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KNESER RANKS OF RANDOM GRAPHS AND MINIMUM
DIFFERENCE REPRESENTATIONS∗

ZOLTÁN FÜREDI† AND IDA KANTOR‡

Abstract. Every graph G = (V,E) is an induced subgraph of some Kneser graph of rank k,
i.e., there is an assignment of (distinct) k-sets v 7→ Av to the vertices v ∈ V such that Au and Av

are disjoint if and only if uv ∈ E. The smallest such k is called the Kneser rank of G and denoted
by fKneser(G). As an application of a result of Frieze and Reed concerning the clique cover number
of random graphs we show that for constant 0 < p < 1 there exist constants ci = ci(p) > 0, i = 1, 2,
such that G ∈ G(n, p) satisfies with high probability c1n/(logn) < fKneser(G) < c2n/(logn). We
apply this for other graph representations defined by Boros, Gurvich, and Meshulam. A k-min-
difference representation of a graph G is an assignment of a set Ai to each vertex i ∈ V (G) such
that ij ∈ E(G) ⇔ min{|Ai \ Aj |, |Aj \ Ai|} ≥ k. The smallest k such that there exists a k-min-
difference representation of G is denoted by fmin(G). Balogh and Prince proved in 2009 that for
every k there is a graph G with fmin(G) ≥ k. We prove that there are constants c′′1 , c

′′
2 > 0 such that

c′′1n/(logn) < fmin(G) < c′′2n/(logn) holds for almost all bipartite graphs G on n + n vertices.
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1. Kneser representations. A representation of a graph G is an assignment of
mathematical objects of a given kind (intervals, disks in the plane, finite sets, vectors,
etc.) to the vertices of G in such a way that two vertices are adjacent if and only
if the corresponding sets satisfy a certain condition (intervals intersect, vectors have
different entries in each coordinate, etc.). Representations of various kinds have been
studied extensively; see, e.g., [8], [11], the monograph [16], or from an information
theory point of view [14]. The representations considered in this paper are assignments
v 7→ Av to the vertices v ∈ V of a graph G = (V,E) such that the Av’s are (finite)
sets satisfying certain relations.

The Kneser graph Kn(s, k) (for positive integers s ≥ 2k) is a graph whose vertices
are all the k-subsets of the set [s] := {1, 2, . . . , s}, and whose edges connect two sets if
they are disjoint. An assignment (A1, . . . , An) for a graph G = (V,E) (where V = [n])
is called a Kneser representation of rank k if each Ai has size k, the sets are distinct,
and Au and Av are disjoint if and only if uv ∈ E.

Every graph on n vertices with minimum degree δ < n−2 has a Kneser represen-
tation of rank (n− 1− δ). To see that, define the co-star representation (A′1, . . . , A

′
n)

of G. For every i ∈ V (G), let A′i be the set of the edges adjacent to i in the com-

plement of G. (This is the graph G with V (G) = V (G) and E(G) =
(
V (G)

2

)
\ E(G).)

We have A′i ∩ A′j = 1 if ij 6∈ E(G); otherwise A′i ∩ A′j = 0, and the maximum size of
A′i is n − 1 − δ(G). To turn the co-star representation into a Kneser representation
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add pairwise disjoint sets of labels to the sets A′1, . . . , A
′
n to increase their cardinality

to exactly n− 1− δ(G). The resulting sets A1, . . . , An are all distinct, they have the
same intersection properties as A′1, . . . , A

′
n, and they form a Kneser representation of

G of rank n− 1− δ(G).

Let G(n) denote the set of 2(n
2) (labelled) graphs on [n] and let G(n, k,Kneser)

denote the family of graphs on [n] having a Kneser representation of rank k. G ∈
G(n, k,Kneser) is equivalent to the fact that G is an induced subgraph of some Kneser
graph Kn(s, k). We have

G(n, 1,Kneser) ⊆ G(n, 2,Kneser) ⊆ · · · ⊆ G(n, n− 1,Kneser) = G(n).

Let fKneser(G) denote the smallest k such that G has a Kneser representation of rank
k. We have seen that fKneser(G) ≤ n− δ. We show that there are better bounds for
almost all graphs.

Theorem 1. There exist constants c2 > c1 > 0 such that for G ∈ G(n) with high
probability

c1
n

log n
< fKneser(G) < c2

n

log n
.

We will prove a stronger version as Corollary 12.

