
Journal of Combinatorial Theory, Series B 121 (2016) 197–228
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series B

www.elsevier.com/locate/jctb

Stability in the Erdős–Gallai Theorems on cycles 

and paths

Zoltán Füredi a,1, Alexandr Kostochka b,c,2, Jacques Verstraëte d,3

a Alfréd Rényi Institute of Mathematics, Hungary
b University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
c Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
d Department of Mathematics, University of California at San Diego, 9500 Gilman 
Drive, La Jolla, CA 92093-0112, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 July 2015
Available online 29 June 2016

Dedicated to the memory of G.N. 
Kopylov

Keywords:
Turán problem
Cycles
Paths

The Erdős–Gallai Theorem states that for k ≥ 2, every graph 
of average degree more than k − 2 contains a k-vertex path. 
This result is a consequence of a stronger result of Kopylov: if 
k is odd, k = 2t + 1 ≥ 5, n ≥ (5t − 3)/2, and G is an n-vertex 
2-connected graph with at least h(n, k, t) :=

(
k−t
2
)
+t(n −k+t)

edges, then G contains a cycle of length at least k unless G =
Hn,k,t := Kn − E(Kn−t).
In this paper we prove a stability version of the Erdős–Gallai 
Theorem: we show that for all n ≥ 3t > 3, and k ∈ {2t + 1,
2t + 2}, every n-vertex 2-connected graph G with e(G) >
h(n, k, t − 1) either contains a cycle of length at least k or 
contains a set of t vertices whose removal gives a star forest. 
In particular, if k = 2t + 1 �= 7, we show G ⊆ Hn,k,t. The 
lower bound e(G) > h(n, k, t − 1) in these results is tight 
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and is smaller than Kopylov’s bound h(n, k, t) by a term of 
n − t −O(1).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A cornerstone of extremal combinatorics is the study of Turán-type problems for 
graphs. One of the fundamental questions in extremal graph theory is to determine the 
maximum number of edges in an n-vertex graph with no k-vertex path. According to [10], 
this problem was posed by Turán. A solution to the problem was obtained by Erdős and 
Gallai [7]:

Theorem 1.1 (Erdős and Gallai [7]). Let G be an n-vertex graph with more than 12(k−2)n
edges, k ≥ 2. Then G contains a k-vertex path Pk.

This result is best possible for n divisible by k − 1, due to the n-vertex graph whose 
components are cliques of order k−1. To obtain Theorem 1.1, Erdős and Gallai observed 
that if H is an n-vertex graph without a k-vertex path Pk, then adding a new vertex 
and joining it to all other vertices we have a graph H ′ on n + 1 vertices e(H) + n

edges and containing no cycle Ck+1 or longer. Then Theorem 1.1 is a consequence of the 
following:

Theorem 1.2 (Erdős and Gallai [7]). Let G be an n-vertex graph with more than 1
2 (k −

1)(n − 1) edges, k ≥ 3. Then G contains a cycle of length at least k.

This result is best possible for n − 1 divisible by k − 2, due to any n-vertex graph 
where each block is a clique of order k − 1. Let ex(n, Pk) be the maximum number 
of edges in an n-vertex graph with no k-vertex path; Theorem 1.1 shows ex(n, Pk) ≤
1
2 (k − 2)n with equality for n divisible by k − 1. Several proofs and sharpenings of the 
Erdős–Gallai theorem were obtained by Woodall [16], Lewin [12], Faudree and Schelp 
[8,9] and Kopylov [11] – see [10] for further details. The strongest version was proved 
by Kopylov [11]. To describe his result, we require the following graphs. Suppose that 
n ≥ k, (k/2) > a ≥ 1. Define the n-vertex graph Hn,k,a as follows. The vertex set of 
Hn,k,a is partitioned into three sets A, B, C such that |A| = a, |B| = n − k + a and 
|C| = k − 2a and the edge set of Hn,k,a consists of all edges between A and B together 
with all edges in A ∪ C. Let

h(n, k, a) := e(Hn,k,a) =
(
k − a

2

)
+ a(n− k + a).
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Theorem 1.3 (Kopylov [11]). Let n ≥ k ≥ 5 and t = �k−1
2 �. If G is an n-vertex 

2-connected graph with no cycle of length at least k, then

e(G) ≤ max {h(n, k, 2), h(n, k, t)} (1)

with equality only if G = Hn,k,2 or G = Hn,k,t.

