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a b s t r a c t

The distinguishing number of a graph G, denoted D(G), is the minimum number of colors
needed to produce a coloring of the vertices of G so that every nontrivial automorphism
interchanges vertices of different colors. A list assignment L on a graph G is a function
that assigns each vertex of G a set of colors. An L-coloring of G is a coloring in which
each vertex is colored with a color from L(v). The list distinguishing number of G, denoted
Dℓ(G) is the minimum k such that every list assignment L that assigns a list of size at
least k to every vertex permits a distinguishing L-coloring. In this paper, we prove that
when n is large enough, the distinguishing and list-distinguishing numbers of Kn□Km
agree for almost all m > n, and otherwise differ by at most one. As a part of our proof,
we give (to our knowledge) the first application of the Combinatorial Nullstellensatz to
setting of distinguishing graph colorings and also prove an inequality for the binomial
distribution that may be of independent interest.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G, a k-coloring φ : X → {1, . . . , k} of G is distinguishing if the only automorphism of G that fixes φ is the
identity automorphism. The minimum k for which G has a distinguishing k-coloring is called the distinguishing number of
G, and is denoted D(G). The distinguishing number of a graph G is, in some sense, a measure of the resilience of Aut(G),
in that a distinguishing coloring serves to ‘‘break" all of the symmetries of G.

Inspired by a problem of Rubin [22], which creatively asked for the distinguishing number of the cycle Cn, Albertson
and Collins initiated the study of distinguishing numbers in [2]. Since that initial work, the distinguishing number of a
graph has been determined for a number of graph classes, including planar graphs [4], Cartesian powers [1,20], forests [10]
and interval graphs [11]. The distinguishing problem has also been studied extensively for infinite graphs (see [21] for a
recent example).

In 2011, Ferrara, Flesch, and Gethner [13] first considered the natural extension of distinguishing graph colorings to
list colorings. A list assignment L on a graph G is a function that assigns each vertex of G a set of colors. An L-coloring of
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G is a coloring in which each vertex is colored with a color from L(v). List coloring was first introduced in the setting
of proper colorings by Erdős, Rubin, and Taylor [12], and has been studied extensively across numerous settings. The
list-distinguishing number of G, denoted Dℓ(G) is the minimum k such that every list assignment L that assigns a list of
size at least k to every vertex permits a distinguishing L-coloring.

In [13], Ferrara, Flesch, and Gethner posed the following question.

Question 1. Is there a graph G for which D(G) ̸= Dℓ(G)?

Question 1 is unanswered, but in subsequent years, there has been an accumulation of evidence suggesting that the
negative answer to Question 1 is correct. This includes proofs that D(G) = Dℓ(G) when G has a dihedral automorphism
group [13], is a forest [14], and when G is an interval graph [17]. The set of automorphisms of a given graph, under the
composition operation, forms a group, called the automorphism group of the graph.

We note that the problem of how one can distinguish the vertices of a graph, be it through coloring or the identification
of a ‘‘special" set of vertices, has been broadly studied. As a significant recent example, Babai’s proof of the existence of
a near polynomial-time algorithm for the graph isomorphism problem [5] relies on the idea of a distinguishing set of
vertices, which is a set S of vertices such that every vertex not in the set has a unique subset of S in its neighborhood
(see [6,7]). Further examples include identifying codes [19], many variants of vertex-distinguishing edge-colorings [9],
and a number of other concepts throughout the literature.

2. Results

In this paper, we study the list-distinguishing number of Cartesian products of complete graphs. The distinguishing
number for Cartesian products of complete graphs was determined independently by Imrich, Jerebic, and Klavžar [18] and
also Fisher and Isaak [16]. Interestingly, Fisher and Isaak’s result was not phrased in of distinguishing graph colorings, but
rather in the setting of a particular class of edge colorings of the complete bipartite graph.

Theorem 1 ([18]). Let n, m, k be positive integers with k ≥ 2. If (k − 1)n < m ≤ kn, then

D(Kn□Km) =

{
k if m ≤ kn −

⌈
logk n

⌉
− 1;

k + 1 if m ≥ kn −
⌈
logk n

⌉
+ 1.

If m = kn −
⌈
logk n

⌉
, then D(Kn□Km) is either k or k + 1 and can be computed recursively in O(log∗(m)) time.

Our main result is the following.

Theorem 2. Let n, m, and k be positive integers. If n < m ≤ kn(1 −
k log1.09 n

2 4√n
), then

Dℓ(Kn□Km) ≤ k.

Note that when kn(1 −
k log1.09 n

2 4√n
) < m ≤ kn, we have m ≤ (k + 1)n(1 −

(k+1) log1.09 n
2 4√n

). For this case by Theorem 2 we
have Dℓ(Kn□Km) ≤ k + 1. Comparing Theorems 1 and 2 in light of Question 1, we see that Theorem 2 shows that when
(k−1)n < m ≤ kn(1−

k log1.09 n
2 4√n

) and when kn −
⌈
logk n

⌉
+1 ≤ m ≤ kn the distinguishing and list-distinguishing numbers

of Kn□Km agree. Moreover the distinguishing and list-distinguishing numbers of Kn□Km always differ by at most one.
Throughout the paper we treat the vertices of Kn□Km as the points on an integer lattice with n rows and m columns.

