degree 0 or has degree at least
\delta p(G). Given an r-graph G, and D \in \partial (G), let w(D) = 1

dG(D) . For each e \in E(G),

let

(4) w(e) =
\sum 

D\in ( e
r - 1)

w(D) =
\sum 

D\in ( e
r - 1)

1

dG(D)
.

We call w the default weight function on E(G) and \partial (G). The following simple
property of the default weight function is key to the weight method, employed in [5]
and in various other works.

Lemma 3.1. Let G be an r-graph. Let w be the default weight function on E(G)
and \partial (G). Then \sum 

e\in E(G)

w(e) = | \partial (G)| .

Proof. For convenience, let E = E(G). By definition,\sum 
e\in E

w(e) =
\sum 
e\in E

\sum 
D\in ( e

r - 1)

1

dG(D)
=

\sum 
D\in \partial (G)

\sum 
D\subseteq e\in E

1

dG(D)
=

\sum 
D\in \partial (G)

1 = | \partial (G)| .
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An r-graph G is called r-partite if V (G) can be partitioned into r sets A1, . . . , Ar

such that every edge of G contains one vertex from each Ai. We call (A1, . . . , Ar) an
r-partition of G. Equivalently, we say that an r-graph G is r-colorable if there exists
a vertex coloring of G with r colors such that each edge uses all r colors; we call such
a coloring a proper r-coloring of G. The following proposition follows by induction on
the number of edges in T .

Proposition 3.2. Let r \geq 2. Every tight r-tree T has a unique r-partition.

Given r-graphs G and H, an embedding of H into G is an injection f : V (H) \rightarrow 
V (G) such that for each e \in E(H), f(e) \in E(G).

Lemma 3.3 (color-preserving embedding). Let T be a tight r-tree with t edges.
Let \varphi be a proper r-coloring of T . Let G be an r-partite graph with \delta r - 1(G) \geq t, and
let (A1, . . . , Ar) be an r-partition of G. Then there exists an embedding f of T into
G such that for each u \in V (T ) f(u) \in A\varphi (u).

Proof. We use induction on t. The base step is trivial. Now, suppose t \geq 2.
Let e1, . . . , et be an ordering of the edges of T that satisfies (1). Let T \prime = T \setminus et.
Then T \prime is a tight r-tree with t  - 1 edges. By the induction hypothesis, there exists
an embedding f of T \prime into G such that for each u \in V (T \prime ), f(u) \in A\varphi (u). By the
definition of T , there exists an edge e\alpha (t) \in E(T \prime ) such that | et \cap e\alpha (t)| = r  - 1. Let
D = et \cap e\alpha (t) and let v be the unique vertex in et \setminus e\alpha (t) = V (T ) \setminus V (T \prime ). Then
et = D \cup \{ v\} . Since f(D) is an (r  - 1)-set contained in f(et - 1) and \delta r - 1(G) \geq t,
dG(f(D)) \geq t. So there are at least t edges of G containing f(D). At most t  - 1 of
them contain f(D) and a vertex in f(T \prime ) \setminus f(D). So there exists an edge e in G that
contains f(D) and a vertex z outside f(T \prime ). We extend f by letting f(v) = z. Now
f is an embedding of T into G.

It remains to show that z \in A\varphi (v). By permuting colors if needed, we may
assume that \varphi (v) = r. Since D \cup \{ v\} \in E(T ) and \varphi is proper, the colors used in D
are 1, . . . , r - 1. By our assumption, vertices in f(D) lie in A1, . . . , Ar - 1, respectively,
which implies z \in Ar.

The following lemma is folklore. We include a proof for completeness. Recall that
given an r-graph G, \partial (G) = \{ S : | S| = r  - 1, and S \subseteq e for some e \in E(G)\} and
\delta r - 1(G) = min\{ dG(D) : D \in \partial (G)\} .

Lemma 3.4. Let r \geq 2 and q \geq 1 be integers and let G be an r-graph with e(G) >
q| \partial (G)| . Then G contains a subgraph G\prime with \delta r - 1(G

\prime ) \geq q + 1 and

(5) e(G\prime ) > q| \partial (G\prime )| .

Proof. Among subgraphs G\prime of G satisfying (5), choose one with the fewest edges.
We claim that \delta r - 1(G

\prime ) \geq q + 1. Indeed, if there is D \in \partial (G\prime ) that is contained in
at most q edges of G\prime , then the r-graph G\prime \prime obtained from G\prime by deleting all edges
containing D again satisfies (5) but has fewer edges than G\prime , a contradiction.