In this paper, we prove a stability version of Theorems 1.1 and 1.3. A star forest is a 
vertex-disjoint union of stars.

Theorem 1.4. Let t ≥ 2 and n ≥ 3t and k ∈ {2t + 1, 2t + 2}. Let G be a 2-connected 
n-vertex graph containing no cycle of length at least k. Then e(G) ≤ h(n, k, t − 1) unless

(a) k = 2t + 1, k �= 7, and G ⊆ Hn,k,t or
(b) k = 2t +2 or k = 7, and G −A is a star forest for some A ⊆ V (G) of size at most t.

This result is best possible in the following sense. Note that Hn,k,t−1 contains no 
cycle of length at least k, is not a subgraph of Hn,k,t, and Hn,2t+2,t−1 − A has a cycle 
for every A ⊆ V (Hn,2t+2,t−1) with |A| = t. Thus the claim of Theorem 1.4 does not hold 
for G = Hn,k,t−1. Therefore the condition e(G) ≤ h(n, k, t − 1) in Theorem 1.4 is best 
possible. Since

h(n, 2t + 2, t) =
(
t

2

)
+ t(n− t) + 1 = h(n, 2t + 1, t) + 1

and

h(n, 2t + 2, t− 1) =
(
t

2

)
+ (t− 1)(n− t) + 6 = h(n, 2t + 1, t− 1) + 3,

the difference between Kopylov’s bound and the bound in Theorem 1.4 is

h(n, k, t) − h(n, k, t− 1) =
{

n− t− 3 if k = 2t + 1
n− t− 5 if k = 2t + 2.

(2)

It is interesting that for a fixed k, the difference in (2) divided by h(n, k, t) does not 
tend to 0 when n → ∞.

We will need to prove a more detailed version of Theorem 1.4. This version, Theo-
rem 4.1, will yield the following cleaner claim for 3-connected graphs.

Corollary 1.5. Let k ≥ 11, t = �k−1
2 �, and n ≥ 3k

2 . If G is an n-vertex 3-connected graph 
with no cycle of length at least k, then e(G) ≤ h(n, k, t − 1) unless G ⊆ Hn,k,t.

In the same way that Theorem 1.2 implies Theorem 1.1, Theorem 1.4 applies to give 
a stability theorem for paths:
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Theorem 1.6. Let t ≥ 2 and n ≥ 3t − 1 and k ∈ {2t, 2t + 1}, and let G be a connected 
n-vertex graph containing no k-vertex path. Then e(G) ≤ h(n +1, k+1, t − 1) −n unless

(a) k = 2t, k �= 6, and G ⊆ Hn,k,t−1 or
(b) k = 2t + 1 or k = 6, and G −A is a star forest for some A ⊆ V (G) of size at most 

t − 1.

Indeed, let G′ be obtained from an n-vertex connected graph G with more than 
h(n + 1, k + 1, t − 1) − n edges by adding a vertex adjacent to all vertices in G. Then G′

is 2-connected and G′ has more than h(n + 1, k + 1, t − 1) edges. If G has no k-vertex 
path, then G′ has no cycle of length at least k + 1. By Theorem 1.4, G′ satisfies (a) or 
(b) in Theorem 1.4, which means G satisfies (a) or (b) in Theorem 1.6. Repeating this 
argument, Corollary 1.5 implies the following.

Corollary 1.7. Let k ≥ 11, t = �k−1
2 �, and n ≥ 3k

2 . If G is an n-vertex 2-connected graph 
with no k-vertex paths, then e(G) ≤ h(n + 1, k + 1, t − 1) − n unless G ⊆ Hn,k,t−1.

Organization. The proof of Theorem 1.4 will use a number of classical results listed 
in Section 2 and some lemmas on contractions proved in Section 3. Then in Section 4
we describe several families of extremal graphs and state and prove a more technical 
Theorem 4.1, implying Theorem 1.4 for k ≥ 9. Finally, in Section 5 we prove the analog 
of our technical Theorem 4.1 for 4 ≤ k ≤ 8. In particular, we describe all 2-connected 
graphs with no cycles of length at least 6.

