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ARTICLE INFO ABSTRACT

Articl_e history: The Erd6s—Gallai Theorem states that for k > 3, any n-vertex graph with no cycle of length
Received 9 April 2017 atleast k has at most 1 (k— 1)(n — 1) edges. A stronger version of the Erd8s-Gallai Theorem
Received in revised form 19 November 2017 was given by Kopylov: If G is a 2-connected n-vertex graph with no C}(/cle of length at least
Accepted 29 December 2017 k, then e(G) < max{h(n, k, 2), h(n, k, Lk%]J)} where h(n, k, a) == ( ;a) +a(n —k+ a)

Furthermore, Kopylov presented the two possible extremal graphs, one with h(n, k, 2)
edges and one with h(n, k, L"%J ) edges.

K ds: R e .

Ti}r/;‘rllolr)rf)blem In this paper, we complete a stability theorem which strengthens Kopylov’s result. In
Cycles particular, we show that for k > 3 odd and all n > k, every n-vertex 2-connected graph
Paths G with no cycle of length at least k is a subgraph of one of the two extremal graphs or

e(G) < max{h(n, k, 3), h(n, k, "‘73 )}. The upper bound for e(G) here is tight.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One of the fundamental questions in extremal graph theory is to determine the maximum number of edges in an n-vertex
graph with no k-vertex path. According to [8], this problem was posed by Turan. A solution to the problem was obtained by
Erdds and Gallai [4]:

Theorem 1.1 (Erdds and Gallai [4]). Let G be an n-vertex graph with more than %(k —2)nedges, k > 2. Then G contains a k-vertex
path Py.

Theorem 1.1 can be proved as a corollary of the following theorem about cycles in graphs:

Theorem 1.2 (Erdés and Gallai [4]). Fix n, k > 3. If G is an n-vertex graph that does not contain a cycle of length at least k, then
e(G) < (k—1)(n—1).

The bound of Theorem 1.2 is best possible for n — 1 divisible by k — 2. Indeed, any connected n-vertex graph in which
every block is a K_1 has %(k — 1)(n — 1) edges and no cycles of length at least k. In the 1970s, some refinements and new
proofs of Theorem 1.2 were obtained by Faudree and Schelp [6,5], Lewin [10], and Woodall [11]—see [8] for more details.
The strongest version was proved by Kopylov [9]. His result uses the following n-vertex graphs Hy ., where n > k and
1<a< %k. The vertex set of Hy, x4 is the union of three disjoint sets A, B, and C such that |A| = a, |B| = n — k 4+ a and
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Fig. 1. Hig 113

|C| = k — 2a, and the edge set of H,, ;o consists of all edges between A and B together with all edges in A U C (Fig. 1 shows
Hig11,3). Let

h(n, k, a) == e(Hyxa) = (k ; a) +an—k+a)

For a graph G containing a cycle, the circumference, c(G), is the length of a longest cycle in G. Observe that c(Hp x.q) < k:
Since |AU C| = k — a, any cycle D of at length at least k has at least a vertices in B. But as B is independent and 2a < k, D
also has to contain at least k + 1 neighbors of the vertices in B, while only a vertices in A have neighbors in A. Kopylov [9]
showed that the extremal 2-connected n-vertex graphs with no cycles of length at least k are G = H; k2 and G = Hy k¢ (see
Fig. 2): the first has more edges for small n, and the second has more edges for large n.

Theorem 1.3 (Kopylov [9]). Letn > k > 5andt = L%(k — 1)]. If Gis an n-vertex 2-connected graph with c(G) < k, then

e(G) < max{h(n, k, 2), h(n, k, t)} (1)
with equality only if G = Hy k2 or G = Hp ;.
Kopylov’s theorem also implies Theorem 1.2 by applying induction to each block of a graph.

2. Results
2.1. A previous result

Recently, three of the present authors proved in [7] a stability version of Theorems 1.2 and 1.3 for n-vertex 2-connected
graphs with n > 3k/2, but the problem remained open for n < 3k/2 when k > 9. The main result of [7] was the following:

Theorem 2.1 (Fiiredi, Kostochka, Verstraéte [7]). Let t > 2 andn > 3t and k € {2t + 1, 2t + 2}. Let G be a 2-connected n-vertex
graph c(G) < k. Then e(G) < h(n, k, t — 1) unless

(a) k=2t+1,k#7,and G C Hy or
(b) k=2t+2o0rk=7,and G — Ais astar forest for some A C V(G) of size at most t.

2.2. The essence of the main result

The paper [7] also describes the 2-connected n-vertex graphs G with e(G) > h(n, k,t — 1)and ¢(G) < k < 8 foralln > k.
In particular, for k < 8, each such graph satisfies either (a) or (b) of Theorem 2.1.

