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a b s t r a c t

We study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices
that does not contain a Berge cycle of a given length ℓ. In particular we prove that the
upper bound for C2k+1-free hypergraphs is of the order O(k2n1+1/k), improving the upper
bound of Győri and Lemons (2012) by a factor ofΘ(k2). Similar bounds are shown for linear
hypergraphs.

© 2016 Elsevier B.V. All rights reserved.

1. A generalization of the Turán problem

Counting substructures is a central topic of extremal combinatorics. Given two (hyper)graphsG andH letN(G ;H) denote
the number of subgraphs of G isomorphic toH . (Usually we consider a labeled host graph G.) Note that N(G ; K2) = e(G), the
number of edges of G. More generally, N(G ;H) is the maximum of N(G ;H) where G ∈ G, a class of graphs. In most cases, in
Turán type problems, G is a set of n-vertex F -free graphs, where F is a collection of forbidden subgraphs. This maximum is
denoted by N(n, F ;H). So N(n, F ;H) is the maximum number of copies of H in an F -free graph on n vertices. The Turán
number ex(n, F ) is defined as N(n, F ; K2). Let ex(m, n, F ) be the maximum number edges in a bipartite graph with parts
of order m and n vertices that do not contain any member of F . Cℓ is the family of all cycles of length at most ℓ. For any
graph G and any vertex x, we let t(G) and t(x) denote the number of triangles in G and the number of triangles containing x,
respectively. Let tℓ(n) := N(n, Cℓ ; K3).

Our starting point is the Bondy–Simonovits [3] theorem, ex(n, C2k) ≤ 100kn1+1/k. Recall two contemporary versions due
to Pikhurko [15], Bukh and Z. Jiang [4], respectively, and a classical result by Kővári, T. Sós, and Turán [14]. For all k ≥ 2 and
n ≥ 1, we have

ex(n, C2k) ≤ (k − 1)n1+1/k
+ 16(k − 1)n, (1)

ex(n, C2k) ≤ 80

k log kn1+1/k

+ 10k2n, (2)

ex(n, n, C4) ≤ n3/2
+ 2n. (3)

Erdős [6] conjectured that a triangle-free graph on n vertices can have at most (n/5)5 five cycles and that equality holds
for the blown-up C5 if 5|n. Győri [9] showed that a triangle-free graph on n vertices contains at most c(n/5)5 copies of
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C5, where c < 1.03. Grzesik [8], and independently, Hatami et al. [13] confirmed that Erdős’ conjecture is true by using
Razborov’s method of flag algebras, i.e., N(n, C3 ; C5) ≤ (n/5)5.

Bollobás and Győri [2] asked a related question: how many triangles can a graph have if it does not contain a C5. They
obtained the upper bound t5(n) ≤ (1 + o(1))(5/4)n3/2 which yields the correct order of magnitude.

Later, Győri and Li [12] provided bounds on t2k+1(n).
k
2


ex


n
k + 1

,
n

k + 1
, C2k


≤ t2k+1(n) ≤

(2k − 1)(16k − 2)
3

ex(n, C2k). (4)

The construction showing the lower bound in (4) is defined by considering a balanced bipartite (X, Y )-graph G on 2n/(k+1)
vertices which is extremal not containing any members of C2k. Each vertex x in X is replaced by k vertices and connected to
each other and to all neighbors of x, thus creating


k
2


distinct triangles per each edge of G.

In Section 3 we improve the upper bound by a factor of Ω(k).

Theorem 1. For k ≥ 2,

t2k+1(n) := N(n, C2k+1 ; K3) ≤ 9(k − 1) ex
n

3


,
n
3


, C2k


, (5)

t2k(n) ≤
2k − 3

3
ex(n, C2k). (6)

The inequalities (1), (3) and (5) give t2k+1(n) ≤ 9(k−1)2 ((2/3)n)1+1/k
+O(n) for k ≥ 3 and t5(n) ≤

√
3n3/2

+O(n). This
latter one is not better than the Bollobás–Győri bound. However, our constant factor in Theorem 1 is the best possible in the
following sense. It is widely believed that the Turán numbers in the above statements are ‘smooth’, i.e., there are constants
ak, bk depending only on k such that ex(n, n, C2k) = (ak + o(1))n1+1/k and ex(n, n, C2k) = (bk + o(1))n1+1/k. If these are
indeed true then the ratio of the upper bound in (5) and the lower bound in (4) is bounded by a constant factor ofO(ak/bk). It
is also believed that the sequence ak/bk is bounded (as k → ∞), so further essential improvement is probably not possible.