2. Minimum difference representations. In difference representations, gen-
erally speaking, vertices are adjacent if the representing sets are sufficiently different.
As an example consider Kneser graphs, where the vertices are adjacent if and only
if the representing sets are disjoint. There are other type of representations where
one joins sets close to each other, e.g., t-intersection representations were investigated
by Chung and West [7] for dense graphs and Eaton and Rödl [8] for sparse graphs.
But these usually lead to different type of problems; one cannot simply consider the
complement of the graph.

This paper is mostly focused on k-min-difference representations (and its rela-
tives), defined by Boros, Gurvich, and Meshulam in [6] as follows.

Definition 2. Let G be a graph on the vertices [n] = {1, . . . , n}. A k-min-
difference representation (A1, . . . , An) of G is an assignment of a set Ai to each vertex
i ∈ V (G) so that

ij ∈ E(G) ⇔ min{|Ai \Aj |, |Aj \Ai|} ≥ k.

Let G(n, k,min) be the set of graphs with V (G) = [n] that have a k-min-difference
representation. The smallest k such that G ∈ G(n, k,min) is denoted by fmin(G).

The co-star representation (which was investigated by Erdős, Goodman, and
Pósa [9] in their classical work on clique decompositions) shows that fmin(G) exists
and it is at most n− 1− δ(G).

Boros, Collado, Gurvich, and Kelmans [5] showed that many n-vertex graphs,
including all trees, cycles, and line graphs, the complements of the above, and P4-free
graphs, belong to G(n, 2,min). They did not find any graph with fmin(G) ≥ 3. Boros,
Gurvich, and Meshulam [6] asked whether the value of fmin over all graphs is bounded
by a constant. This question was answered in the negative by Balogh and Prince [4],
who proved that for every k there is an n0 such that whenever n > n0, then for a
graph G on n vertices we have fmin(G) ≥ k with high probability (in the G(n, p)
model). Their proof repeatedly applies a highly nontrivial Ramsey-type result due
to Balogh and Bollobás [3], so their bound on n0 is a tower function of k, even if we
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use the best available upper bound for the Balogh–Bollobás function by Anstee and
Lu [2].

Our main result is a significant improvement of the Balogh–Prince result. Let
G(n, n) denote the family of 2n

2

bipartite graphs G with partite sets V1 and V2,
|V1| = |V2| = n.

Theorem 3. There is a constant c > 0 such that for almost all bipartite graphs
G ∈ G(n, n) one has fmin(G) ≥ cn/(log n).

Let H be a graph on log n vertices with fmin(H) ≥ c log n/(log log n). One of the
basic facts about random graphs is that almost all graphs on n vertices contain H
as an induced subgraph. The following theorem is an easy consequence of this fact
together with Theorem 3.

Corollary 4. There is a constant c > 0 such that almost all graphs G on n
vertices satisfy

fmin(G) ≥ c log n

log log n
.

3. On the number of graphs with k-min-diff representations.

3.1. The structure of min-diff representations of bipartite graphs. Anal-
ogously to previous notation, G(n, k,min) (and G(n, n, k,min)) denotes the family of
(bipartite) graphs G with n labeled vertices V (partite sets V1 and V2, |V1| = |V2| = n,
respectively) with fmin(G) ≤ k. Our aim in this section is to show that there exists

a constant c > 0 such that |G(n, n, k,min)| = o(2n
2

) if k < cn/(log n). This implies
that for almost all bipartite graphs on n+ n vertices fmin(G) ≥ cn/(log n).

A k-min-difference representation (Ai : i ∈ V ) of G is reduced if deleting any
element x from all sets that contain it yields a representation of a graph different
from G. Note that

|Ai \Aj | − 1 ≤ |(Ai \ x) \ (Aj \ x)| ≤ |Ai \Aj |

so the graph G′ corresponding to the k-representation (Ai \ x : i ∈ V ) has no more
edges than G, E(G′) ⊆ E(G). There is a natural partition of the elements of

⋃
Ai:

for every ∅ 6= I ⊆ [n]; we have the subset (
⋂
i∈I Ai) ∩ (

⋂
j 6∈I Aj), where Aj is the

complement of the set Aj . We call these subsets atoms. If a k-min-difference rep-
resentation is reduced, then no atom has more than k elements. It follows that the
ground set

⋃
Ai of a reduced representation of an n-vertex graph has no more than

k2n elements. Lemma 5 improves on this observation.

Lemma 5. Let G be a graph with n vertices and (A1, . . . , An) a reduced k-min-
difference representation of G. Then

∣∣∣
⋃
Ai

∣∣∣ ≤ 2e(G)k ≤ kn2.