Together with the cases for k < 8, this paper gives a full description of the 2-connected n-vertex graphs G with ¢(G) < k
and ‘many’ edges for all k and n. Our main result is:

Theorem 2.2. Let t > 4and k € {2t + 1, 2t + 2}, so that k > 9. If G is a 2-connected graph on n > k vertices and c(G) < k,
then either e(G) < max{h(n, k, t — 1), h(n, k, 3)} or

(a) k=2t+1andG < Hp ¢ or
(b) k=2t+ 2andG — Ais astar forest for some A C V(G) of size at most t.
(C) G g Hn,k,Z-

Note that
n—t—3 ifk=2t+1,

h(n, k,t) —h(n, k.t — 1) = )
n—t—>5 ifk=2t+2,
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Fig. 2. Ovals denote complete subgraphs of order t, t, and k — 2.

and
h(n, k,2)— h(n, k,3) =k —n— 3.

We consider the case e(G) > h(n, k,t — 1) whenever n is large compared to k (and t), and e(G) > h(n, k, 3) whenever n
is small. We state these exact bounds in Section 3.

Also, note that the case n < k is trivial and the case k < 8 was fully resolved in [7].

We will reuse many slightly modified lemmas from [7] in the proof of the main result. As such, when introducing such
lemmas, instead of repeating the proofs word-for-word, we provide brief proof sketches and a reference to the corresponding
full proof in [7] for the interested reader.

2.3. A more detailed form of the main result

In order to prove Theorem 2.2, we need a more detailed description of the graphs satisfying (b) in the theorem that do
not contain ‘long’ cycles. For this, we introduce four families of graphs G, G,, G3, and G, that (apart from G, ) are identical to
the families introduced in [7]. In the definitions below we use t = [(k — 1)/2].

Let G1(n, k) = {Hnk.r, Hnk2}. Each G € Gy(n, k) is defined by a partition V(G) = AU BU C and two verticesa; € A,b; € B
such that

- 1A=t

- GlA] = Kq,

G[B] is the empty graph,

G(A, B) is a complete bipartite graph, and
- N(c) = {aq, b1} for every c € C.

Every graph G € Gs(n, k) is defined by a partition V(G) = A U B U] such that |A| = t, G[A] = K;, G(A, B) is a complete
bipartite graph, and

- G[J] has more than one component,

all components of G[J] are stars with at least two vertices each,

there is a 2-element subset A’ of A such that NJ) N (AUB) = A/,

for every component S of G[J] with at least 3 vertices, all leaves of S have degree 2 in G and are adjacent to the same
vertex a(S)in A’

The class G4(n, k) is empty unless k = 10. Each graph H € G4(n, 10) has a 3-vertex set A such that H[A] = Kz and H — A
is a star forest such that if a component S of H — A has more than two vertices then all its leaves have degree 2 in H and are
adjacent to the same vertex a(S) in A.

These classes are illustrated in Fig. 3.

Now we define G(n, k) as follows:

(1) ifkisodd, then G(n, k) = G1(n, k) = {Hyk¢, Hok2};
(2) ifkisevenandk # 10, then G(n, k) = G1(n, k) U Ga(n, k) U G3(n, k);
(3) ifk = 10, then G(n, k) = G1(n, 10) U Go(n, 10) U G3(n, 10) U G4(n, 10).

In these terms, we get the following refinement of Theorem 2.2:
Theorem 2.3 (Main Theorem). Letk > 9,n > kand t = L%(k - 1)J. Let G be an n-vertex 2-connected graph with no cycle of
length at least k. Then either e(G) < max{h(n, k, t — 1), h(n, k, 3)} or G is a subgraph of a graph in G(n, k).

Since every graph in G,(n, k)UGs(n, k) and many graphs in G4(n, k) have a separating set of size 2 (see Fig. 4), the theorem
implies the following simpler statement for 3-connected graphs:
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Fig. 3. Examples of graphs in classes G»(n, k), gs(n, k), and G4(n, 10), respectively.

Fig. 4. The set {a, b} forms a separating set of the graph.

Corollary 2.4. Let k € {2t + 1,2t + 2} where k > 9. If G is a 3-connected graph on n > k vertices and c(G) < k, then either
e(G) < max{h(n, k,t — 1), h(n, k, 3)} or

(1) G C Hppy, or
(2) k= 10and G is a subgraph of some graph H € G4(n, 10) such that each component of H — A has at most 2 vertices.

3. The setup and ideas
3.1. Small dense subgraphs

First we define some more graph classes (also defined identically to [7]). For a graph F and a nonnegative integer s, we
denote by X7°(F) the family of graphs obtained from F by deleting at most s edges.

Let Fy = Fo(t) denote the complete bipartite graph K; ;+1 with partite sets A and B where |A| = t and |B| = t + 1. Let
Fo = K™3(Fy), i.e., the family of subgraphs of K; ;1 with at least t(t + 1) — t 4+ 3 edges.

Let F; = F(t) denote the complete bipartite graph K; ., with partite sets A and B where |A| = t and |B| = t + 2. Let
F1 = K 4(F,), i.e., the family of subgraphs of K; r+2 with at least t(t + 2) — t + 4 edges.

Let 7, denote the family of graphs obtained from a graph in X ~+4(F;) by subdividing an edge a;b; with a new vertex c;,
where a; € Aand b; € B. Note that any member H € F; has at least |A||B| — (t — 3) edges between A and B and the pair a1 b,
is not an edge.