Notation. We use standard notation of graph theory. Given a simple graph G = (V, E), 
the neighborhood of v ∈ V , i.e. the set of vertices adjacent to v, is denoted by NG(v)
or N(v) for short, and the closed neighborhood is N [v] := N(v) ∪ {v}. The degree of 
vertex v is dG(v) := |NG(v)|. Given A ⊆ V we also use NG(v, A) for N(v) ∩ A, d(v, A)
for |N(v) ∩ A|, and N(A) :=

⋃
v∈A N(v)\A. For an edge xy in G, let TG(xy) denote 

the number of triangles containing xy and T (G) := min{TG(xy) : xy ∈ E}. The min-
imum degree of G is denoted by δ(G). For an edge xy in G, G/xy denotes the graph 
obtained from G by contracting xy. We frequently use x ∗ y for the new vertex. The 
length of the longest cycle in G is denoted by c(G), and e(G) := |E|. Denote by Kn

the complete n-vertex graph, and K(A, B) the complete bipartite graph with parts A
and B (A ∩ B = ∅). Given vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), 
the graph G1 + G2 has vertex set V1 ∪ V2 and edge set E1 ∪ E2 ∪ E(K(V1, V2)). If 
G is a graph, then G denotes the complement of G and for a positive integer �, �G
denotes the graph consisting of � components, each isomorphic to G. For disjoint sets 
A, B ⊆ V (G), let G(A, B) denote the bipartite graph with parts A and B consisting 
of all edges of G between A and B, and for A ⊆ V (G), let G[A] denote the subgraph 
induced by A.
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2. Classical theorems

We require a number of theorems on long paths and cycles in dense graphs. The 
following is an extension to 2-connected graphs of the well-known fact that an n-vertex 
non-hamiltonian graph has at most 

(
n−1

2
)

+ 1 edges:

Theorem 2.1 (Erdős [6]). Let d ≥ 1 and n > 2d be integers, and

�n,d := max
{(

n− d

2

)
+ d2,

(
�n+1

2 �
2

)
+
⌊n− 1

2

⌋2}
.

Then every n-vertex graph G with δ(G) ≥ d and e(G) > �n,d is hamiltonian.

The bound on �n,d is sharp, due to the graphs Hn,n,2 and Hn,n,�(n−1)/2�. Since 
δ(G) ≥ 2 for every 2-connected G, this has the following corollary.

Theorem 2.2 (Erdős [6]). If n ≥ 5 and G is an n-vertex 2-connected non-hamiltonian 
graph, then e(G) ≤

(
n−2

2
)

+ 4, with equality only for G = Hn,n,2.

It is well-known that every graph of minimum degree at least d ≥ 2 contains a cycle of 
length at least d + 1. A stronger statement was proved by Dirac for 2-connected graphs:

Theorem 2.3 (Dirac [4]). If G is 2-connected then c(G) ≥ min{n, 2δ}.

This theorem was strengthened as follows by Kopylov [11], based on ideas of Pósa [14]:

Theorem 2.4 (Kopylov [11]). If G is 2-connected, P is an x, y-path of � vertices, then 
c(G) ≥ min{�, d(x, P ) + d(y, P )}.

Theorem 2.5 (Chvátal [3]). Let n ≥ 3 and G be an n-vertex graph with vertex degrees 
d1 ≤ d2 ≤ . . . ≤ dn. If G is not hamiltonian, then there is some i < n/2 such that di ≤ i

and dn−i < n − i.

The k-closure of a graph G is the unique smallest graph H of order n := |V (G)| such 
that G ⊆ H and dH(u) +dH(v) < k for all uv /∈ E(H). The k-closure of G is denoted by 
Clk(G), and can be obtained from G by a recursive procedure which consists of joining 
nonadjacent vertices with degree-sum at least k.

Theorem 2.6 (Bondy and Chvátal [1]). If Cln(G) is hamiltonian, then so is G. Therefore 
if Cln(G) = Kn, n ≥ 3, then G is hamiltonian.

Concerning long paths between prescribed vertices in a graph, Lovász [13] showed 
that if G is a 2-connected graph in which every vertex other than u and v has degree at 
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least k, then there is a u, v-path of length at least k + 1. This result was strengthened 
by Enomoto. The following theorem immediately follows from Corollary 1 in [5]:

Theorem 2.7 (Enomoto [5]). Let 5 ≤ s ≤ n and � := 2(n − 3)/(s − 4). Suppose H is a 
3-connected n-vertex graph with d(x) +d(y) ≥ s for all non-adjacent distinct x, y ∈ V (H). 
Then for every distinct vertices x and y of H, there is an x, y-path of length at least s −2. 
Moreover, if for some distinct x, y ∈ V (H), there is no x, y-path of length at least s − 1, 
then either

Ks/2 + Kn−s/2 ⊆ H ⊆ Ks/2 + Kn−s/2

or � is an integer and

K3 + �Ks/2−2 ⊆ H ⊆ K3 + �Ks/2−2.