Proof. Define the sets Ai,j := Ai \ Aj in the cases ij ∈ E(G), and |Ai \ Aj | = k.
Let S :=

⋃
Ai,j . The number of elements in S is bounded above by the quantity

|E(G)| ·2k. We claim that S =
⋃
Ai. Otherwise, if there is an element x ∈ (

⋃
Ai)\S,

then the representation can be reduced, and (Ai \ x : i ∈ V ) defines the same graph
as (Ai : i ∈ V ).

The upper bound in Lemma 5 can be significantly improved for bipartite graphs.
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Fig. 1. |A1| ≤ · · · ≤ |An| in a min-diff representation when {1, 2, . . . , n} is independent.

Lemma 6. Let G ∈ G(n, n) be a bipartite graph with n + n labeled vertices, G ∈
G(n, n, k,min). Let (A1, . . . , An) and (B1, . . . , Bn) be the sets representing the two
parts. If (A1, . . . , An, B1, . . . , Bn) is a reduced k-min-difference representation of G,
then ∣∣∣

(⋃
Ai

)
∪
(⋃

Bi

)∣∣∣ ≤ 4kn.

Proof. Suppose that |A1| ≤ · · · ≤ |An| and |B1| ≤ · · · ≤ |Bn|. Let A :=
⋃
Ai and

B :=
⋃
Bi, S := A ∪B. Define

(3.1) A′ :=

n−1⋃

i=1

(Ai \Ai+1).

For each i, the inequality |Ai \ Ai+1| ≤ |Ai+1 \ Ai| follows from the assumption that
|Ai| ≤ |Ai+1|. The vertices in each part of G form an independent set, so for each i,
we have |Ai \Ai+1| ≤ k − 1. Hence |A′| ≤ (n− 1)k.

If x ∈ Aα\Aβ for some α < β, then there is an index i such that x ∈ Ai\Ai+1 and
therefore x ∈ A′. In other words, if x ∈ Aα \ A′ and α < β, then x ∈ Aβ . Therefore
the sets Ai \A′ form a chain (see Figure 1),

A1 \A′ ⊆ A2 \A′ ⊆ · · · ⊆ An \A′.

Treat the other part of G analogously: define B′ and note the same bound on its size,
and note that the sets Bi \B′ form a chain.

Let us define D = S \ (A′ ∪ B′). We will prove that there are at most 2(n + 1)
sets of the form Am \B` and Bp \Aq, each of cardinality k, covering D. Therefore D

contains at most 2(n+1)k elements. For each 1 ≤ i ≤ n, let us define Ãi = Ai∩D and

B̃i = Bi∩D. Let Ã0 = B̃0 = ∅ and Ãn+1 = B̃n+1 = D. The sets Ã0, Ã1, . . . , Ãn, Ãn+1

form a chain, and the same for B̃0, B̃1 . . . , B̃n, B̃n+1. The elements of D belong to
(n + 1)2 atoms (as defined in the beginning of this section), many of them possibly
empty, corresponding to the squares in Figure 2.

For each i, j, 1 ≤ i, j ≤ n + 1, (i, j) 6= (n + 1, n + 1), the atom Si,j is defined

as (Ãi \ Ãi−1) ∩ (B̃j \ B̃j−1). Since the representation is reduced, no elements from
the atom Si,j can be left out. (It follows, e.g., that S1,1 = ∅. Note that S1,1 =
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B̃1 B̃2 B̃3

Ã1

Ã2

Ã3 Sij

Ãm \ B̃`

B̃p \ Ãq

Fig. 2. The elements of S \ (A′ ∪B′) split into (n + 1)2 atoms.

(
⋂
Ai) ∩ (

⋂
Bj). If x ∈ S1,1, then x does not belong to any difference Ap \ Bq and

hence its deletion cannot change the edge set of the graph represented by the set
system.) If we leave out an element from the atom Si,j , the graph represented by the
new set system would have a different edge set—in particular, some edge would be
missing compared to the graph represented by the original set system. This means
that either there are some m and ` such that |Am \B`| = k and the atom Si,j belongs
in Am \ B` (here n ≥ m ≥ i ≥ 1 and j > ` ≥ 1), or there are some p, q such that

|Bp \ Aq| = k and the atom Si,j is in Bp \ Aq. Since |Ãm \ B̃`| ⊆ Am \ B`, we

have |Ãm \ B̃`| ≤ k in the first case. Likewise in the second case, |B̃p \ Ãq| ≤ k. In
Figure 2, the first option corresponds to a rectangle containing the Si,j cell and the
upper-right corner, with all the squares in this rectangle together containing only at
most k elements. The second option corresponds to a similar rectangle with only at
most k elements in it, containing the Si,j square and the lower-left corner.