Let F3 = F5(t, t') denote the complete bipartite graph K; » with partite sets A and B where |[A| = t and |B| = t’. Take a
graph from K~tT4(F3), select two non-empty subsets A;,A; € Awith |A;UA;| > 3 suchthatA;NA, = @ifmin{|A], |A2|} = 1,
add two vertices ¢ and c;, join them to each other and add the edges from ¢; to the elements of A;, (i = 1, 2). The class of
obtained graphs is denoted by F(A, B, A1, Ay). The family 73 consists of these graphs when |A| = |B| = t, |A{| = |A;| = 2
and A; N A, = @. In particular, F3(4) consists of exactly one graph, call it F3(4).

Graph F4 has vertex set AU B, where A = {a,, a,, as} and B := {bq, by, ..., bg} are disjoint. Its edges are the edges of the
complete bipartite graph K(A, B) and three extra edges byb,, bsbs, and bsbg (see Fig. 4). Define F; as the (only) member of
F(A, B, A1, Ay) such that |A| = [B| =t = 4,A; = A, and |A;| = 3. Let 7, = {F4, F,;}, which is defined only for t = 4 (see
Fig. 5).

‘ ki
Define F(k) := {7 irleis odd,
F1U---UFy, ifkiseven.
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Fig. 5. Graphs F3(4), F4, and Fy.

3.2, Proofidea

In order to employ a stronger induction assumption, we will prove the following slightly stronger version of Theorem 2.3
claiming that the graphs in question contain dense graphs from F(k):

Theorem 2.3'. Lett > 4,k € {2t + 1,2t + 2}, and n > k. Let G be an n-vertex 2-connected graph with no cycle of length at
least k. Then either e(G) < max{h(n, k, t — 1), h(n, k, 3)} or

(a) G < Hyp,p, 01
(b) Gis contained in a graph in G(n, k) — {Hy k. 2}, and G contains a subgraph H € F(k),

where G(n, k) is as defined in Section 2.3.

The method of the proof is a variation of that of [7] for larger n as well as Kopylov’s disintegration method for n close to
k. We take an n-vertex graph G satisfying the hypothesis of Theorem 2.3’, and iteratively contract edges in a certain way so
that each intermediate graph still satisfies the hypothesis. We consider the final graph of this process G, on m vertices and
show that G, satisfies Theorem 2.3’. We will use two instrumental lemmas from [7].

Lemma 3.1 (Main Lemma on Contraction, Lemma 4.9 in [7]). Let k > 9 and suppose F and F’ are 2-connected graphs such that
F = F'/xy and c(F') < k. If F contains a subgraph H € F(k), then F’ also contains a subgraph H' € F(k).

This lemma shows that if G, contains a subgraph H € F(k), then the original graph G also contains a subgraph in F(k).
The second result concludes that the original graph G = G, must satisfy (b) of Theorem 2.3'. For the full proof of the lemma,
we refer the reader to [7]. Below we include a brief sketch of the proof.

Lemma 3.2 ([7](Subsection 4.5)). Let k > 9, and let G be a 2-connected graph with c(G) < k and e(G) > h(n,k,t — 1).If G
contains a subgraph H € F(k), then G is a subgraph of a graph in G(n, k) — {Hp k 2}.

Sketch of proof. Consider a component of S of G — H. Because G is 2-connected, S has at least two neighbors, say x and y in
H.Let £ be the length of a longest (x, y)-path P such that all internal vertices in P are in S. When k is odd, since H is “close” to
K ¢+1, it contains a long path P’ from x to y. Thus if £ is too large, P’ U P yields a cycle of length k or longer, a contradiction.
Then one can show that £ = 2 (edges). That is, each path from H to H that goes through S has only one internal vertex.
Thus |V(S)| = 1 and moreover, x and y both lie in the partite set of H of size t. This shows that G € Hy k. The case for k
even is handled similarly (but with more subcases; in particular we have ¢ < 3). We obtain that either G € H, or the
components of G — H are star forests that connect to H in the ways described in the classes Gi(n, k), i € {2, 3, 4}, otherwise
G would contain a cycle of length k or longer. O

We will split the proof into the cases of small n and large n. The following observations can be obtained by simple
calculations (for t > 4):

k h(n, k,3) > h(n, k,t — 1) h(n, k,2) = h(n, k,t — 1)

2t+1 | Ifandonlyifn <k+(t —5)/2 | Ifandonlyifn <k+t/2 -1
2t 4+2 | Ifandonlyifn <k+(t —3)/2 | Ifandonlyifn <k+t/2

In the case of large n we will contract an edge such that the new graph still has more than h(n — 1, k, t — 1) edges. In
order to apply induction, we also need the number of edges to be greater than h(n — 1, k, 3). To guarantee this, we pick the
cutoffs for the two casesn < k+ (t — 1)/2andn > k + (t — 1)/2 (thereforen — 1 > k + (t — 3)/2).