Each copy of Km in the product will correspond to a row of the lattice, and each copy of Kn in the product will correspond
to a column of the lattice (see Fig. 1). The vertices will be labeled by vi,j with 1 ≤ i ≤ n and 1 ≤ j ≤ m, with vertex v1,1
in the top left corner and vertex vn,m in the bottom right corner (like the entries of an n × m matrix).

To prove Theorem 2, we begin by determining the list distinguishing number of Kn□Kn+1. We prove this using the
Combinatorial Nullstellensatz.

Theorem 3 (Alon [3]). Let F be an arbitrary field, and let f = f (x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose that
the degree of f is

∑n
i=1 ti where each ti is a nonnegative integer, and suppose that the coefficient of

∏n
i=1 x

ti
i in f is nonzero. If

S1, . . . , Sn are subsets of F with |Si| > ti, then there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that

f (s1, . . . , sn) ̸= 0.

We adopt the notation f
[∏n

i=1 x
ti
i

]
to denote the coefficient of

∏n
i=1 x

ti
i in f .

Lemma 4. For n ≥ 1, Dℓ(Kn□Kn+1) = 2.

Proof. By Theorem 1, we know that D(Kn□Kn+1) = 2. Since Dℓ(G) ≥ D(G) for all graphs, it follows that Dℓ(Kn□Kn+1) ≥ 2.
Let L be a list assignment to V (Kn□Kn+1) in which every list has two distinct elements, and assume that those elements
are from R. It remains to show that there is a distinguishing L-coloring of Kn□Kn+1.
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Fig. 1. Kn□Km .

To apply the Combinatorial Nullstellensatz, we will create a polynomial F of degree n2 in n(n + 1) variables such
that nonzero valuations of F correspond to distinguishing L-colorings of Kn□Kn+1. The variables of the polynomial are
{xi,j | i ∈ [n], j ∈ [n + 1]}, and the value of xi,j will be taken from L(vi,j).

To build the polynomial F , we first define two families of polynomials whose product is F . The first family is used to
differentiate the columns of the graph. The second family will then be used to differentiate the rows of the graph.

For 1 ≤ i < j ≤ n + 1, define

Ci,j =

n∑
k=1

(xk,j) −

n∑
k=1

(xk,i),

and set C =
∏

1≤i<j≤n+1 Ci,j. For 1 ≤ h < l ≤ n, define

Rh,l = xl,h − xh,h

and set R =
∏

1≤h<l≤n Rh,l. Finally, define

F = C · R.

We claim that a nonzero valuation of F corresponds to a distinguishing coloring of Kn□Kn+1. In such a valuation, Ci,j ̸= 0
for all 1 ≤ i < j ≤ n+ 1, and Rh,l ̸= 0 for 1 ≤ h < l ≤ n. If Ci,j ̸= 0, then the multiset of the colors used in columns i and j
is distinct, and hence the columns are uniquely identified by their multiset of colors. If Rh,l ̸= 0, then rows h and l differ
in column h. Working though these polynomials in order, R1,2, . . . , R1,n use column 1 to distinguish row 1 from all other
rows. After row h has been distinguished from all rows with lower indices, the polynomials Rh,l for l > h use column h
to distinguish row h from all rows with higher indices. Thus when F ̸= 0 each row and column of Kn□Kn+1 is identifiable
by its coloring, and hence the coloring is distinguishing.

Now we apply the Combinatorial Nullstellensatz to prove that F has a nonzero valuation. We have that

deg(F ) = deg(C) + deg(R) =

(
n + 1
2

)
+

(
n
2

)
= n2.

We show that the monomial
∏

i̸=j xi,j has a nonzero coefficient in F . Split the variables of the monomial into two sets:
xi,j is above the diagonal if i < j, and xi,j is below the diagonal if i > j. There are (n+1)(n)

2 variables that are above the
diagonal, and these variables only occur in the polynomials Ci,j. Since there are (n+1)(n)

2 polynomials Ci,j, it follows
∏

Ci,j
must contribute the term

∏
i<j xi,j to the term

∏
i̸=j xi,j in F . It follows that

∏
Ri,j must contribute the term

∏
i>j xi,j to the

term
∏

i̸=j xi,j in F . Thus

F

⎡⎣∏
i̸=j

xi,j

⎤⎦ = C

⎡⎣∏
i<j

xi,j

⎤⎦ · R

⎡⎣∏
i>j

xi,j

⎤⎦ .