Call a subrectangle Ãm\B̃` critical if |Am\B`| = k, and similarly B̃p\Ãq is critical
if |Bp \ Aq| = k. Our argument above can be reformulated that every (nonempty)
cell Si,j is covered by a critical rectangle. This implies that in each row one can find
at most two critical rectangles that cover all nonempty atoms in it. This yields the
desired upper bound |D| ≤ 2(n+ 1)k.

Finally, altogether |S| ≤ |A′|+ |B′|+ |D| ≤ 4kn.

3.2. Counting reduced matrices. Let S be a set of size |S| = 4kn. In this
subsection we give an upper bound for the number of sequences (A1, . . . , An) of subsets
of S satisfying the following two properties:

(P1) |A1| ≤ · · · ≤ |An|,
(P2) |Ai \Ai+1| ≤ k − 1 (for all 1 ≤ i ≤ n− 1).

LetM be the 0-1 matrix that has the characteristic vectors of the sets A1, . . . , An
as its rows (in this order). The positions in M where an entry 1 is directly above
an entry 0 will be called one-zero configurations, while the positions where a 0 is
directly above a 1 will be called zero-one configurations. A column in a 0-1 matrix is
uniquely determined by the locations of the one-zero configurations and the zero-one
configurations unless it is a full 0 or full 1 column. We count the number of possible
matrices M by filling up the n× (4kn) entries in three steps.
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Each one-zero configuration corresponds to an i < n and to an element x ∈
Ai \Ai+1. A set Ai \Ai+1 can be selected in at most

(
4nk

0

)
+ · · ·+

(
4nk

k − 1

)
< (4en)k

ways (n > k ≥ 1). Do this for each i < n, and altogether we have less than (4en)kn

ways to write the one-zero configurations into M.
Select in each column the top 1. If there is no such element in a column we

indicate that it is blank, a full zero column. There are at most n + 1 outcomes for
each column, and altogether there are at most (n + 1)4kn possibilities. Fill up with

0’s each column above its top 1. Define A′ ⊂ S as in (3.1), A′ :=
⋃n−1
i=1 (Ai \ Ai+1).

We have |A′| ≤ kn. The columns ofM that correspond to the elements of S \A′ have
a (possibly empty) string of zeros followed by a string of ones. We almost filled up
M and we can finish this process by selecting the remaining zero-one configurations.

There may be several zero-one configurations in a single column. Each of them
has a unique (closest, or smallest indexed) 1 above them. That element 1 is already
written in into our still partially filled M, because that element 1 (even if it is the
top 1 element) belongs to a unique one-zero configuration. This correspondence is an
injection. So there are at most

∑
i |Ai \ Ai+1| ≤ kn zero-one configurations in the

columns corresponding to A′ which are not yet identified. There are at most nkn ways
to select them.

Since (for n > k ≥ 1)

(4en)kn × (n+ 1)4kn × nkn < n6kn+O(kn/ logn) = e6kn logn+O(kn),

we obtain the following.

Claim 7. Altogether, there are eO(kn logn) ways to fill M with entries in {0, 1}
according to the rules (P1) and (P2).

3.3. Proofs of the lower bounds.

Proof of the lower bound in Theorem 3. Let G = G(V1, V2) be a bipartite graph
with both parts of size n and suppose that G belongs to G(n, n, k,min). By Lemma 6
we may suppose that G has a reduced k-min-difference representation (A1, . . . , An,
B1, . . . , Bn) such that each representing set is a subset of S, where |S| = 4kn. There
are permutations π and ρ ∈ Sn which rearrange the sets according their sizes |Aπ(1)| ≤
· · · ≤ |Aπ(n)| and |Bρ(1)| ≤ · · · ≤ |Bρ(n)|. Consider the Vi × S matrices, Mi, i = 1, 2,
whose ith row is the 0-1 characteristic vector of Aπ(i) and Bρ(i), respectively. The
permutations π, ρ and the matrices M1, M2 completely describe G. The matrices
Mi satisfies properties (P1) and (P2), so Claim 7 yields the following upper bound
for the number of such quadruples (π, ρ,M1,M2)

(3.2) |G(n, n, k,min)| ≤ # of (π, ρ,M1,M2)′s ≤ (n!)2n(12+o(1))kn = eO(kn logn).

Here the right-hand side is o(2n
2

) if k ≤ 0.057n/(log n) implying that fmin(G) >

0.057n/(log n) for almost all the 2n
2

bipartite graphs.

Proof of the lower bound for the random bipartite graph. Recall that in a random
graph G ∈ G(n, p), each of the

(
n
2

)
edges occurs independently with probability p.