4. Tools
4.1. Classical theorems
Theorem 4.1 (Erdés [3]). Let d > 1 and n > 2d be integers, and
n—d [+l n—1,?
£, 4 = max d?, 2 L J )
n,d { ( 2 ) + ( 2 + 2

Then every n-vertex graph G with §(G) > d and e(G) > £, 4 is hamiltonian. O
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Theorem 4.2 (Chvdtal [1]). Let n > 3 and G be an n-vertex graph with vertex degreesd, < d, < --- < d,. If Gis not hamiltonian,
then there is somei < n/2 such that d; <iandd,_; <n—1i 0O

Theorem 4.3 (Kopylov [9]). If G is 2-connected and P is an x, y-path of £ vertices, then c(G) > min{¢, d(x, P) + d(y, P)}. O

4.2. Claims on contractions
A helpful tool will be the following lemma from [7] on contraction.
Lemma4.4 (Lemma 3.2in [7]). Let n > 4 and let G be an n-vertex 2-connected graph. For every v € V(G), there exists w € N(v)

such that G/vw is 2-connected. O

For an edge xy in a graph H, let Ty(xy) denote the number of triangles containing xy. Let T(H) = min{Ty(xy) : xy € E(H)}.
When we contract an edge uv in a graph H, the degree of every x € V(H) — u — v either does not change or decreases by 1.
Also if u * v is the vertex created upon contraction, then the degree of u * v in H/uv is at least max{dy(u), dy(v)} — 1. Thus

dujuw(w) > dy(w) — 1forany w € V(H) and uv € E(H). Also dy /(U * v) > dy(u) — 1. (2)
Similarly,
T(H/uv) > T(H) — 1 for every graph H and uv € E(H). (3)

We will use the following analog of Lemma 3.3 in [7].!

Lemma 4.5. Let h be a positive integer. Suppose a 2-connected graph G is obtained from a 2-connected graph G’ by contracting
edge xy into x x y chosen using the following rules:

(i) one of x, y, say x is a vertex of the minimum degree in G';

(ii) Ter(xy) is the minimum among the edges xu incident with x such that G’ /xu is 2-connected. If G has at least h vertices of
degree at most h, then either G' = Ky, or

(a) G’ also has a vertex of degree at most h, and

(b) G’ has at least h + 1 vertices of degree at most h + 1.

Proof. Note that in (ii), such edges exist by Lemma 4.4. Since G is 2-connected, h > 2.
Below for a positive integer s and a graph H, by V-;(H) we denote the set of vertices of degree at most s in H. Then by (2),
each v € V_p(G) — x x y is also in V-p41(G'). Moreover, then by (i),
x € Vapa(G). (4)
Thus if x x y & V4(G), then (b) follows. But if x x y € V4(G), then by (2), also y € V441(G). So, again (b) holds.
If Vop—1(G) # 9, then (a) holds by (2). So, if (a) does not hold, then
each v € Vo4(G) — x * y has degree h + 1in G’ and is adjacent to both x and y in G'. (5)

Case 1: |V_4(G) — x * y| > h. Then by (4), de'(x) = h + 1. This in turn yields Ng(x) = V<4(G) + y. Since G’ is 2-connected,
each v € V44(G) — x * y is not a cut vertex. Furthermore, {x, v} is not a cut set. If it was, because y is a common neighbor of
all neighbors of x, all neighbors of x must be in the same component as y in G — x — v. It follows that

for every v € Vop(G) — x * ¥, G’ /vx is 2-connected. (6)

If uv ¢ E(G) for some u,v € V<,(G), then by (6) and (i), we would contract the edge xu rather than xy. Thus
G'[V<n(G) U {x, y}] = Kn4, and so either G' = Kj,4, or y is a cut vertex in G/, as claimed.

Case 2: |[V_;,(G) —x*y| = h— 1. Thenx x y € V_;,(G). This means d¢/(x) = dg(y) = h + 1 and N¢ [x] = N¢[y]. So by (5),
there is z € V(G) such that N¢'[x] = Ng/[y] = V<n(G) U {x, y, z}. Again (6) holds (for the same reason that N¢/[x] € N¢ [y]).
Thus similarly vu € E(G') for every v € V;(G) — x * y and every u € V_,(G) + z. Hence G'[V-4(G) U {x, y, z}] = Ky+> and
either G’ = Kp, or z is a cut vertex in G/, as claimed. O

4.3. A property of graphs in F(k)
A useful feature of graphs in F(k) is the following.

Lemma 4.6. Let k > 9 and n > k. Let F be an n-vertex graph contained in Hy . with e(F) > h(n, k, t — 1). Then F contains a
graph in F(k).

1 The difference between our analog and the original Lemma 3.3 in [7] is small: the rules we are following are slightly different, and we prove the
additional property (b).
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Proof. Assume the sets A, B, C to be as in the definition of H, x .. We will use induction on n.

Case 1:k = 2t + 1.1fn = k, then F € K~**3(Hy ;) because h(k, k, t) — h(k, k, t — 1) — 1 = t — 3. Thus, since Hy .. 2 Fo(t), F
contains a subgraph in 7. Suppose now the lemma holds for all k < n’ < n.If (F) > t, then each v € V(F) — A is adjacent
to every u € A. Hence F contains K; ,—.. If §(F) < ¢, then since A is dominating and n > 2t, there is v € V(F) — A with
dr(v) <t — 1.Then F — v C Hp_1 k¢, and we are done by induction.