Since the first version of this manuscript (2011) Alon and Shikhelman [1] improved the upper bound in Theorem 1 by a
constant factor to (16/3)(k − 1) ex(⌈n/2⌉, C2k) and showed that t5(n) ≤ (1 + o(1))(

√
3/2)n3/2. Nevertheless, we include

our proof in Section 3 for completeness, and because we use Theorem 1 in our main result in the next section.

2. Berge cycles

A Berge cycle of length k is a family of distinct hyperedges H0, . . . ,Hk−1 such that there are distinct vertices v0, . . . , vk−1
satisfying

vivi+1 ⊂ Hi for 0 ≤ i ≤ k − 1 (mod k).

A hypergraph is linear, also called nearly disjoint, if every two edges meet in at most one vertex. Let C (3)
ℓ be the collection of

3-uniform Berge cycles of length ℓ.
We write exr(n, F ) (exlinr (n, F ), resp.) to denote the maximum number of hyperedges in a r-uniform (and linear, resp.)

hypergraph on n vertices that does not contain any member of F . Győri and Lemons [10] showed that

ex
n

3


,
n
3


, C2k


≤ ex3(n, C

(3)
2k+1) < 4k4n1+ 1

k + 15k4n + 10k2n. (7)

The order of magnitude of the upper bound probably cannot be improved (as k is fixed and n → ∞).
Győri and Lemons [11] extended their result to C (3)

2k -free 3-uniform hypergraphs (and also to m-uniform hypergraphs)
by showing that the same lower bound as in (7) holds for ex3(n, C

(3)
2k ) and that ex3(n, C

(3)
2k ) ≤ c(k)n1+ 1

k . The construction
showing the lower bound in (7) is defined by considering a balanced bipartite graphG onn/3+n/3 verticeswhich is extremal
not containing any members of C2k. A 3-uniform C (3)

2k -free hypergraph H is formed by doubling each vertex in one of the
parts of G, thus turning each edge of G to a hyperedge of H . The number of hyperedges in H is e(G) = ex(n/3, n/3, C2k).

In this paper, we make improvements on the bounds on ex3(n, C
(3)
2k+1) and ex3(n, C

(3)
2k ). First, observe that trivially

t2k+1(n) ≤ ex3(n, C
(3)
2k+1). (8)

(Consider the triple system defined by the triangles of a C2k+1-free graph.) So (4) gives a lower bound which (probably)
improves the lower bound in (7) by a factor of Ω(k).

The aim of this paper is to improve the upper bound in (7) by a factor of (at least) Ω(k2) and also to simplify the original
proof. In Section 4 we reduce the upper bound into three subproblems as follows.
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Theorem 2. For k ≥ 2 we have

ex3(n, C
(3)
2k+1) ≤ t2k+1(n) + 4 ex(n, C2k) + 12 exlin3 (n, C (3)

2k+1), (9)

ex3(n, C
(3)
2k ) ≤ t2k(n) + ex(n, C2k). (10)

The first and the third terms in (9) are both lower bounds, and probably the middle term is the smallest one. In Section 5 we
estimate the third term.

Theorem 3. For k ≥ 2 we have

exlin3 (n, C (3)
2k+1) ≤ 2kn1+1/k

+ 9kn. (11)

We were not able to relate the left hand side directly to ex(n, C2k). In fact, just like in Győri and Lemons’ proof [10], we
reiterate a version of the original proof of Bondy and Simonovits [3] (as everybody else did in [16,15,5], and in [4]). Our
rendering is much simpler than [10]. For the even case exlin3 (n, C (3)

2k ) ≤ ex(n, C2k) is obvious by selecting a pair from each
hyperedge in a linear C2k-free triple system. We have no matching lower bound for exlin3 (n, C (3)

ℓ ) other than what follows
from the randommethod. Collier, Graber and Jiang [5] proved that exlinr (n, C (r)

2k+1) ≤ αk,rn1+1/k, but their αk,r is greater than
r(2k)r . They find not only a Berge cycle but a linear cycle, i.e., a cyclic list of triples such that consecutive sets intersect in
exactly one element and nonconsecutive sets are disjoint.