Another useful folklore fact is the following.

Lemma 3.5. Let \alpha be a positive real, r \geq 3 be an integer, and G be an r-graph
with e(G) > \alpha 

r | \partial (G)| . Then there is v \in V (G) such that the link G1 := LG(\{ v\} )
satisfies

e(G1) >
\alpha 

r  - 1
| \partial (G1)| .
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Proof. Suppose that | LG(\{ v\} )| \leq \alpha 
r - 1 | \partial (LG(\{ v\} )| for each v \in V (G). Then

r \cdot e(G) =
\sum 

v\in V (G)

dG(v) =
\sum 

v\in V (G)

| LG(\{ v\} )| \leq 
\alpha 

r  - 1

\sum 
v\in V (G)

| \partial (LG(\{ v\} )| .

Since each edge f \in \partial (G) contributes r  - 1 to
\sum 

v\in V (G) | \partial (LG(\{ v\} )| (1 to the link of

each of its vertices), this proves the lemma.

We also need the following fact used in [5].

Proposition 3.6. Let r be a positive integer. Let d1 \leq d2, \cdot \cdot \cdot \leq dr be positive
reals. If

\sum r
i=1

1
di

= s, then for each i \in [r], di \geq i
s .

Proof. For each i \in [r], since 1
d1

\geq \cdot \cdot \cdot \geq 1
di
, we have i

di
\leq 

\sum i
j=1

1
dj

\leq s. So,

di \geq i
s .

4. Proof of Theorem 1.4 on trees with bounded trunks. As discussed
in section 2, we prove the following stronger version of Theorem 1.4, from which
Theorem 1.4 follows immediately. Recall that given a tight r-tree T , c(T ) is the small
m such that T contains a tight subtree T \prime with m edges and each edge in E(T )\setminus E(T \prime )
contains r  - 1 vertices in some edge of T \prime and a vertex outside T \prime .

Theorem 4.1. Let n, r, t, c be positive integers, where n \geq r \geq 2 and t \geq c \geq 1.
Let a(r, c) = (rr + 1 - 1

r )(c - 1). Let T be a tight r-tree with t edges and c(T ) \leq c. If
G is an r-graph that does not contain T , then

(6) e(G) \leq 
\biggl( 
t - 1

r
+ a(r, c)

\biggr) 
| \partial (G)| .

Proof. Suppose T is a tight r-tree with t edges and c(T ) = c. Let G be an n-
vertex r-graph with e(G) > ( t - 1

r + a(r, c))| \partial (G)| . We show that G contains T . For
convenience, let

(7) \gamma =
t - 1

r
+ a(r, c) - rr(c - 1) =

t - 1

r
+

\biggl( 
1 - 1

r

\biggr) 
(c - 1).

Then
e(G) > (\gamma + rr(c - 1))| \partial (G)| .

Let w be the default weight function on E(G) and \partial (G). By Lemma 3.1,\sum 
e\in E(G)

w(e) = | \partial (G)| .

Let

H =

\biggl\{ 
e \in E(G) : w(e) \geq 1

\gamma 

\biggr\} 
and L =

\biggl\{ 
e \in E(G) : w(e) <

1

\gamma 

\biggr\} 
.

By the definition of H,

1

\gamma 
e(H) \leq 

\sum 
e\in H

w(e) \leq 
\sum 
e\in G

w(e) = | \partial (G)| .

Hence e(H) \leq \gamma | \partial (G)| . Since e(G) > (\gamma + rr(c - 1))| \partial (G)| , we have

e(L) > rr(c - 1)| \partial (G)| .
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A random r-coloring of V (L) yields that L contains an r-partite subgraph L1

with e(L1) \geq r!
rr e(L). Then

(8) e(L1) >
r!

rr
rr(c - 1)| \partial (G)| = r!(c - 1)| \partial (G)| .

Let (A1, . . . , Ar) be an r-partition of L1. Let e \in E(L1). Let \sigma be a permutation of
[r] such that

dG(e \setminus A\sigma (1)) \leq \cdot \cdot \cdot \leq dG(e \setminus A\sigma (r)).