Case 2: k = 2t + 2. Let C = {cy, c3}. If n = k then as in Case 1,
e(Hik) — e(F) < h(k, k, ) — h(k, k.t = 1) = 1=t — 4,

ie,F e IC*”“(Hk,k,t). Since Fy(t) € Hy.r, F contains a subgraph in F;. Suppose now the lemma holds for all k < n’ < n.If
8(F) < t, then thereisv € V(F) — Awithdp(v) < t — 1.ThenF — v C Hp_1 k, and we are done by induction.

Finally, suppose 8(F) > t. So, each v € B is adjacent to every u € A and each of ¢, c; has at least t — 1 neighbors in A.
Since [BU {c1}| > n—t — 1 > t + 2, F contains a member of X~ '(F;(t)). Thus F contains a member of F; unless t = 4,
n = 2t 4+ 3 and c; has a nonneighbor x € A. But then ¢ ¢, € E(F), and so F contains either F3(4) or F;,. O

5. Proof of Theorem 2.3’
Letn > k > 9 and suppose Theorem 2.3" holds for all graphs with n’ vertices where k < n’ < n. Suppose further that

G is an n-vertex 2-connected graph with c¢(G) < k and e(G) > max{h(n, k, t — 1), h(n, k, 3)}. (7)

5.1. Contraction procedures

If n > k, we iteratively construct a sequence of graphs G, G,_1, ..., G where G, = Gand |V(G;)| = jforallm <j <n.
In [7], the following Basic Procedure (BP) was used:
At the beginning of each round, for somej : k < j < n, we have a j-vertex 2-connected graph G; with e(G;) > h(j, k, t — 1).

(R1) Ifj = k, then we stop.
(R2) If there is an edge uv with TGj(uv) <t — 2 such that G;/uv is 2-connected, choose one such edge so that
(i) T(;j(uv) is minimum, and subject to this
(if) uv is incident to a vertex of minimum possible degree.
Then obtain G;_; by contracting uv.
(R3) If (R2) does not hold, j > k 4t — 1 and there is xy € E(G;) such that G; — x — y has at least 3 components and one of
the components, say H; is a K;_1, then let Gj_;1 = G; — V(Hy).
(R4) If neither (R2) nor (R3) occurs, then we stop.

Remark 5.1. By definition, (R3) applies only when j > k 4t — 1. As observed in [7], if j < 3t — 2, then a j-vertex graph G;
with a 2-vertex set {x, y} separating the graph into at least 3 components cannot have ch(uv) >t — 1for every edge uv. It
also was calculated there that if 3t — 1 < j < 3t, then any j-vertex graph G’ with such 2-vertex set {x, y} and Tg:(uv) > t — 1
for every edge uv has at most h(j, k, t — 1) edges and so cannot be G;.

In this paper, we use a quite similar Modified Basic Procedure (MBP): start with a 2-connected, n-vertex graph G = G,
with e(G) > h(n, k, t — 1) and ¢(G) < k. Then

(MRO) if 8(G;) > t, then apply the rules (R1)-(R4) of (BP) given above;

(MR1) if 8(Gj) <t — 1andj = k, then stop;

(MR2) otherwise, pick a vertex v of smallest degree, contract an edge vu with the
minimum ch(vu) among the edges vu such that G;/vu is 2-connected, and
set Gj,1 = Gj/LlU.

5.2. Proof of Theorem 2.3’ for the casen < k + (t — 1)/2

Let G satisfy (7). Apply to G the Modified Basic Procedure (MBP) starting from G, = G. Denote by G, the terminating
graph of MBP. By Remark 5.1, (R3) was never applied, since k 4+ (t — 1)/2 < k 4+t — 1. Therefore

for eachm < j < n, graph G; is obtained from Gj,, by contracting an edge. (8)

Then G; is 2-connected and ¢(G;) < ¢(G) < k for each m < j < n. By construction, after each contraction, we lose at most
t — 1 edges. It follows that e(G,,) > h(m, k, t — 1).
Suppose first that m > k. Then the same argument as in [7] gives us the following structural result:

Lemma 5.1 (Proposition 4.2 in [7]). Let m > k > 9andn > k.

o If k # 10, then Gy, C Hp i ¢-
o If k=10, then Gy € Hpn . OF G 2 Fu.
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Again we sketch the proof briefly and refer the reader to [7] for the full proof.

Sketch of proof. If §(G,,) < t — 1, then either Rule (R2) or Rule (MR2) applies to G, so Procedure MBP does not stop,
contradicting the definition of m. Thus 8(G,;) > t. Since G, is 2-connected, c(G,) > 28(Gy) > 2t. So if k is even,
c(Gp) € {2t, 2t 4+ 1}, and if k is odd, c(Gp,,) = 2t. For simplicity in this sketch, we only consider the odd case.