We argue by induction on the width of our matrix that⎛⎝ ∏
1≤i<j≤n+1

Ci,j

⎞⎠⎡⎣ ∏
1≤i<j≤n+1

xi,j

⎤⎦ =

n∏
r=1

r!.
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Our induction argument will go from k = 1 to k = n. If k = 1, then
∏

1≤i<j≤k+1 Ci,j = (x1,2 +· · ·+ xn,2)− (x1,1 +· · ·+ xn,1),
and ⎛⎝ ∏

1≤i<j≤2

Ci,j

⎞⎠⎡⎣ ∏
1≤i<j≤2

xi,j

⎤⎦ = 1 =

1∏
r=1

r!.

For 2 ≤ k ≤ n, assume that⎛⎝ ∏
1≤i<j≤k

Ci,j

⎞⎠⎡⎣ ∏
1≤i<j≤k

xi,j

⎤⎦ =

k−1∏
r=1

r!.

There are k variables above the diagonal in column k + 1, and they only appear in the k polynomials of the form Cl,k+1
for l ∈ [k]. Furthermore, they each appear once in each of those polynomials, and always with the coefficient +1. Thus(∏k

l=1 Cl,k+1

) [∏k
i=1 xi,k+1

]
= k!. Therefore,⎛⎝ ∏

1≤i<j≤k+1

Ci,j

⎞⎠⎡⎣ ∏
1≤i<j≤k+1

xi,j

⎤⎦ =

⎛⎝ ∏
1≤i<j≤k

Ci,j

⎞⎠⎡⎣ ∏
1≤i<j≤k

xi,j

⎤⎦ ·

(
k∏

l=1

Cl,k+1

)[
k∏

i=1

xi,k+1

]

=

(
k−1∏
r=1

r!

)
· k!

=

k∏
r=1

r!.

Thus, when k = n, we have that⎛⎝ ∏
1≤i<j≤n+1

Ci,j

⎞⎠⎡⎣ ∏
1≤i<j≤n+1

xi,j

⎤⎦ =

n∏
r=1

r!.

It remains to determine R
[∏

i>j xi,j
]
. Each variable below the diagonal appears in exactly one polynomial Rh,l, and they

all have a coefficient of +1. Since they appear in distinct polynomials, it follows that

R

⎡⎣∏
i>j

xi,j

⎤⎦ = 1.

We conclude that

F

⎡⎣∏
i̸=j

xi,j

⎤⎦ = C

⎡⎣∏
i<j

xi,j

⎤⎦ · R

⎡⎣∏
i>j

xi,j

⎤⎦ =

n∏
r=1

r!.

Since the coefficient of
∏

i̸=j xi,j in F is nonzero, each variable appears with power 1 or 0 in the monomial, and each list
has size 2, we conclude from the Combinatorial Nullstellensatz that there is a distinguishing L-coloring of Kn□Kn+1. □

The most challenging part when applying the Combinatorial Nullstellensatz is often choosing an appropriate monomial
with coefficient that can be feasibly calculated. In particular, this is one issue that keeps the proof of Lemma 4 from being
easily extended to Kn□Km when m > n + 1. For instance, if we make a similar polynomial F as the one in the proof of
Lemma 4 for the case Kn□Kn+2, then the degree of F would be

(n+2
2

)
+
(n
2

)
= n2

+ n + 1. But the number of off-diagonal
elements of the relevant matrix is n2

+ n. As a result, we do not see a way to, for instance, decompose a coefficient of a
helpful monomial in F into a coefficient in C and a coefficient in R.

A closer analysis of Lemma 4 actually shows that any precoloring of a set of elements of Kn□Kn+1 that contains at
most one element of each row and column can be extended to a distinguishing L-coloring. We refer the interested reader
to [15] for further results about precoloring extensions in the context of distinguishing graph colorings.

Given Lemma 4, when n is large enough we are able to produce distinguishing colorings of Kn□Km when m is
exponential in n, albeit with a base smaller than 2. We first include a small technical lemma that works for all values of n.

Lemma 5. Let S(x1,1, x1,2, x2,1, x2,2, . . . , xn,1, xn,2) =
∏n

i=1(xi,1 + xi,2). For any assignment of the xi,j to formal variables from
{c1, . . . , cr} such that xi,1 ̸= xi,2 for all i ∈ [n], the coefficient of each monomial

∏r
i=1 c

αi
i in S is at most

( n
⌈
n
2 ⌉

)
.

Proof. We apply induction on n to prove the assertion. When n = 1, every term has coefficient 1, as desired.