Theorems 1–3 together with (1) imply

ex3(n, C
(3)
2k+1) ≤ (9k2 + 10k + 5)n1+1/k

+ O(k2n)

and ex3(n, C
(3)
2k ) ≤

1
3 (2k + 9)(k − 1)n1+1/k

+ O(k2n). Using (2) one can lower the main coefficient to O(k3/2
√
log k). If the

smoothness conjectures concerning ex(n, C2k) and ex(n, n, C2k) hold, then the ratio of the upper bound (9) and lower bound
(8) is of O(ak/bk).

3. Counting triangles in C2k-free and C2k+1-free graphs

We need the following classical result of Erdős and Gallai [7] on paths.

ex(n, Pk) ≤
k − 2
2

n. (12)

Lemma 4. If G is a Cℓ-free graph, then t(G) ≤
1
3 (ℓ − 3)e(G).

Proof. For any vertex x, t(x) is equal to the number of edges induced by N(x). Therefore,

t(G) =
1
3


x∈V (G)

t(x) =
1
3


x∈V (G)

e(G[N(x)]).

The subgraph induced by N(x) does not contain Pℓ−1, because G is Cℓ-free. Therefore, by (12), we have

e(G[N(x)]) ≤
1
2
(ℓ − 3) deg(x).

We obtain

t(G) ≤
1
3


x∈V (G)

1
2
(ℓ − 3) deg(x) =

1
3
(ℓ − 3)e(G). �

Note that Lemma 4 implies the upper bound (6) for t2k(n).

Proof of Theorem 1. Let G be a C2k+1-free graph, k ≥ 2, with the n element vertex set V . Let H be the family of triangles
in G. Given any 3-partition (or 3-coloring) {V1, V2, V3} of V let H(V1, V2, V3) be the 3-partite induced subhypergraph of H
with these parts, i.e., H(V1, V2, V3) := {T ∈ H : |T ∩ Vi| = 1 for all 1 ≤ i ≤ 3}. Standard averaging argument shows that
there is a partition such that each color class Vi with color i has size ⌊(n+ i− 1)/3⌋, 1 ≤ i ≤ 3, and the number of triples in
H ′

:= H(V1, V2, V3) is at least 2/9’ths of the number of triples in H . So we have |H | ≤ (9/2)|H ′
|.

Let G′ be the edges of G contained in any triple from H ′. Since t(G) = |H | and t(G′) = |H ′
|, we have t(G) ≤ (9/2)t(G′).

From now on, our aim is to give an upper estimate for t(G′). Since t(G′) ≤
1
3 (2k − 2)e(G′) by Lemma 4, we have that

t(G) ≤
9
2
t(G′) ≤ 3(k − 1)e(G′).

To complete the proof of Theorem 1 we only need an appropriate upper bound on e(G′).
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Let Gij be the bipartite subgraph of G′ induced by the vertex set Vi ∪Vj, 1 ≤ i < j ≤ 3. Assume that there exists a copy L of
C2k in Gij for some i and j. Let x and y be two adjacent vertices in L. Since there exists a triangle in G′ with vertices x, y, z for
some z ∈ Vk (k ≠ i, j), there exists a copy of C2k+1 in Gwith the edge set (E(L) − {xy}) ∪ {xz, yz}, a contradiction. Therefore,
Gij is C2k-free. We obtain

e(G′) =


1≤i<j≤3

e(Gi,j) ≤ 3 ex(⌈n/3⌉, ⌈n/3⌉, C2k). �

4. C (3)
ℓ -free 3-uniform hypergraphs

Proof of Theorem 2. For a pair of vertices u and v, degH (u, v) (or just deg(u, v)) denotes the number of hyperedges of H
containing both u and v.

Proposition 5. Let H be a C (3)
ℓ -free hypergraph, ℓ ≥ 3. Let G2 := G2(H) be the graph on the vertex set of H such that

E(G2) := {uv : deg(u, v) ≥ 2}. Then, G2 is Cℓ-free.

Proof. Suppose, on the contrary, that L is a cycle of length ℓ in G2. Let H(e) be the set of triples from H containing the pair
e. Suppose that ℓ ≥ 4, the case ℓ = 3 is trivial. Then every triple E ∈ H contains at most two edges from E(L), but every
e ∈ E(L) is contained in at least two triples. Therefore, Hall condition holds, that is every i edges of E(L) (for 1 ≤ i ≤ ℓ) are
contained in at least i triples. So by Hall’s theorem one can choose a distinct hyperedge from H(e) for each edge e of L. These
form a Berge cycle of length ℓ, a contradiction. �

The upper bound on ex3(n, C
(3)
2k+1).