LetC = vy, ..., vy be alongest cycle in G,. Because we could not apply rule (R2), for each edge v;v;; in C, either vjv;,1 is
contained in at least t — 1 triangles, or the set {v;, v;y1} is separating in G,. In the latter case, we show that C can be extended
to a longer cycle. Thus the former holds. If v;v;; 1z is a triangle, then z € V(C), otherwise we get a longer cycle by including
z. Thus we have shown that the induced subgraph G[V(C)] has many edges, and furthermore it can be shown that G[V(C)] is
3-connected. We then apply a structural theorem for 3-connected graphs due to Enomoto [2] (see, e.g. Theorem 2.7 in [7])
that yields three possible cases for the structure of G[V(C)]. In the first case, K; + K; € G,[V(C)] € K; + K;. In this case, by
considering the connected components of G, — V(C) and the ways they connect to C, similarly to the proof of Lemma 3.2,
we obtain G, € Hp k. In the other two cases, we either obtain c(G) > k or ¢ < 2t, a contradiction. O

Since F; € F(k), if k = 10 and G, 2 F4, then G, contains a subgraph in F(k). Otherwise, by Lemmas 4.6 and 5.1, again
Gm has a subgraph in (k). Then by (8) and Lemma 3.1, for every m < j < n, graph G; contains a subgraph H; € F(k). In
particular, G = G, contains such a subgraph. Thus by Lemma 3.2, G satisfies Theorem 2.3'.

So, below we assume

m=k. 9)
Since ¢(Gy) < k, G, does not have a hamiltonian cycle. Let d; < d; < --- < d be the vertex degrees of Gi. By Theorem 4.2,
there exists some 2 < i < t such thatd; <iandd,_; < k —i.Let r = r(Gy) be the smallest such i.
Let R be a set of r vertices of degree at most r in G;. Then

[_
e(G/<)§r2+e(Gk—R)§r2+(<2 r).

Fork =2t+1,r* + (";r) > h(n, k,t —1)onlywhenr =torr < (t+4)/3,and fork = 2t +2,whenr =torr < (t +6)/3.
Ifr = r(Gy) = t, then repeating the argument in [7] yields:

Lemma 5.2 (Lemma 4.4 in [7]). If r(Gy) = t then Gy C Hy k.t

Sketch of proof. Since c¢(G;) < k, Gy is nonhamiltonian. Let G’ be the hamiltonian closure of G,. Then r(G’) exists, and
furthermore, r(G') > 1(Gy). Thus r(G') = t. Our goal is to show that G C Hy . Let V(G') = {v1, ..., v} and d] = dg/(vy)
fori = 1,...,k Rename the vertices of G’ so that d; < -.- < d,. By the definition of r(G') = ¢, d; < ---d} < t.Let
A = {vg, Vk_1, - . ., Ug—e+1}. If any vertex in A has too small degree, then we show e(Gy) < h(k, k, t — 1), a contradiction. Since
G’ is hamiltonian-closed, for each nonedge xy ¢ E(G'),

d(x) +d(y) < [V(G) — 1=k — 1. (10)

Using this, we show that G'[A] = K;. Next, we consider the edges between G’ — A and A. If there are many non-edges, then
applying (10) for each non-edge yields that e(G') < h(k, k, t — 1), so we finally show that every vertex in A but at most one is
adjacent to every other vertex in G'. We focus here on the case that every vertex in A is adjacent to every other vertex. Then
the neighborhood of every vertex of degree at most t is exactly A. If k is odd, we show that also d; ., = t and so G’ = Hy .,
since the vertices of G’ — A must form an independent set. The even case is proved similarly, but with more subcases. O

By Lemmas 4.6, 3.1, and 3.2, G C Hp, x; and contains some subgraph in F(k). This finishes the case r = t.
So we may assume that

ifk =2t + 1thenr < (t +4)/3,and if k = 2t + 2 thenr < (t + 6)/3. (11)

Our next goal is to show that G contains a large “core”, i.e., a subgraph with large minimum degree. For this, we recall the
notion of disintegration used by Kopylov [9].

Definition. For a natural number « and a graph G, the a-disintegration of a graph G is the process of iteratively removing from
G the vertices with degree at most « until the resulting graph has minimum degree at least « + 1. This resulting subgraph
H = H(G, o) will be called the a-core of G.

It is well known that H(G, «) is unique and does not depend on the order of vertex deletion.

Claim 5.3. The t-core H(G, t) of G is nonempty.
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Proof of Claim 5.3. We may assume that for all m < j < n, graph G; was obtained from Gj; by contracting edge x;y;, where
dg;,, (%) < dc;,, (). By Rule (MR2), dg;, (¥;) = 8(Gj11), provided that §(Gj1) < t — 1.