A further strengthening of this result was given by Bondy and Jackson [2]. Finally, 
we require some results on cycles containing prescribed sets of edges. The following was 
proved by Pósa [15]:

Theorem 2.8 (Pósa [15]). Let n ≥ 3, k < n and let G be an n-vertex graph such that

d(u) + d(v) ≥ n + k for every non-edge uv in G. (3)

Then for every linear forest F with k edges contained in G, the graph G has a hamiltonian 
cycle containing all edges of F .

The analog of Pósa’s Theorem for bipartite graphs below is a simple corollary of 
Theorem 7.3 in [17].

Theorem 2.9 (Zamani and West [17]). Let s ≥ 3 and K be a subgraph of the complete 
bipartite graph Ks,s with partite sets A and B such that for every x ∈ A and y ∈ B with 
xy /∈ E(K), d(x) + d(y) ≥ s + 1 + i. Then for every linear forest F ⊆ K with at most 2i
edges, there is a hamiltonian cycle in K containing all edges of F .

We will use only the following partial case of Theorem 2.9.

Corollary 2.10. Let s ≥ 4, 1 ≤ i ≤ 2 and K be a subgraph of Ks,s with at least s2−s +2 +i

edges. If F ⊆ K is a linear forest with at most 2i edges and at most two components, 
then K has a hamiltonian cycle containing all edges of F .

3. Lemmas on contractions

An essential part of the proof of Theorem 1.4 is to analyze contractions of edges 
in graphs. Specifically, we shall start with a graph G and contract edges according to 
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some basic rules. Let us mention that the extensive use of contractions to prove the 
Erdős–Gallai Theorem was introduced by Lewin [12]. In this section, we present some 
basic structural lemmas on contractions.

Lemma 3.1. Let n ≥ 4 and let G be an n-vertex 2-connected graph. Let v ∈ V (G) and 
W (v) := {w ∈ N(v) : N [v] � N [w]}. If W (v) �= ∅, then there is w ∈ W (v) such that 
G/vw is 2-connected.

Proof. Let w ∈ W (v), Gw = G/vw. Recall that v ∗ w is the vertex in Gw obtained by 
contracting v with w. Since G is 2-connected, Gw is connected. If x �= v ∗ w is a cut 
vertex in Gw, then it is a cut vertex in G, a contradiction. So, the only cut vertex in Gw

can be v ∗ w. Thus, if the lemma does not hold, then for every w ∈ W (v), v ∗ w is the 
unique cut vertex in Gw. This means that for every w ∈ W (v), {v, w} is a separating set 
in G.

Choose w ∈ W (v) so that to minimize the order of a minimum component in G −v−w. 
Let C be the vertex set of such a component in G − v−w and C ′ = V (G) \ (C ∪{v, w}). 
Since G is 2-connected, v has a neighbor u ∈ C and a neighbor u′ ∈ C ′. Since uu′ /∈ E(G), 
u ∈ W (v). But the vertex set of every component of G − v − u not containing w is 
contained in C. This contradicts the choice of w. �

This lemma yields the following fact.

Lemma 3.2. Let n ≥ 4 and let G be an n-vertex 2-connected graph. For every v ∈ V (G), 
there exists w ∈ N(v) such that G/vw is 2-connected.

Proof. If W (v) �= ∅, this follows from Lemma 3.1. Suppose W (v) = ∅. This means 
G[N(v)] is a clique. Then contracting any edge incident with v is equivalent to deleting v. 
Let G′ = G − v. Since d(v) ≥ 2 and G[N(v)] is a clique, any cut vertex in G′ is also a 
cut vertex in G. �

For an edge xy in a graph H, let TH(xy) denote the number of triangles containing xy. 
Let T (H) := min{TH(xy) : xy ∈ E(H)}. When we contract an edge uv in a graph H, 
the degree of every x ∈ V (H) \ {u, v} either does not change or decreases by 1. Also the 
degree of u ∗ v in H/uv is at least max{dH(u), dH(v)} − 1. Thus

δ(H/uv) ≥ δ(H) − 1 for every graph H and uv ∈ E(H). (4)

Similarly,

T (H/uv) ≥ T (H) − 1 for every graph H and uv ∈ E(H). (5)

Suppose we contract edges of a 2-connected graph one at a step, choosing always an 
edge xy so that
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(i) the new graph is 2-connected and,
(ii) xy is in the fewest triangles;
(iii) the contracted edge xy is incident to a vertex of degree as small as possible up 

to (ii).