2016 M. Ferrara, Z. Füredi, S. Jahanbekam et al. / Discrete Mathematics 342 (2019) 2012–2022

If {xi,1, xi,2} = {xj,1, xj,2} for all i and j, then S(c1, . . . , cr ) =
∑n

k=1

(n
k

)
xk1,1x

n−k
1,2 , and the result holds. Therefore we assume

there are values i and j such that {xi,1, xi,2} ̸= {xj,1, xj,2}. Assume without loss of generality that c1 occurs exactly in the first
β terms, where β ∈ [n − 1]. Write S = S1S2, where S1(x1,2, . . . , xβ,2) =

∏β

i=1(c1 + xi,2), S2(xβ+1,1, xβ+1,2, . . . , xn,1, xn,2) =∏n
j=β+1(xj,1 + xj,2), and xi,2, xj,1, xj,2 ∈ {c2, . . . , cr}.
In order to create

∏r
i=1 c

αi
i in S, we must choose c1 from α1 terms in S1. There are

(
β

α1

)
ways we can create cα1

1 in S1.
Fix one term in S1 in which the power of c1 is α1. Suppose that this term is of the form cα1

1
∏r

i=2 c
γi
i . This term can be

used to create
∏r

i=1 c
αi
i in S only if

∏r
i=2 c

αi−γi
i has a nonzero coefficient in S2. By the induction hypothesis,

∏r
i=2 c

αi−γi
i

has coefficient at most
( n−β⌈

n−β
2

⌉) in S2. Therefore
∏r

i=1 c
αi
i has coefficient at most

(
β

α1

)( n−β⌈
n−β
2

⌉) which is at most
( n
⌈ n

2⌉

)
, as

desired. □

In terms of colorings, Lemma 5 shows that if we assign lists of size 2 to the vertices of a graph G of order n, then each
multiset of colors assigned to the vertices of G can appear at most

( n
⌈
n
2 ⌉

)
times across all L-colorings of the graph. The

reason is that each appearance of the monomials
∏r

i=1 c
αi
i in S(c1, . . . , cr ) represents a vertex coloring of the graph G.

Lemma 6. For n ≥ 2222 and n < m ≤ ⌈1.09n⌉ + n + 1,

Dℓ(Kn□Km) ≤ 2.

Proof. Let G = Kn□Km. Let L be a list assignment on V (G) in which all lists have size 2. The proof proceeds in two
steps. In the first step, we select a set of columns which we will color so that no nontrivial row transposition of G is
color-preserving. In the second step we extend this coloring to all of the other columns so that no nontrivial column
transposition is color-preserving.

We say that a column is list-uniform if every vertex in the column has the same list of colors. Let A′ be the set of
list-uniform columns. If |A′

| ≥ n + 1, set A = A′. If |A′
| < n + 1, let A consist of A′ with n + 1 − |A′

| additional columns,
chosen arbitrarily. Let V (A) denote the set of vertices contained in the columns in A.

Define the color pattern of a colored column to be the multiset of the colors used to color the vertices of the column.
Define the color vector of a colored column to be the vector of the colors used to color the vertices of the column,
⟨c(v1,j), c(v2,j), . . . , c(vn,j)⟩. We will color the columns of G − A so that (1) no column in G − A shares its color pattern
with a column in A, and (2) no two vectors in G − A have the same color vector.

If |A′
| ≥ n+ 1, then A = A′. Note that by Theorem 1 when m ≤ 2n

−⌈log2 n⌉− 1, a distinguishing 2-coloring of Kn□Km
exists and since the coloring is distinguishing, there are at most two monochromatic columns. Since m ≤ ⌈1.09n⌉+n+1 ≤

2n
−⌈log2 n⌉− 3 Theorem 1 implies that a distinguishing 2-coloring c of Kn□K|A| with no monochromatic columns exists.
Now we extend the distinguishing 2-coloring c of Kn□K|A| to a distinguishing 2-coloring of Kn□Km. All remaining

columns contain at least three colors. Greedily color these columns so that (1) there are at least three different colors
on their vertices and (2) so that their color vectors are all different from each other. It follows that there are at least 2n−3

colorings of each column that satisfy our first condition, since we can fix the colors of three vertices on each column so
that the three colors are distinct. Because n ≥ 4, we have that 2n−3

≥ ⌈1.09n⌉. The resulting coloring of G is distinguishing
because the coloring of each column in A uses two colors and distinguishes the rows of G, while the remaining columns
are all distinguished because they have distinct color vectors with at least three colors.

For the rest of the proof, assume that |A′
| < n + 1. In this case, we first obtain a distinguishing coloring of G[V (A)] by

using Lemma 4. For Cj /∈ A, let L(Cj) =
⋃n

i=1 L(vi,j), and note that |L(Cj)| ≥ 3. Therefore there is a color ci in this union
that appears in at most 2n/3 lists in the column. We will show that each column in G − A has at least 1.09n possible
color vectors that do not share their color pattern with any column of A. Fix a column Cj and proceed by considering the
following two cases.

Case 1: Suppose that two colors each appear in at least 7
8n − n2/3 lists of vertices in Cj. Since there are only n lists in

each column, it follows that there are at least 3
4n−2n2/3 lists that have the same set of two colors. Let L(Cj) = {c1, . . . , cℓ}

and let {c1, c2} be the list on at least 3
4n − 2n2/3 vertices.