Let H be a 3-uniform hypergraph that does not contain C (3)
2k+1 as a subgraph. Let G2 be defined as in Proposition 5. Then

G2 is C2k+1-free. Let H2 be the collection of triples from H having all the three pairs covered at least twice. The edges of H2
induce triangles in G2, hence we have

|H2| ≤ N(G2; C3) ≤ t2k+1(n). (13)

LetH1 be the set of triples E fromH having a pair P(E) such that P(E) is contained only in E. Note that |H | = |H1|+|H2|.
In the following, we find an upper bound for |H1| by defining further subfamilies H3, . . . , H6.

Color the vertices of H1 randomly with two colors. The probability that for an edge E ∈ H1 the pair P(E) gets the same
color and the vertex E \ P(E) has the opposite color is 1/4. This implies that there is a partition V1 ∪ V2 of V (H) and a
subfamily H3 ⊂ H1 such that |H3| ≥ (1/4)|H1| and every edge E of H3 has two vertices in Vi and one vertex in V3−i for
some i ∈ {1, 2} such that Vi ∩ E = P(E). Split H3 into two subfamilies as follows.

H4 := {{u, v, w} ∈ H3 : P(E) = {u, v} ⊂ Vi, w ∈ V3−i,max(deg(w, u), deg(w, v)) ≥ 3, i ∈ {1, 2}}

and let H5 := H3 \ H4.
We claim that the graph G4 consisting of the pairs P(E), E ∈ H4, is C2k-free. Indeed, suppose, on the contrary, that

L = (v1, . . . , v2k) is a cycle of G4. Since G4 has no edge joining V1 and V2 we may suppose that L ⊂ V1. Consider the triples
of H4 containing the edges of L, Ei := {vi, vi+1, wi}, (1 ≤ i ≤ 2k − 1), and E2k := {v2k, v1, w2k}. The vertices w1, . . . , w2k
are in V2, so they are not on L. Assume that deg(v1, w1) ≥ 3. Then, there is a hyperedge E0 = {v1, w1, u} ∈ H different
from E1, . . . , E2k. The hyperedges {E0, E1, E2, . . . , E2k} are containing the consecutive pairs {v1, w1, v2, . . . , v2k} in this cyclic
order, so form a Berge cycle of length 2k + 1. Thus,

|H4| = e(G4) ≤ ex(|V1|, C2k) + ex(|V2|, C2k) ≤ ex(n, C2k). (14)

Because the multiplicity of the pairs in any edge E in H5 is at most 2, one can use a greedy algorithm to find a subfamily
H6 ⊂ H5 such that |H6| ≥ (1/3)|H5|, where H6 is linear, that is each vertex-pair is covered at most once by an edge of H6.

Finally,

|H | = |H1| + |H2| ≤ 4|H3| + |H2|

= |H2| + 4|H4| + 4|H5| ≤ |H2| + 4|H4| + 12|H6|.

This with (13), (14), and the linearity of H6 completes the proof of (9).
The upper bound on ex3(n, C

(3)
2k ).

Let H be a 3-uniform hypergraph that does not contain C (3)
2k as a subgraph. Let G2, H1, H2 be defined for H as before. By

Proposition 5, G2 is C2k-free. Hence, |H2| ≤ N(G2; C3) ≤ t2k(n). Recall that for each hyperedge E in H1, there exists a vertex-
pair, P(E), such that P(E) is contained only in E inH . Let G1 be the graph defined by its edge set as E(G1) := {P(E) : E ∈ H1}.
We have that |H1| = e(G1). Since G1 is obviously C2k-free we get

|H | = |H1| + |H2| ≤ t2k(n) + ex(n, C2k). �
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5. C (3)
ℓ -free 3-uniform linear hypergraphs

A theta graph of order ℓ, denoted by Θℓ, is a cycle Cℓ with a chord, where ℓ ≥ 4. The following result was used implicitly
in [3] and is stated as a separate lemma in [16, Lemma 2] and also used in [4] and [15]. Let F be a Θ-graph of order ℓ and
ℓ > t ≥ 2. Let A ∪ B be a partition of V (F) with A, B ≠ ∅ such that every path of length t in F that starts in A necessarily
ends in A. Then F is bipartite with parts A and B. We need the following corollary, whose proof is left to the reader.