Similarly, G(n, n, p) denotes the class of graphs G(n, n) with the probability of a given
graph G ∈ G(n, n) is

pe(G)(1− p)n2−e(G).
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Here the right-hand side is at most (max{p, 1− p})n2

. This implies that for any class
of graphs A ⊂ G(n, n) the probability Pr(G ∈ A) is at most |A| times this upper
bound. If the class of graphs A is too small, namely,

|A| = o

((
min

{
1

p
,

1

1− p

})n2)
,

then for G(n, n, p) one has

(3.3) Pr(G ∈ A)→ 0.

Taking A := G(n, n, k,min) with a sufficiently small k, we obtain the following.

Corollary 8. For constant 0 < p < 1 there exists a constant c = c1,min(p) > 0
such that the following holds for G ∈ G(n, n, p) with high probability as n→∞:

c
n

log n
< fmin(G).

4. Maximum and average difference representations. Boros, Gurvich, and
Meshulam [6] also defined k-max-difference representations and k-average-difference
representations of a graph G in a natural way, that is, the vertices i and j are adjacent
if and only if for the corresponding sets Ai, Aj we have max{|Ai\Aj |, |Aj\Ai|} ≥ k and
(|Ai \Aj |+ |Aj \Ai|)/2 ≥ k, respectively. Analogously to fmin we can define fmax(G)
and favg(G). Since for every graph G a Kneser representation is a min-difference,
average-difference, and max-difference representation as well we get

(4.1) fmin(G), favg(G), fmax(G) ≤ fKneser(G) ≤ n− 1.

Let G(n, k,max), G(n, n, k,max), (G(n, k, avg), G(n, n, k, avg)) denote the family of
graphs G ∈ G(n) and in G(n, n) with n labeled vertices V or with partite sets V1 and
V2, |V1| = |V2| = n, respectively, such that fmax(G) ≤ k (favg(G) ≤ k, respectively).

It was proved in [6] that fmax and fmin are not bounded by a constant; for
a matching of size t one has fmax(tK2) = Θ(log t) and favg(tK2) = Θ(log t). (It
turns out that fmin(tK2) = 1.) The proof of Theorem 3 can be easily adapted for
these parameters for G(n, n, p) as well. Even more, we can handle the general case
G ∈ G(n, p), too.

Corollary 9. For constant 0 < p < 1 there exists a constant c = c(p) > 0 such
that the following holds for G ∈ G(n, n, p) with high probability as n→∞:

(4.2) c
n

log n
< favg(G), fmax(G).

Similarly for G ∈ G(n, p) with high probability we have

(4.3) c
n

log n
< favg(G), fmax(G).

These lower bounds together with the upper bounds from Corollary 14 below
imply that for almost all n vertex graphs, and for almost all bipartite graphs on n+n
vertices, favg(G) and fmax(G) are Θ(n/(log n)).

Sketch of the proof. IfG ∈ G(n, n, k,max) (and ifG ∈ G(n, n, k, avg)) and (A1, . . . ,
An, B1, . . . , Bn) is a k-max-difference (k-average-difference) representation, then

(4.4) |Ai 4Aj | ≤ 2k − 2 (≤ 2k − 1)
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holds for each pair i, j. If the representation is reduced, then we obtain (without the
tricky proof of Lemma 6) that |⋃iAi| < 2kn, and the same holds for |⋃iBi|, too.
The conditions of Claim 7 are satisfied implying

|G(n, n, k,max)|, |G(n, n, k, avg)| = eO(kn logn).

We complete the proof of (4.2) applying (3.3) as it was done at the end of the previous
section.

To prove (4.3) consider a graph G ∈ G(n, k,max) and let (A1, . . . , An) be a
reduced k-max-difference representation. (The case of k-average-difference represen-
tation can be handled in the same way, and the details are left to the reader.) The
only additional observation we need is that since (4.4) holds for each nonedge {i, j},
we have |Ai 4 Aj | ≤ 4k − 4 for all pairs of vertices whenever diam(G) ≤ 2. Thus for
every reduced representation (in case of diam(G) ≤ 2) one has |⋃iAi| ≤ (4k − 4)n.
Also, |Ai \ Aj | ≤ 2k − 2 for |Ai| ≤ |Aj |. Then the conditions of Claim 7 are fulfilled
(with 2k − 2 instead of k) implying the following version of (3.2):

|G(n, k,min) \ G2(n)| = eO(kn logn),

where G2(n) denotes the class of graphs with G ∈ G(n),diam(G) > 2.
We complete the proof of (4.3) by applying (3.3) and the fact that

diam(G) ≤ 2

holds with high probability for G ∈ G(n, p).