Since the column is not list-uniform, there are at least two distinct color patterns on Cj for the colors {c3, . . . , cℓ}. Thus
we may color the vertices in Cj whose lists are not {c1, c2} so that at most (n+1)/2 columns in A match that color pattern
on {c3, . . . , cℓ}.

The extensions of the partial coloring of Cj have at least 3
4n−2n2/3

+1 distinct color patterns, depending on the number
of vertices with list {c1, c2} that receive color c1. Therefore, there is an α ∈

{⌊ n
8 − n2/3

⌋
− 1,

⌊ n
8 − n2/3

⌋
, . . . ,

⌈ 5n
8 − n2/3

⌉
+1} such that none of the patterns comes from a column in A with at least α vertices colored c1. Therefore, for n ≥ 2222,
it follows that the number of extensions of the colorings to Cj that do not match the color pattern of any column in A is
bounded by(

3n/4 − 2n2/3⌊
n/8 − n2/3

⌋
− 1

)
≥

(
3n/4 − 2n2/3

n/8 − n2/3 − 1

)n/8−n2/3

≥ 6n/8−n2/3
≥ 2n/8

≥
⌈
1.09n⌉ .

This finishes Case 1.
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Case 2: Suppose otherwise, that no two colors appear in at least 7
8n − n2/3 lists of vertices in Cj. Thus there is at most

one color that is used in at least 7
8n − n2/3 lists. Let L(Cj) = {c1, . . . , cℓ} such that

1. if a color appears in at least 7
8n − n2/3 lists, then it is cℓ;

2. colors {c1, . . . , cℓ−1} are ordered so that the function k(h), which denotes the number of vertices in Cj whose list
contains ch but does not contain cg for any g < h, is decreasing.

To order the colors as described above, first let cℓ−1 be a color that appears the fewest number of times with cℓ as a
list in Cj. Then among the remaining unlabeled colors, let cℓ−2 be a color that appears the fewest total number of times
with cℓ or cℓ−1 in a list in Cj, and continue until all colors are labeled. Under this labeling, the number of lists of the form
{cj, c ′

} with c ′
∈ {cj+1, . . . , cℓ}, is at most the number of lists of the form {ci, c"} with i < j and c" ∈ {ci+1, . . . , cℓ}.

Thus there is a set D = {c1, . . . , cℓ′} such that

n2/3 <

ℓ′∑
i=1

k(i) ≤
7
8
n.

We will color the vertices in Cj with color {c1, . . . , ch} in their lists so that after the coloring there are at most

n + 1∏h
i=1(k(i) + 1)

columns in A whose color pattern in colors {c1, . . . , ch} matches the color pattern of Cj in those colors. This statement is
trivially true before any vertices in Cj have been colored. Prior to coloring the vertices with color ch in their lists, there
are at most

n + 1∏h−1
i=1 (k(i) + 1)

columns in A whose color pattern matches the color pattern of Cj on the first h−1 colors. When processing color ch, there
are k(h) vertices with the color ch in their lists that have not been colored (note that some vertices with ch in their list
may have been colored when earlier colors were processed). Therefore there are k(h) + 1 possibilities for the number of
vertices with color ch in Cj. By the pigeonhole principle, it follows that there is a choice for the number of vertices that
will be colored ch so that there are only

n + 1∏h
i=1(k(i) + 1)

columns in A whose color pattern matches the color pattern of Cj on the first h colors. After processing all of the colors
in D, the number of columns in A whose color pattern matches the color pattern of Cj on the colors in D is bounded by

n + 1∏ℓ′

i=1(k(i) + 1)
<

n + 1
n2/3 + 1

< n1/3.

Note that the first inequality holds because n2/3 <
∑ℓ′

i=1 k(i) implies
∏ℓ′

i=1(k(i) + 1) > n2/3
+ 1.

For simplicity, let k =
∑ℓ′

i=1 k(i). At this point, there are n − k uncolored vertices in Cj. Therefore, there are 2n−k

extensions of the coloring to all of Cj. By Lemma 5, each column in A whose color pattern matches the color pattern of Cj
on the colors in D can match the color pattern of at most

( n−k
⌈(n−k)/2⌉

)
of the colorings of Cj. When n−k is even, we will use the

Stirling’s approximation
( n−k
(n−k)/2

)
≤

2n−k√
3
2 (n−k)+1

. When n−k is odd, this approximation gives us
( n−k
⌈(n−k)/2⌉

)
≤

2n−k√
3
2 (n−k)− 1

2

n−k
n−k+1 .

Thus
( n−k
⌈(n−k)/2⌉

)
≤

2n−k√
3
2 (n−k)+1

is true for all values of n − k. Therefore, because n ≥ 2194, the number of colorings of Cj

whose color pattern matches the color pattern of no column in A is bounded by

2n−k
− n1/3

(
n − k

⌈(n − k)/2⌉

)
≥ 2n−k

− n1/3 2n−k√
3
2 (n − k) + 1

≥ 2n/8

⎛⎝1 −
n1/3√
3
16n + 1

⎞⎠
≥
⌈
1.09n⌉ .