We let \pi (e) = (\sigma (1), . . . , \sigma (r)) and refer to it as the pattern of e. Since there are r!
different permutations of [r], by the pigeonhole principle, some \lceil e(L1)/r!\rceil edges e of
L1 have the same pattern \pi (e). Let L2 be the subgraph of L1 consisting of these
edges. By (8),

e(L2) \geq 
e(L1)

r!
> (c - 1)| \partial (G)| .

By Lemma 3.4, L2 contains a subgraph L\ast 
2 such that

\delta r - 1(L
\ast 
2) \geq c.

Recall that all edges in L\ast 
2 \subseteq L1 have the same pattern. By permuting indices if

needed, we may assume that \pi (e) = (1, 2, . . . , r) for each e \in L\ast 
2. By our assumption,

(9) dG(e \setminus A1) \leq \cdot \cdot \cdot \leq dG(e \setminus Ar) \forall e \in L\ast 
2.

Also, by the definition of L,

w(e) =

r\sum 
i=1

1

dG(e \setminus Ai)
<

1

\gamma 
\forall e \in L\ast 

2 \subseteq L.

By Proposition 3.6 and (9), we have

(10) dG(e \setminus Ai) > i\gamma \forall e \in L\ast 
2 \forall i \in [r].

Now consider a trunk T \prime of T with c edges. By the definition of a trunk, if E\prime 

is any subset of E(T ) \setminus E(T \prime ), then T \prime \cup E\prime is a tight tree with c + | E\prime | edges. By
Proposition 3.2, T \prime is r-partite. Let (B1, . . . , Br) be an r-partition of T \prime . For each
e \in E(T )\setminus E(T \prime ), by definition, there exists \alpha (e) \in E(T \prime ) such that | e\cap \alpha (e)| = r - 1.
Thus, e \cap \alpha (e) = \alpha (e) \setminus Bi for some unique i \in [r]. For each i \in [r], let

Ei = \{ e \in E(T ) \setminus E(T \prime ) : e \cap \alpha (e) = \alpha (e) \setminus Bi\} .

By permuting the subscripts in the r-partition (B1, . . . , Br) of T
\prime if needed, we may

assume that
| E1| \leq \cdot \cdot \cdot \leq | Er| .

Since
\sum r

i=1 | Ei| = t - c, this implies

(11) | E1| + \cdot \cdot \cdot + | Ei| \leq 
\biggl\lfloor 
i(t - c)

r

\biggr\rfloor 
\forall i \in [r].

Since e(T \prime ) = c, \delta r - 1(L
\ast 
2) \geq c, (A1, . . . , Ar) is an r-partition of L\ast 

2, and (B1, . . . , Br)
is an r-partition of T \prime , by Lemma 3.3, there exists an embedding h of T \prime into L\ast 

2 such
that for each i \in [r] every vertex in Bi of T

\prime is mapped into Ai. Let i \in [r] \setminus \{ 1\} and
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suppose that we have extended h to an embedding of T \prime \cup E1 \cup \cdot \cdot \cdot \cup Ei - 1 into G. By
the definition of Ei, for each e \in Ei there is \alpha (e) \in T \prime such that e \cap \alpha (e) = \alpha (e) \setminus Bi

and h(e \cap \alpha (e)) = h(\alpha (e)) \setminus Ai. By (10),

(12) dG(h(e \cap \alpha (e)) \geq \lfloor i\gamma \rfloor + 1 \forall e \in Ei.

Since T \prime \cup E1 \cup \cdot \cdot \cdot \cup Ei is a tight tree with

c+ | E1| + \cdot \cdot \cdot + | Ei| \leq \lfloor i(t - c)

r
\rfloor + c \leq \lfloor i\gamma \rfloor + 1

edges, where the two inequalities follows from (11) and (7), respectively, and h is
already an embedding of T \prime \cup E1\cup \cdot \cdot \cdot \cup Ei - 1 into G, (12) ensures that we can greedily
extend h further to an embedding of T \prime \cup E1 \cup \cdot \cdot \cdot \cup Ei into G. Hence we can find an
embedding of T into G.

5. Proof of Theorem 1.5 on trees with four edges. We prove the following
shadow version of Theorem 1.5 from which Theorem 1.5 follows immediately.

Theorem 5.1. Let n \geq r \geq 2 be integers and T be a tight r-tree with t \leq 4 edges.
If G is an r-graph that does not contain T , then e(G) \leq t - 1

r | \partial (G)| .
We start from a special case of such T , the 3-uniform tight path P 3

4 with four
edges. The case of the path P 3

5 is still unsolved (to our knowledge).