By definition, |V<(Gk)| > r. So by Lemma 4.5 (applied several times), for each k + 1 < j < k + t — r, because each G; is
not a complete graph (otherwise it would have a hamiltonian cycle),

8(61) 5_] —k+r—1 and |V§j—k+r(Gj)| > ] —k+r. (12)

To show that

8(G)<t—1forallk<j<n, (13)
by (12) and (11), it is enough to observe that
t—1 t+6 5t+3
8G)<j—k+r—1<(n—-k)+r—-1< 5 + : —-1= ;_ <t

We will apply a version of t-disintegration in which we first manually remove a sequence of vertices and count the
number of edges they cover. By (13) and (MR2), d¢, (x,—1) = 8(G,) < n—k+r—1.Letv, := x,_1. Then G— v, is a subgraph of
Gn_1.1f Xy # Xn_1%Yn—1in Gy_1, thenlet v,_; := x,_,, otherwise let v,_; := y,_1.Inboth cases, d_,,(vq—1) < n—k+r—2.
We continue in this way until j = k: each time we delete from the graph G— v, —- - - — vj;1 the unique survived vertex v; that
was in the preimage of x;_; when we obtained G;_; from G;. Graph G — v, — - - - — vx41 hasr > 2 vertices of degree at most r.
We additionally delete 2 such vertices v, and vy_1. Altogether, we have lost at most (r+n—k—1)+(r+n—k—2)+- - -+r+2r
edges in the deletions.

Finally, apply t-disintegration to the remaining graph on k — 2 € {2t — 1, 2t} vertices. Suppose that the resulting graph
is empty.

Case 1: n = k. Then
t
e(G)§r+r+t(2t—1—t)+<2),

where r + r edges are from vy and vi_1, and after deleting vk and vy_4, every vertex deleted removes at most t edges, until
we reach the final t vertices which altogether span at most ( ) edges.
Fork =2t + 1,
2t+1—(t—1 t
h(k, k,t — 1) —e(G) > ( + 2( )>+(t—1)2— [r+r+t(2t—1—t)+ (2)] =t+2-2r,

which is nonnegative for r < (t 4 3)/3. Therefore e(G) < h(k, k, t — 1), a contradiction.
Similarly, if k = 2t + 2,

e(G)§r+r+t(2t—t)+(;>,

and
2042—(t—1)

h(k, k,t — 1) —e(G) > ( )

)+(t—1)2—[r—|—r+t(2t—t)+<;>]=t+4—2r,

which is nonnegative whenr < (t + 6)/3.
Case2:k <n <k+(t —1)/2.Thenfork = 2t 4+ 1,

[r+n—k—1) (r+n—k—2)+--~+r]+2r+t(2t—l—t)+(;)
<[(t +(t—1)+-+(t— D]+ hk, k.t — 1)

=(t— )( —k)+h(k, k, t —1)

=h(n,k, t —1),

where the last inequality holds becauser +n—k—1 <t — 1.
Similarly, for k = 2t + 2,

e(G)§[(r+n—k—l)+(r+n—k—2)+---+r]+2r+t(2t—t)+(;)

<(n—k)t—1)+h(k, k, t —1)
=h(n,k, t —1).

This contradiction completes the proof of Claim 5.3. O
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For the rest of the proof of Theorem 2.3 forn < k + (t — 1)/2, we will follow the method of Kopylov in [9] to show that
G C Hpk.2- Let G* be the k-closure of G. That is, add edges to G until adding any additional edge creates a cycle of length at
least k. In particular, for any non-edge xy of G*, there is an (x, y)-path in G* with at least k — 1 edges.

Because G has a nonempty t-core, and G* contains G as a subgraph, G* also has a nonempty t-core (which contains the
t-core of G). Let H = H(G*, t) denote the t-core of G*. We will show that

H is a complete graph. (14)

Indeed, suppose (14) does not hold. Choose a longest path P of G* whose terminal vertices x € V(H)andy € V(H)
are nonadjacent. By the maximality of P, every neighbor of x in H is in P. The same holds for y. Hence dp(x) + dp(y) =
dy(x) 4+ dy(y) = 2(t + 1) > k, and also P has k — 1 edges. By Theorem 4.3, ¢(G*) > k, a contradiction. This proves (14).

Let £ = |V(H)|. Because every vertex in H has degree at least t + 1, £ > t + 2. Furthermore, if £ > k — 1, then G* has a
clique K of size at least k — 1. Because G* is 2-connected, we can extend a (k — 1)-cycle of K to include at least one vertex in
G* — H’, giving us a cycle of length at least k. It follows that

t+2<l<k-2 (15)
and therefore k — ¢ < t. Apply (k — £)-disintegration to G*, and denote by H' the resulting graph. By construction, H € H'.

Case 1: There exists v € V(H') — V(H). Since v ¢ V(H), there exists a nonedge between a vertex in H and a vertex in H' — H.
Pick a longest path P with terminal vertices x € V(H')andy € V(H). Then dp(x) + dp(y) > (k— £+ 1)+ (£ — 1) = k, and
therefore c(G*) > k.

Case 2: H = H'. Then
14
e(G*) < (2> +(n— &)k —£)=h(n,k, k—2).

If3 <(k—¢) <t—1,thene(G) < max{h(n,k,3), h(n,k,t — 1)}, so by (15), k — £ = 2, and H is the complete graph
with k — 2 vertices. Let D = V(G*) — V(H). If there is an edge xy in G*[D], then because G* is 2-connected, there exist two
vertex-disjoint paths, P; and P,, from {x, y} to H such that P; and P, only intersect {x, y} U H at the beginning and end of the
paths. Let a and b be the terminal vertices of P; and P, respectively that lie in H. Let P be any (a, b)-hamiltonian path of H.
Then P; UP U P, + xy is a cycle of length at least k in G*, a contradiction.