5. Clique covers of the edge sets of graphs. We need the following version of
Chernoff’s inequality (see, e.g., [1]). Let Y1, . . . , Yn be mutually independent random
variables with E[Yi] ≤ 0 and all |Yi| ≤ 1. Let a ≥ 0. Then

(5.1) Pr[Y1 + · · ·+ Yn > a] < e−a
2/(2n).

A finite linear space is a pair (P,L) consisting of a set P of elements (called points)
and a set L of subsets of P (called lines) satisfying the following two properties:

(L1) Any two distinct points x, y ∈ P belong to exactly one line L = L(x, y) ∈
L.

(L2) Any line has at least two points.
In other words, the edge set of the complete graph K(P ) has a clique decomposition
into the complete graphs K(L), L ∈ L.

Lemma 10. For every positive integer n there exists a linear space L = Ln with
lines L1, . . . , Lm such that m = n+ o(n), every edge has size (1 + o(1))

√
n, and every

point belongs to (1 + o(1))
√
n lines.

Proof (folklore). If n = q2, where q > 1 is a power of a prime, then we can take
the q2 + q lines of an affine geometry AG(2, q). Each line has exactly q =

√
n points

and each point belongs to q+ 1 lines. In general, one can consider the smallest power
of prime q with n ≤ q2 (we have q = (1 + o(1))

√
n) and take a random n-set P ⊂ F2

q

and the lines defined as P ∩ L, L ∈ L(AG(2, q)).

5.1. Thickness of clique covers. The clique cover number θ1(G) of a graph G
is the minimum number of cliques required to cover the edges of graph G. Frieze and
Reed [10] proved that for p constant, 0 < p < 1, there exist constants c′i = c′i(p) > 0,
i = 1, 2, such that for G ∈ G(n, p) with high probability

c′1
n2

(log n)2
< θ1(G) < c′2

n2

(log n)2
.
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They note that “a simple use of a martingale tail inequality shows that θ1 is close
to its mean with very high probability.” We only need the following consequence
concerning the expected value:

(5.2) E(θ1(G)) < c′3
n2

(log n)2
.

The thickness θ0 of a clique cover C := {C1, . . . , Cm} of G is the maximum degree
of the hypergraph C, i.e., θ0(C) := maxv∈V (G) degC(v). The minimum thickness among
the clique covers of G is denoted by θ0(G).

A clique cover C corresponds to a set representation v 7→ Av in a natural way
Av := {Ci : v ∈ Ci} with the property that Au and Av are disjoint if and only if {u, v}
is a nonedge of G. The size of the largest Av is the thickness of C. For k > θ0(C) one
can add k − |Av| distinct extra elements to Av (for each v ∈ V (G)), thus obtaining
a Kneser representation of rank k of the complement of G, G. (The value k = θ0(G)
might not suffice because of the requirement that the representing sets be distinct.)
We obtained fKneser(G) ≤ θ0(G) + 1. On the other hand a Kneser representation of
G yields a clique cover of G, so we have

(5.3) θ0(G) ≤ fKneser(G) ≤ θ0(G) + 1.

Theorem 11. For constant 0 < p < 1 there exist constants ci = ci(p) > 0,
i = 1, 2, such that for G ∈ G(n, p) with high probability

c1
n

log n
< θ0(G) < c2

n

log n
.

Proof. The lower bound is easy. The maximum degree ∆(G) of G ∈ G(n, p)
with high probability satisfies ∆ ≈ np. As usual we write an ≈ bn as n tends to
infinity. Also for the unproved but well-known statements concerning the random
graphs see the monograph [13]. The size of the largest clique ω = ω(G) with high
probability satisfies ω ≈ 2 log n/(log(1/p)). Since θ0 ≥ ∆/(ω − 1) we may choose
c1 ≈ p(log(1/p))/2.

The upper bound probably can be proved by analyzing and redoing the clever
proof of Frieze and Reed concerning θ1(Gn,p). Probably their randomized algorithm
yields the upper bound for the thickness, too, although there are steps in their proof
where they remove from G (as cliques of size 2) an edge set of size O(n31/16) and one
needs to show that these edges are well-distributed. However, one can easily deduce
the upper bound for θ0(Gn,p) directly only from (5.2).

Given n, fix a linear hypergraph L = Ln with point set [n] and hyperedges
L1, . . . , Lm provided by Lemma 10. We have m = n+o(n), `i := |Li| = (1+o(1))

√
n,

and every point v belongs to bv = (1 + o(1))
√
n lines. Build the random graph

G ∈ G(n, p) in m steps by taking a Gi ∈ G(Li, p). Let Ci be a clique cover of Gi with
θ1(Gi) members, C = ∪1≤i≤mCi.