Lemma 5.2. Let n \geq 5 and G be an n-vertex 3-graph containing no tight path P 3
4

with four edges. Then e(G) \leq | \partial (G)| .
Observe that for 3-graphs Lemma 5.2 is stronger than Katona's intersecting

shadow theorem, since an intersecting 3-graph must be P 3
4 -free. There are many

nearly extremal families with very different structures for Lemma 5.2 besides the ones
obtained from Steiner systems S(n, 5, 2). Here we mention just two. First, one can

observe that the Erd\H os--Ko--Rado family G := \{ g \in 
\bigl( 
[n]
3

\bigr) 
: 1 \in g\} is P 3

4 -free with

| \partial (G)| =
\biggl( 
n

2

\biggr) 
=

n

n - 2

\biggl( 
n - 1

2

\biggr) 
=

n

n - 2
e(G).

Second, for n \equiv 0 mod 3 one can take a tournament
 - \rightarrow 
D on n/3 vertices and a partition

of [n] into triples V1, V2, . . . , Vn/3 and define the P 3
4 -free triple system as

G :=

\biggl\{ 
g \in 

\biggl( 
[n]

3

\biggr) 
: for some

 - \rightarrow 
ij \in E(

 - \rightarrow 
D) one has | Vi \cap g| = 2, | Vj \cap g| = 1

\biggr\} 
.

Then we have | \partial (G)| /e(G) =
\bigl( 
n
2

\bigr) 
/9
\bigl( 
n/3
2

\bigr) 
= (n - 1)/(n - 3).

Proof of Lemma 5.2. Suppose G is an n-vertex 3-graph with the fewest edges such
that

(13) e(G) > | \partial (G)| and G contains no P 3
4 .

By Lemma 3.4 and the minimality of G,

(14) \delta 2(G) \geq 2.

Let w be the default weight function on G and \partial (G). By Proposition 3.1,\sum 
e\in G w(e) = | \partial (G)| . Since e(G) > | \partial (G)| by (13), G has an edge e0 = abc with

(15) w(e0) =
1

d(ab)
+

1

d(ac)
+

1

d(bc)
< 1.
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We may assume d(ab) \leq d(ac) \leq d(bc). Similarly to Proposition 3.6, in order for (15)
to hold, we need

(16) d(ac) \geq 3 and d(bc) \geq 4.

By (14) and (16), we can greedily choose distinct a\prime , b\prime , c\prime \in V (G)  - \{ a, b, c\} so that
abc\prime , acb\prime , bca\prime \in G.

We claim that

(17) ab\prime b, ac\prime c \in G.

Indeed, by (14) G has an edge ab\prime x for some x \not = c. If x /\in \{ b, a\prime \} , then G has a tight
4-path a\prime bcab\prime x, a contradiction to (13). So suppose x = a\prime . By (16), G has an edge
bcy for some y /\in \{ a, a\prime , b\prime \} . Then G has a tight 4-path ybcab\prime a\prime , again a contradiction
to (13). Thus ab\prime b \in G. Similarly, ac\prime c \in G, and (17) holds.

Next we similarly show that

(18) a\prime ba, a\prime ca \in G.

Indeed, by (14) G has an edge a\prime bx for some x \not = c. If x /\in \{ a, b\prime \} , then G has a tight
4-path b\prime acba\prime x. Suppose x = b\prime . Then by (17), G has a tight 4-path b\prime a\prime bcac\prime , again
a contradiction to (13). Thus a\prime ba \in G. Similarly, a\prime ca \in G, and (18) holds.

Together, (17) and (18) imply that dG(ab) \geq 4 and dG(ac) \geq 4. So, the proof
of (17) yields similarly that c\prime bc, b\prime cb \in G. If the degree of each of a\prime a, a\prime b, a\prime c is 2,
then the 3-graph G2 = G\setminus \{ a\prime ab, a\prime ac, a\prime bc\} has | G|  - 3 edges and | \partial (G2)| = | \partial (G)|  - 3,
a contradiction to the minimality of G. Thus we may assume that G has an edge a\prime ax,
where x /\in \{ b, c\} . By the symmetry between b\prime and c\prime , we may assume x \not = b\prime . Then
G has a tight 4-path xa\prime abcb\prime .