This finishes Case 2.
In both cases, each column in G − A has at least ⌈1.09n⌉ colorings that do not match the color pattern of any column

in A. Greedily choose such colorings for the columns of G−A so that no two of these columns have the same color vector.
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We claim that the coloring we have generated is a distinguishing coloring of G. By construction, the columns in A are
distinguishable from the columns not in A since the color patterns of the columns in A are not repeated outside of A. Once
the columns of A have been identified, the coloring of A is distinguishing on the induced subgraph of A. Therefore the
coloring of the columns of A uniquely identifies the vertices in A and hence distinguished the rows of G. Finally, once the
rows have been distinguished, each column of G−A is distinguishable, since they all have distinct color vectors. Thus the
coloring is a distinguishing coloring. □

We now proceed to the proof of Theorem 2. We first give two lemmas that provide a bound on the coefficients that
we will see in the generating functions that allow us to color our graph.

Although the following inequality seems to be quite natural, several experts in probability theory were not aware of
it, and a classical book of inequalities [8] did not include it. Hence, it may be of independent interest.

Lemma 7. If a and n are positive integers with a < n and 0 < p < 1 is a real number, then(
n
a

)
pa(1 − p)n−a <

C
√
np(1 − p)

,

where C =
( 3
2e

) 3
2 .

While the proof of Lemma 7 relies only on elementary calculus, it is somewhat long and we feel that a full proof would
detract from the proof of Theorem 2, so have elected to present it in full in Appendix.

Lemma 8. Let k be an integer that is at least three and let

S(x1,1, . . . , x1,k, x2,1, . . . , x2,k, . . . , xn,1, . . . , xn,k) =

n∏
i=1

(xi,1 + · · · + xi,k).

For any assignment of the xi,j to formal variables from {c1, . . . , cr} such that xi,j are all distinct for all j ∈ k, the coefficients of

each monomial
∏r

i=1 c
αi
i in S are all at most Ckn+1

4√n
, where C =

( 3
2e

) 3
2 .

Proof. Let Pi = xi,1 + xi,2 + · · · + xi,k. If there is a pair of variables cj and cj′ such that no Pi contains both of them, then
replace all appearances of cj′ with cj in S to obtain a new polynomial S ′. Since the coefficient of c

αj+αj′

j
∏

i̸=j,j′ c
αi
i in S ′ is at

least the coefficient of cα1
1 . . . cαr

r in S, we may make the assumption that every pair of variables cj and cj′ appears together
in at least one term. Therefore we have

(r
2

)
≤ n

(k
2

)
, which implies that

r ≤
1 +

√
1 + 4nk(k − 1)

2
<

√

2nk2. (1)

For each i ∈ [r], let βi be the number of terms that contain ci. Without loss of generality assume that β1 ≥ βi for each
i. By the choice of β1, we have that β1 ≥ ⌈nk/r⌉. Because r <

√
2nk2, we have

β1 >
nk

√
2nk2

=

√
n
2
. (2)

The coefficient c∗ of cα1
1 . . . cαr

r in S is at most
(
β1
α1

)
(k − 1)β1−α1 (k)n−β1 . Note that if α1 = 0, then this value is at most

c∗
≤ (k − 1)β1kn−β1 ≤ (k − 1)⌈nk/r⌉kn−⌈nk/r⌉

= kn
(
1 −

1
k

)⌈nk/r⌉

.

Using our upper bound (1) on r , and the inequality (1 − x)y ≤ e−xy (true for all 0 ≤ x < 1, y ≥ 0) we have

c∗
≤ kn

(
1 −

1
k

)√
n/2

≤
kn

e
√

n/2k2
<

Ckn+1

4
√
n

.

If α1 = β1, then the coefficient is at most kn−β1 , which is also bounded by Ckn+1
4√n

by the argument above. Thus we may
assume that 0 < α1 < β1.

By Lemma 7,
(n
a

)
pa(1−p)n−a < C

√
np(1−p) when a and n are positive integers with a < n and p ∈ (0, 1). Therefore, letting

a = α1, n = β1, and p =
1
k , we have

c∗

kn
≤

(
β1

α1

)
1
kα1

(
k − 1
k

)β1−α1

<
Ck

√
β1(k − 1)

.
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Apply (2) again, we have that the maximum coefficient in S satisfies

c∗ <
C
√
2 · kn+1

√
k − 1 4

√
n

<
C · kn+1

4
√
n

. □

In fact Lemma 8 shows that if we have list assignments L of size k on vertices of an n-vertex graph, then each color
pattern can appear at most Ckn+1

4√n
times on L-colorings of the graph, where C =

( 3
2e

) 3
2 .