Let Xi(v) denote the thickness of Ci at the point v ∈ Li. We consider Xi(v) as a
random variable, whose distribution is depending only on `i and p. For every Li, we
have ∑

v:v∈Li

Xi(v) =
∑

C∈Ci

|C| ≤ θ1(Gi)ω(Gi).

Here with very high probability ωi = ω(Gi) satisfies ωi ≈ 2 log `i/(log(1/p)). Then (5.2)
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implies that

E

(∑

v∈Li

Xi(v)

)
≤ c′3

`2i
(log `i)2

× (1 + o(1))
2 log `i

log(1/p)
.

Since the distributions of Xi(u) and Xi(v) are identical (for u, v ∈ Li), and there are
`i terms on the left-hand side, we obtain that

E(Xi(v)) ≤ (1 + o(1))
2c′3

log(1/p)
× `i

log `i
< c

√
n

log n
.

Here we chose c > 4c′3/(log(1/p)).
Let X(v) be the thickness of C at v. We have X(v) =

∑
Li3vXi(v), where this

is a sum of b := bv = (1 + o(1))
√
n mutually independent random variables, and

each term is nonnegative and is bounded by ` = maxi `i = (1 + o(1))
√
n. Define b

independent random variables

Yi :=
1

`

(
Xi(v)− c

√
n

log n

)

for each i with Li 3 v. We can apply Chernoff’s inequality (5.1) for any real a > 0

Pr

[(∑

Li3v
Yi

)
> a

]
< e−a

2/(2b).

Substituting a :=
√

4b log n the right-hand side is 1/n2 and we get

Pr

[
X(v) > c

b
√
n

log n
+ `
√

4b log n

]
<

1

n2
.

Since this is true for all v ∈ [n], we obtain that (for large enough n) for any c2 > c

Pr

[
X(v) < c2

n

log n
for all v

]
> 1− 1

n
,

completing the proof of the upper bound for θ0(G).

Since the complement of a random graph G ∈ G(n, p) is a random graph from
G(n, 1− p), Theorem 11 and (5.3) imply the following.

Corollary 12. For constant 0 < p < 1, there exist constants ci,Kneser =
ci,Kneser(p) > 0, i = 1, 2, such that for G ∈ G(n, p) with high probability

c1,Kneser
n

log n
< fKneser(G) < c2,Kneser

n

log n
.

One can also prove a similar upper bound for the random bipartite graph.

Corollary 13. For constant 0 < p < 1 there exist a constant c3,Kneser =
c3,Kneser(p) > 0 such that for G ∈ G(n, n, p) with high probability

fKneser(G) < c3,Kneser
n

log n
.
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Proof. Let G ∈ G(n, n, p) a random bipartite graph with partite sets |A| = |B| =
n. Considering a random graph GA ∈ G(A, p) and GB ∈ G(B, p), their union is
H = G∪GA ∪GB . We can consider H as a member of G(A∪B, 1− p). Since G can
be obtained from H by adding two complete graphs KA and KB (so the thickness of
G cannot exceed θ0(H) + 1), we obtain

fKneser(G)− 1 ≤ θ0(G) ≤ θ0(H) + 1 < 1 + c2(1− p) 2n

log(2n)
,

where the last inequality holds with high probability according to Theorem 11.

Recall (4.1), that for every graph G, fmin(G), favg(G), fmax(G) ≤ fKneser(G)
holds. These and the above two corollaries imply the following upper bounds.

Corollary 14. For constant 0 < p < 1 the following holds for G ∈ G(n, p) with
high probability as n→∞,

fmin(G), favg(G), fmax(G) < c2,Kneser(p)
n

log n
,

and similarly for G ∈ G(n, n, p)

fmin(G), favg(G), fmax(G) < c3,Kneser(p)
n

log n
.

6. Prague dimension. The Prague dimension (it is also called product dimen-
sion) fPra(G) of a graph G is the smallest integer k such that one can find vertex
distinguishing good colorings ϕ1, . . . , ϕk : V (G)→ N. This means that ϕi(u) 6= ϕi(v)
for every edge uv ∈ E(G) and 1 ≤ i ≤ k but for every nonedge {u, v}, there ex-
ists an i with ϕi(u) = ϕi(v), and moreover the vectors (ϕ1(u), ϕ2(u), . . . , ϕk(u)) and
(ϕ1(v), ϕ2(v), . . . , ϕk(v)) are distinct for u 6= v. Two vertices are adjacent if and only
if their labels disagree in every ϕi. As Hamburger, Por, and Walsh [12] observed, the
Kneser rank never exceeds the Prague dimension, so one can extend (4.1) as follows.
For every graph G

(6.1) fmin(G), favg(G), fmax(G) ≤ fKneser(G) ≤ fPra(G).