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. We use induction on r. The base step of r = 2 follows
from the fact that the Erd\H os--S\'os conjecture has been verified for all trees of diameter
at most four [20].

For the induction step, suppose r \geq 3 and that the theorem holds for all r\prime < r,
T is a tight r-tree. Let G be an r-graph with e(G) > t - 1

r | \partial (G)| .
Case 1. T has a vertex v belonging to all edges. Let T1 be the link LT (\{ v\} ) of v.

It is a tight (r - 1)-tree with t edges. By Lemma 3.5, there is a \in V (G) such that the
link G1 := LG(\{ a\} ) satisfies e(G1) >

t - 1
r - 1 | \partial (G1)| . By the induction assumption, there

is an embedding \varphi of T1 into G1. Then by letting \varphi (v) = a we obtain an embedding
of T into G.

Case 2. T has no vertex belonging to all edges. By the definition of a tight
r-tree, this is possible only if t = 4, r = 3, and T = P 3

4 . In this case, we are done by
Lemma 5.2.

6. Concluding remarks.
\bullet Theorem 2.4 shows that some shadow theorems in the literature are not
really stronger than their nonshadow versions. In particular, this is the case
whenever the forbidden r-graph T has a connected (r - 1)-intersection graph
(see Remark 2.6).

\bullet It would be interesting to decide if Lemma 2.5 holds for other r-graphs besides
tight trees and also for which r-graphs T limn\rightarrow \infty exr(n, T )/

\bigl( 
n

r - 1

\bigr) 
exists. In

particular, we ask if limn\rightarrow \infty exr(n, T )/
\bigl( 

n
r - 1

\bigr) 
exists for each r-uniform forest
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T , where an r-graph is a forest if it is a subgraph of a tight tree. This question
is not even solved when r = 2 and T is a graph forest; see, e.g., [19]. See [8]
and [18] for recent results on the Tur\'an numbers of some large families of
r-uniform forests.
Note that even for forests, if the limits \alpha (T ) and \beta (T ) exist they need not be
equal, where as in Theorem 2.4 and its proof, \alpha (T ) = limn\rightarrow \infty exr(n, T )/

\bigl( 
n

r - 1

\bigr) 
and

\beta (T ) = lim
n\rightarrow \infty 

max\{ e(G)/| \partial (G)| : G is an n-vertex T -free r-graph\} .

Consider an r-uniform linear path Lr
4 of length four, E(Lr

4) := \{ \{ 1, 2, . . . , r\} ,
\{ r, r + 1, . . . , 2r  - 1\} , \{ 2r  - 1, 2r, . . . , 3r  - 2\} , \{ 3r  - 2, 3r  - 1, . . . , 4r  - 3\} \} .
It is known [8, 18] that ex(n,Lr

4) =
\bigl( 
n - 1
r - 1

\bigr) 
+

\bigl( 
n - 3
r - 2

\bigr) 
+ \varepsilon (n, r) for n > n0(r)

and r \geq 3, where \varepsilon (n, r) = 0 except for r = 3, when it is 0, 1, or 2. So
we have \alpha (Lr

4) = 1. On the other hand, the complete r-graph G on 4r  - 4
vertices avoids Lr

4 and e(G)/| \partial G| =
\bigl( 
4r - 4

r

\bigr) 
/
\bigl( 
4r - 4
r - 1

\bigr) 
= (3r  - 3)/r \leq \beta (P ).

Consequently, 0 < \alpha (Lr
4) < \beta (Lr

4) for r \geq 3.
In the case r = 2 consider T = kP2, a disjoint union of k paths of length 2
on 3k vertices. Gorgol [12] showed that \alpha (kP2) = k  - 1/2, while considering
the complete graph on 3k - 1 vertices we get \beta (kP2) \geq (3k - 2)/2. Moreover,
the Erd\H os--Gallai theorem implies that here equality holds.

\bullet Recent substantial work by Keller and Lifshitz [17] studies the Tur\'an number
of some r-graphs F with small core. However, their junta method for hyper-
graphs does not seem to apply here, since it seems to require that r \gg | C| ,
where C is the set of the vertices of F of degree at least 2.

\bullet In a subsequent manuscript [10], we are able to sharpen the result in this paper
for 3-uniform tight trees T with c(T ) = 2 and show that Kalai's conjecture
holds for these tight trees T with at least 20 edges.
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