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let A be the set of the first
⌈
log1.09 n

⌉
columns in G. Note that 2-list distinguishing coloring of a

graph implies a k-list distinguishing coloring of the graph for all k ≥ 2. Since moreover n ≤ 1.09log1.09n, by Lemma 6, there
is a list distinguishing coloring of the graph induced by A (here we treat A as the rows of the graph). Fix this coloring over
the columns of A.

First consider the case when k = 2. By Lemma 5, each column in A has a color pattern that matches the color pattern
of at most

( n
⌈n/2⌉

)
of these colorings. Therefore the number of colorings of each column in G−A that does not have a color

pattern of a column in A is at least

2n
−
⌈
log1.09 n

⌉( n
⌈n/2⌉

)
≥ 2n

(
1 −

⌈
log1.09 n

⌉
√
3n/2 + 1

)

≥ 2n

(
1 −

⌈
log1.09 n

⌉
4
√
n

)
.

Note that the first inequality holds because by Stirling’s approximation
( n
⌈n/2⌉

)
≤

2n√
π ( n2 +

1
4 )
, which is at most 2n

√
3n/2+1 .

Otherwise, k ≥ 3 and each remaining column has kn colorings. By Lemma 8, each column in A has a color pattern that
matches the color pattern of at most Ckn+1

4√n
of these colorings. Therefore the number of colorings of each column in G− A

that does not have a color pattern of a column in A is at least

kn −
⌈
log1.09 n

⌉(Ckn+1

4
√
n

)
= kn

(
1 −

Ck
⌈
log1.09 n

⌉
4
√
n

)

≥ kn
(
1 −

k
⌈
log1.09 n

⌉
2 4
√
n

)
To complete the coloring, we greedily select colorings for the columns in G − A that do not have the same color pattern
as the columns in A so that no two of these columns have the same color vector.

Given Lemmas 5, 6 and 8, we can now show that with lists of size k we are able to find a distinguishing colorings of
Kn□Km, when n < m ≤ kn(1 −

k log1.09 n
2 4√n

). □

We do observe here that the value of n is quite large for Corollary 9 to apply. Since we depend on the width of the first
collection of columns to be given by

⌈
log1.09 n

⌉
to apply Lemma 6, we require

⌈
log1.09 n

⌉
≥ 2222. Thus n ≥ 1.45104×1083

is sufficient for the theorem.
Theorem 2 implies the following corollary.

Corollary 9. Let k be an integer. For n sufficiently large and n < m ≤ kn(1 + o(1)),

Dℓ(Kn□Km) ≤ k.

3. Open questions

Question 1 is the clearest future direction to go with this work. We ask the question for the list coloring of grids
here.

Conjecture 1. For all n and m, Dℓ(Kn□Km) equals D(Kn□Km).

In the process of proving Theorem 2, we encountered a seemingly simple conjecture that we approximated with
Lemma 8. We present this conjecture here.

Conjecture 2. Let k be an integer that is at least three and let

S(x1,1, . . . , x1,k, x2,1, . . . , x2,k, . . . , xn,1, . . . , xn,k) =

n∏
i=1

(xi,1 + · · · + xi,k).
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For any assignment of the xi,j to formal variables from {c1, . . . , cr} such that xi,j are all distinct for all j ∈ k, the coefficients of
each monomial

∏r
i=1 c

αi
i in S are all at most the balanced k-multinomial coefficient(

n
⌈n/k⌉ , . . . , ⌊n/k⌋

)
.
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Appendix. An inequality concerning the binomial distribution

Here we prove Lemma 7.

Lemma 7. If a and n are positive integers with a < n, and 0 < p < 1 is a real number, then(
n
a

)
pa(1 − p)n−a <

C
√
np(1 − p)

,

where C = (3/2e)3/2 = 0.409916 . . . .

Proof. Define f (n, a, p) =
√
n
(n
a

)
pa+(1/2)(1 − p)n−a+(1/2). Our aim is to show that

f (n, a, p) < C .

For 1 ≤ a ≤ n − 1, the function g(p) = pa+(1/2)(1 − p)n−a+(1/2) takes its maximum in the interval [0, 1] when

0 = g ′(p)

= −pa+(1/2)(n − a − (1/2))(1 − p)n−a−(1/2)
+ (a + (1/2))pa−(1/2)(1 − p)n−a+(1/2)

= −pa−(1/2)(1 − p)n−a−(1/2)
[(

n − a +
1
2

)
p −

(
a +

1
2

)
(1 − p)

]
.

Therefore

f (n, a, p) ≤ f
(
n, a,

a + (1/2)
n + 1

)
.

Define

f (n, a) = f
(
n, a,

a + (1/2)
n + 1

)
=

√
n
(
n
a

)(
a + (1/2)
n + 1

)a+(1/2) (
1 −

a + (1/2)
n + 1

)n−a+(1/2)

.