Corollary 6. Let F be a Θ-graph of order ℓ, where ℓ > t ≥ 1 and t is an odd integer. Let A ∪ B be a partition of V (F), A ≠ ∅

such that every path of length t in F that starts in A necessarily ends in A. Then A = V (F). �

We also use the following easy fact, which is used in [3], [4] and [15], too. If the n-vertex graph G contains no Θ-graph
of order at least ℓ ≥ 4, then e(G) ≤ (ℓ − 2)n. In other words

ex(n, Θ≥ℓ) ≤ (ℓ − 2)n. (15)

Proof of the upper bound on exlin3 (n, C (3)
2k+1) in Theorem 3. Let H be a 3-uniform hypergraph on n vertices such that no

two hyperedges meet in two vertices. Suppose that H contains no C (3)
2k+1 and let δ be the third of the average degree. We

have


v∈V (H) deg(v) = 3|H | = 3δn. Then, there exists a subhypergraph H ′ on n′ vertices such that the degree of each
vertex of H ′ is at least δ. Therefore, we may suppose that every degree of H is at least δ, and also that δ ≥ 11k.

The mapping π : H →

[n]
2


∪ ∅ is called a choice function if π(E) ⊂ E for each E ∈ H . There are 4|H | such choice

functions. Let ∂H be the set of vertex-pairs contained in the members of H and consider a coloring of ∂H , where the color
of each pair is given by the single hyperedge of H containing it. We call a subgraph G of ∂H multicolored, if all edges of G
have different colors under this coloring. For a choice function π on H , define the graph Gπ as the graph induced by the
edge set {π(E) : π(E) ≠ ∅, E ∈ H}. Because H is a linear hypergraph, for two different hyperedges E and E ′ in H we have
π(E) ≠ π(E ′). First, we consider the properties of arbitrary multicolored Gπ , later we will define a special π . Clearly, Gπ has
no cycle C2k+1.

Lemma 7. Let T be a subtree (not necessarily spanning) in Gπ , let x ∈ V (T ) be an arbitrary vertex, and let Vi := Ni(x) in T , the
set of vertices of distance i from x in the tree T . Consider Gi := Gπ [Vi], the subgraph of Gπ restricted to Vi. Then Gi has noΘ-graph
of order 2k or larger.

Corollary 8. e(Gi) ≤ (2k − 2)|Vi| for 1 ≤ i ≤ k.

Proof of Lemma 7. We use induction on i. Since V0 = x, and V1 (more exactly G1) contains no path of 2k vertices, it does
not contain a Θ≥2k either. From now on, we may suppose that i ≥ 2.

Suppose, on the contrary, that F is a Θ subgraph of Gi of order ℓ ≥ 2k, i ≥ 2. For arbitrary y ∈ V1, let Vi(y) be the subset
of descendants of y in Vi in the tree T . Consider the partition of Vi defined as {Vi(y) : y ∈ V1}. There exists a y1 ∈ V1 such
that A := V (y1) ∩ V (F) ≠ ∅.

We claim that F is contained in V (y1). Note that there is no path P(a, b) of F (neither of Gi) of length 2k+1−2i that starts
in some vertex a ∈ A ⊂ Vi(y1) and ends in another vertex b ∈ Vi \ V (y1). Otherwise, the xy1a and xb paths on T have only a
single common vertex (namely x), have lengths i so together with P(a, b) they form a C2k+1 in Gπ , a contradiction. Therefore,
every path of length 2k + 1 − 2i in F , that starts in A ends in A. Corollary 6 implies that A = V (F), i.e., V (F) ⊂ V (y1).

To finish the proof of Lemma 7 simply use induction to the subtree T1 of T consisting of all descendants of y1. Then
Ni−1(y1) in T1 is exactly Vi(y1), so it does not contain any Θ≥2k. �

We say for two sets of sequences of integers α = (a1, . . . , ak) and β = (b1, . . . , bk) that α > β , if there is an i such that
ai > bi and aj = bj for all j < i. This is called the lexicographical ordering, and it is indeed a linear order.

We are ready to define a concrete T and a choice function π . Fix a vertex x ∈ V (H) arbitrarily, let V0 := {x}. Consider
all choice functions π and all multicolored trees of Gπ with root and center x and radius at most k. Let T be such a tree for
which the sequence of the neighborhood sizes (|N1(x)|, . . . , |Nk(x)|) takes its maximum in the lexicographic order. Since H
is linear we have |N1(x)| = degH (x). Recall that Ni(x) is denoted by Vi, 0 ≤ i ≤ k. Our aim is to prove that the sizes of the
|Vi|’s increase rapidly as follows.