Therefore D is an independent set, and since G* is 2-connected, each vertex of D has degree 2. Suppose there existsu, v € D
where N(u) # N(v). Let N(u) = {a, b}, N(v) = {c, d} where it is possible that b = c. Then we can find a cycle C of H that
covers V(H) which contains edges ab and cd. Then C — ab — cd 4+ ua + ub + vc + vd is a cycle of length k in G*. Thus for every
v € D,N(v) = {a, b} forsome a, b € H.lLe., G* = Hy 2, and thus G € H . This completes the proof of Theorem 2.3’ for
thecasen <k+(t —1)/2. O

5.3. Proof of Theorem 2.3 for all n

We use induction on n with the base case n < k + (t — 1)/2. Suppose n > k + t/2 and for allk < n’ < n, Theorem 2.3’
holds. Let G be a 2-connected graph G with n vertices such that

e(G) > max{h(n, k, t — 1), h(n, k, 3)} and c(G) < k. (16)

Apply one step of Procedure BP. If (R4) was applied (so neither (R2) nor (R3) applies to G), then G,, = G (with G, defined as
in the previous case). By Lemmas 5.1, 4.6, and 3.2, the theorem holds.

Therefore we may assume that either (R2) or (R3) was applied. Let G~ be the resulting graph. Then ¢(G™) < k, and G~ is
2-connected.

Claim 5.4.
e(G™) > max{h(|V(G7)|, k, t — 1), h(|V(G7)|, k, 3)}. (17)

Proof. If (R2) was applied, i.e., G- = G/uv for some edge uv, then

e(G)>=eG)—(t—1)>h(n—1,k,t —1) > h(n — 1, k, 3),
so (17) holds. Therefore we may assume that (R3) was applied to obtain G".Thenn > k+t—1and e(G)—e(G™) = ([? ) -1
So by (16),

e(c*)>h(n,1<,r—1)—(t;”)ﬂ. (18)

The right hand side of (18) equals h(n — (t — 1), k, t — 1)+ t2/2 — 5t /2 4+ 2 which is at least h(n — (t — 1), k, t — 1) for t > 4,
proving the first part of (17).
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We now show that also e(G™) > h(n — (t — 1), k, 3). Indeed, for k = 2t + 1,

e(G_)_h(n_(f—l),k,3)> (t—;z)_i_(t_l)(n_t_z)_(f—i2-1>+l

_ [(”2‘2) +3(n—(t— 1)—(2t—2)>] = Owhenn > 3t.

Similarly, for k = 2t + 2,

e(G™)—h(n—(t — 1), k, 3) > (t;3)+(t—1)(n—t—3)—(tgl)—i-l

2

Thus if n > 3t 4 1, then (17) is proved. But if n € {3t — 1, 3t} then by Remark 5.1, no graph to which (R3) was applied may
have more than h(n, k, t — 1) edges. O

_|:<2t—1>+3(n—(t—1)—(2t—1))} > Owhenn = 3t +1.

By (17), we may apply induction to G~. So G~ satisfies either (a) G~ C Hy(¢-y, k2, OF
(b) G~ is contained in a graph in G(n, k) — Hyy(c-).x.2 and contains a subgraph H € F(k).

Suppose first that G~ satisfies (b). If (R3) was applied to obtain G~ from G, then because G~ contains a subgraph H € F(k)
and G~ C G, G also contains H. If (R2) was applied, then by Lemma 3.1, G contains a subgraph H" € F(k). In either case,
Lemma 3.2 implies that G is a subgraph of a graph in G(n, k) — Hp k2.

So we may assume that (a) holds, that is, G~ is a subgraph of Hyy(- x 2- Because §(G™) < 2, 6(G) < 3, and so G has edges
in at most 2 < t — 2 triangles. Therefore (R2) was applied to obtain G, where G/uv = G™. Let D be an independent set of
vertices of G~ of size (n — 1) — (k — 2) with N(D) = {a, b} for some a, b € V(G™). Since T;-(xa), T¢-(xb) < 1 for every x € D,
we have that Tg(uv) < 2 with equality only if T(G) = 2 where T(G) = minyeg)Tc(Xy).

We want to show that Tg(uv) < 1. If not, suppose first that u x v € D € V(G™). Then there exists x € D — u * v, and
x and u x v are not adjacent in G~. Therefore x was not in a triangle with u and v in G, and hence Tg(xa) = T,-(xa) < 1,
so the edge xa should have been contracted instead. Otherwise if u % v ¢ D, at least one of {a, b}, say a, is not u * v. If
T(G) = 2, then for every x € D C V(G), Tg(xa) = 2, therefore each such edge xa was in a triangle with uv in G. Then
Tg(uv) > |D|=n—-1)—(k—2)>k+t/2 —1—k+ 2 > 3, acontradiction.

Thus Tg(uv) < land e(G) < 2 +eG) < 2+ h(n — 1,k,2) = h(n,k,2). But forn > k + t/2, we have
h(n, k,t — 1) > h(n, k, 2), a contradiction. This completes the proof of Theorem 2.3’ and therefore the proof of the main
result. O
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