Since f (2, 1) =
√
2/4 < 0.35356 and f (3, 2) = f (3, 1) = (675/4096)

√
5 < 0.36850, these values are less than C . From

now on we may suppose that n ≥ 4. Also, f (n, a) = f (n, n − a), so from now on we may suppose that 1 ≤ a ≤
n
2 .

We now wish to show that f (n, a) is decreasing in terms of a so that f (n, 1) ≥ f (n, a). We have that for 2 ≤ a ≤ n/2,

f (n, a − 1)
f (n, a)

=

√
n
( n
a−1

) ( a− 1
2

n+1

)a− 1
2
(
1 −

a− 1
2

n+1

)n−a+ 3
2

√
n
(n
a

) ( a+ 1
2

n+1

)a+ 1
2
(
1 −

a+ 1
2

n+1

)n−a+ 1
2

=

1
n−a+1

(
a −

1
2

)a− 1
2
(
n − a +

3
2

)n−a+ 3
2

1
a

(
a +

1
2

)a+ 1
2
(
n − a +

1
2

)n−a+ 1
2

=

a (a− 1
2 )

a− 1
2

(a+ 1
2 )

a+ 1
2

(n − a + 1) (n−a+ 1
2 )

(n−a+ 1
2 )

(n−a+ 3
2 )

(n−a+ 3
2 )

.
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Define the sequence

X(a) = a
(a − (1/2))a−(1/2)

(a + (1/2))a+(1/2) .

Thus we wish to determine if X(a)/X(n − a + 1) > 1 under the condition that 1 ≤ a ≤ n/2. Taking the logarithm of both
sides yields the following inequality that we wish to prove:

0 < log(X(a)/X(n − a + 1))
= log(X(a)) − log(X(n − a + 1)).

For all real a > 0, define the continuous function x(a) = log X(a + (1/2)), so

x(a) = log(a + (1/2)) + a log a − (a + 1) log(a + 1).

We claim that x(a) is strictly decreasing.
To prove that x(a) is decreasing, we use the fact that if x(a) : (0, ∞) → R is a real function that is strictly convex and

lima→∞ x(a) exists and is finite, then x(a) is strictly decreasing. The limit of x(a) exists since

lim
a→∞

x(a) = lim
a→∞

log
(a +

1
2 )

(a + 1)
+ lim

a→∞
log
((

a
a + 1

)a)
= −1.

We have that

x′(a) = (a + 1/2)−1
+ (1 + log a) − (1 + log(a + 1))

and therefore

x′′(a) =
−1

(a + (1/2))2
+

1
a

−
1

a + 1

=
−1

a2 + a + (1/4)
+

1
a2 + a

> 0.

Hence the function x(a) is convex (for a > 0) and has a finite limit, so x(a) is strictly decreasing. Therefore we have shown
that f (n, 1) ≥ f (n, a), so

f (n, a) ≤ n3/2
(

3/2
n + 1

)3/2 (n − (1/2)
n + 1

)n−(1/2)

.

Finally, define the function

f (n) = n3/2
(

3/2
n + 1

)3/2 (n − (1/2)
n + 1

)n−(1/2)

.

For all real n > 1 define the function y(n) = log f (n), so

y(n) =
3
2
log

3
2

+
3
2
log n +

(
n −

1
2

)
log
(
n −

1
2

)
− (n + 1) log(n + 1).

We claim that y(n) is strictly increasing.
To prove that y(n) is increasing, we use the fact that if y(n) : (1, ∞) → R is a real function that is strictly concave and

limn→∞ y(n) exists and is finite, then y(n) is strictly increasing. The limit of y(n) exists since

lim
n→∞

y(n) =
3
2
log

3
2

−
3
2
.

We have that

y′(n) = (3/2)n−1
+

(
1 + log

(
n −

1
2

))
− (1 + log(n + 1)),

and therefore

y′′(n) =
−3/2
n2 +

1
n − (1/2)

−
1

n + 1

=
−3/2
n2 +

3/2
n2 + (n/2) − (1/2)

< 0.
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Hence the function y(n) is concave (for n > 1) and has a finite limit, so y(n) is strictly increasing. Hence f (n) is also
increasing, and f (n) < (3/2e)3/2.

Therefore we have

f (n, a, p) ≤ f

(
n, a,

a +
1
2

n + 1

)
≤ f (n, 1)
< lim

n→∞
f (n, 1)

=

(
3
2e

)3/2

. □

Considering the sequence of f (n, 1) one can see that the value of C is the best possible.
It is well known that

( n
n/2

)
< 2n/

√
2πn for all even n ≥ 2, so one would expect that Lemma 7 should hold with

D = 1/
√
2π , but it is only 0.398942 . . . , about 2.7% smaller than C . However, using the first line of the proof and

the precise Sterling formula (i.e., n! = nne−n
√
2πn exp(1/(12n + Θn)) where 0 < Θn < 1), one can prove that if

a → ∞, a ≤ n/2, then f (n, a) = (1 + o(1))/
√
2π .
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