The determination of fPra(G) is usually a notoriously difficult task. The results of
Lovász, Nešetřil, and Pultr [15] were among the first (nontrivial) applications of the
algebraic method. Hamburger, Por, and Walsh [12] observed that there are graphs
where the difference of fPra(G)−fKneser(G) is arbitrarily large, even for Kneser graphs
Kn(s, k). Poljak, Pultr, and Rödl [17] proved that fPra(Kn(s, k)) = Θ(log log s) (as
k is fixed and s → ∞) while fKneser(Kn(s, k)) = k for all s ≥ 2k > 0. Still we think
that for most graphs these parameters have the same order of magnitude.

Conjecture 15. For a constant probability 0 < p < 1 there exists a constant
c2,Pra = c2,Pra(p) > 0, such that for G ∈ G(n, p) with high probability

fPra(G) < c2,Pra
n

log n
.

A matching lower bound c1,Kneser(n/(log n)) < fPra(G) (with high probability)
follows from (6.1) and Corollary 12. We think the same order of magnitude holds for
the case when G is bipartite.

Conjecture 16. For a constant probability 0 < p < 1 there exists a constant
c3,Pra = c3,Pra(p) > 0, such that for G ∈ G(n, n, p) with high probability

fPra(G) < c3,Pra
n

log n
.
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6.1. Prague dimension and clique coverings of graphs. The chromatic
index θ′0(C) of a clique cover C := {C1, . . . , Cm} of the graph G is the chromatic
index of the hypergraph C, i.e., θ′0(C) is the smallest k that one can decompose the
clique cover into k parts, and C = C1 ∪ · · · ∪ Ck such that the members of each Ci are
pairwise (vertex)disjoint. The minimum chromatic index among the clique covers of
G is denoted by θ′0(G). In other words, E(G) can be covered by k subgraphs with
complete graph components. Obviously, the thickness is a lower bound θ0(G) ≤ θ′0(G).
Here the left-hand side is at most O(n/(log n)) for almost all graphs by Theorem 11.
We think that the Frieze–Reed [10] method can be applied to find the correct order
of magnitude of θ′0, too.

Conjecture 17. For p constant, 0 < p < 1, there exists a constants c4 = c4(p) >
0 such that for G ∈ G(n, p) with high probability

θ′0(G) < c4
n

log n
.

One can observe that (similarly as fKneser and θ0 are related; see (5.3)) there is a
remarkable simple connection between Prague dimension and θ′0.

θ′0(G) ≤ fPra(G) ≤ θ′0(G) + 1.

So Conjectures 15 and 17 are in fact equivalent, and Conjecture 17 also implies Con-
jecture 16.

7. Conclusion. We have considered five graph functions fmin(G), favg(G),
fmax(G), fKneser(G), and fPra(G), which are hereditary (monotone for induced sub-
graphs) and two random graph models G(n, p) and G(n, n, p). We gave an upper
bound for the order of magnitude for eight of the possible ten problems, and we also
have conjectures for the missing two upper bounds (Conjectures 15 and 16). We
also established matching lower bounds in seven cases, which also gave probably the
best lower bound in two more cases (concerning fPra). All of these 19 estimates were
Θ(n/(log n)). In the last case (in Corollary 4) we have a weaker bound, so it is natural
to ask that

Problem 18. Is it true that for any fixed 0 < p < 1 for G ∈ G(n, p) with high
probability one has Ω(n/(log n)) ≤ fmin(G)?

Let us remark that if G is a complement of a triangle-free graph, then the Kneser
rank and Prague dimension is ∆(G) or ∆(G) + 1. So it can be Ω(n). For example,
fKneser(K1,n−1) = n− 1. No such results are known for fmin.

Problem 19. What is the maximum of fmin(G) over the set of n-vertex graphs
G? Is it true that fρ(G) = o(n) for every ρ ∈ {min, avg,max} and G ∈ G(n)∪G(n, n)?
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[15] L. Lovász, J. Nešetřil, and A. Pultr, On a product dimension of graphs, J. Combin. Theory

Ser. B, 29 (1980), pp. 47–67.
[16] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, Discrete Math.

Appl., SIAM, Philadelphia, 1999.
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