Lemma 9. For 1 ≤ i ≤ k − 1 we have |Vi+1| ≥
δ−7k
2k |Vi|.

This lemma completes the proof, because we obtain n ≥ |Vk| ≥ (δ − 7k)k−1 (2k)−k+1
|V1|. This and |V1| = degH (x) ≥ δ give

2kn1/k
+ 7k ≥ δ.

Proof of Lemma 9. Let Hi be the hyperedges of H containing the edges of T joining Vi to Vi+1, 0 ≤ i ≤ k − 1, we have
|Hi| = |Vi+1|. If uvw = E ∈ Hi with u ∈ Vi, v ∈ Vi+1, then w ∉ Vj with j < i. Otherwise, leaving out the edge uv from T
and joining wv results in a multicolored tree preceding T in the lexicographic order.
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Let Bi be the set of hyperedges from H \ (H0 ∪ H1 ∪ · · · ∪ Hi) meeting Vi, but not meeting ∪j<i Vj, 0 ≤ i ≤ k − 1. We
have B0 = ∅. If E ∈ Bi, then E ⊂ Vi ∪ Vi+1. Otherwise, if u ∈ E ∩ Vi and v ∈ E \ (Vi ∪ Vi+1) then truncating our tree at
V0 ∪ V1 ∪ · · · ∪ Vi+1 and joining the edge uv result in another tree lexicographically larger than T .

Let Bα
i , 0 ≤ i ≤ k− 1, be the set of those hyperedges from Bi, that meet Vi exactly in α vertices, α = 1, 2 or 3. The graph

Gi, for 1 ≤ i ≤ k − 1, is defined on the vertex set Vi as follows. It contains exactly one vertex-pair from each member of B3
i

and the pairs E ∩ Vi for E ∈ B2
i ∪ B1

i−1. For i = k, the edge set of Gk consists only of the sets {E ∩ Vk : E ∈ B1
k−1}, since Bk

is undefined. The graph Gπ consisting of the edges of T and the Gi’s, 1 ≤ i ≤ k, is a multicolored subgraph. So Corollary 8
implies that

e(Gi) ≤ (2k − 2)|Vi|. (16)

Consider the H-degrees of the elements of Vi, (1 ≤ i ≤ k − 1). Their total sum is at least δ|Vi|. Obviously,
v∈Vi

degH (v) =


E∈H

|E ∩ Vi|.

The edges of H meeting Vi belong to some Hj, j ≤ i, or to Bi−1 ∪ Bi. An edge E ∈ Hj can meet Vi in at least two elements,
only if j is equal to i − 1 or i. We obtain for 1 ≤ i ≤ k − 1

δ|Vi| ≤


v∈Vi

deg(H)(v) =


E∈H

|E ∩ Vi|

≤

 
0≤j≤i−2

|Hj|


+ 2|Hi−1| + 2|Hi| + |B2

i−1| + 2|B1
i−1| + 3|B3

i | + 2|B2
i | + |B1

i |.

Inequality (16) implies that

|B2
i−1| ≤ e(Gi−1) ≤ (2k − 2)|Vi−1|,

2|B1
i−1| + 3|B3

i | + 2|B2
i | ≤ 3(|B1

i−1| + |B3
i | + |B2

i |) = 3e(Gi) ≤ (6k − 6)|Vi|,

|B1
i | ≤ e(Gi+1) ≤ (2k − 2)|Vi+1|.

Using these inequalities and the fact that |Hj| = |Vj+1| we obtain that

δ|Vi| ≤

 
1≤j≤i−1

|Vj|


+ 2|Vi| + 2|Vi+1| + (2k − 2)|Vi−1| + (6k − 6)|Vi| + (2k − 2)|Vi+1|.

By rearranging we have

(δ − (6k − 4))|Vi| ≤

 
1≤j≤i−1

|Vj|


+ (2k − 2)|Vi−1| + 2k|Vi+1|. (17)

For i = 1 the fact thatB0 = ∅ implies the slightly stronger (δ−(6k−4))|V1| ≤ 2k|V2|. So Lemma 9 holds for i = 1. For larger
i we use induction and (17) to prove first that 2|Vi| ≤ |Vi+1| for all i < k and then the sharper inequality of Lemma 9. �
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