Lemma 3.3. Let h be a positive integer. Suppose a 2-connected graph G is obtained from 
a 2-connected graph G′ by contracting edge xy into x ∗ y using the above rules (i)–(iii). 
If G has at least h vertices of degree at most h, then either G′ = Kh+2 or G′ also has a 
vertex of degree at most h.

Proof. Since G is 2-connected, h ≥ 2. If G has a vertex of degree less than h, the lemma 
holds by (4). So, let Aj denote the set of vertices of degree exactly j in G, and assume 
|Ah| ≥ h. Let A′

h = Ah \ {x ∗ y}. Suppose the lemma does not hold. Then we have

each v ∈ A′
h has degree h + 1 in G′ and is adjacent to both, x and y in G′. (6)

Case 1: |A′
h| ≥ h. Then by (6), xy belongs to at least h triangles in which the third 

vertex is in Ah. So by (iii) and the symmetry between x and y, we may assume dG′(x) =
h + 1. This in turn yields NG′(x) = Ah ∪ {y}. Since G′ is 2-connected each v ∈ A′

h is 
not a cut vertex. Even more, xv is not a cut edge. Indeed, y is a common neighbor of all 
neighbors of x so all neighbors of x must be in the same component as y in G′ − x − v. 
It follows that

for every v ∈ A′
h, G′/vx is 2-connected. (7)

If uv /∈ E(G) for some u, v ∈ Ah, then by (7) and (ii), we would contract the edge xu
and not xy. Thus G′[A′

h ∪ {x, y}] = Kh+2 and so either G′ = Kh+2 or y is a cut vertex 
in G′, as claimed.

Case 2: |A′
h| = h − 1. Then x ∗ y ∈ Ah. We obtain that dG′(x) = dG′(y) = h + 1 and 

NG′ [x] = NG′ [y]. So by (6), there is z ∈ V (G) such that NG′ [x] = NG′ [y] = A′
h∪{x, y, z}. 

Again (7) holds (for the same reason that NG′ [x] ⊆ NG′ [y]). Thus similarly vu ∈ E(G′)
for every v ∈ A′

h and every u ∈ A′
h ∪ {z}. Hence G′[A′

h ∪ {x, y, z}] = Kh+2 and either 
G′ = Kh+2 or z is a cut vertex in G′, as claimed. �
Lemma 3.4. Suppose that G is a 2-connected graph and C is a longest cycle in it. Then 
no two consecutive vertices of C form a separating set.

Proof. Indeed, if for some i the set {vi, vi+1} is separating, then let H1 and H2 be two 
components of G − {vi, vi+1} such that V (C) ∩ V (H1) �= ∅. Then V (C) \ {vi, vi+1} ⊆
V (H1). Let x ∈ V (H2). Since G is 2-connected, it contains two paths from x to {vi, vi+1}
that share only x. Since {vi, vi+1} separates V (H2) from the rest, these paths are fully 
contained in V (H2) ∪ {vi, vi+1}. So adding these paths to C − vivi+1 creates a cycle 
longer than C, a contradiction. �
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Fig. 1. Classes G2(n, k), G3(n, k) and G4(n, 10).

4. Proof of the main result, Theorem 1.4, for k ≥ 9

In this section, we give a precise description of the extremal graphs for Theorem 1.4
for k ≥ 9. The description for k ≤ 8 is postponed to Section 5. For Theorem 1.4(a), 
when k = 2t + 1 and t �= 3, these are simply subgraphs of the graphs Hn,k,t: recall that 
Hn,k,a has a partition into three sets A, B, C such that |A| = a, |B| = n − k + a and 
|C| = k − 2a and the edge set of Hn,k,a consists of all edges between A and B together 
with all edges in A ∪ C. For Theorem 1.4(b), when k = 2t + 2 or k = 7, the extremal 
graphs G contain a set A of size at most t such that G −A is a star forest. In this case 
a more detailed description is required.

Classes Gi(n, k) for i ≤ 3. Let G1(n, k) := {Hn,k,t}. Each G ∈ G2(n, k) is defined by a 
partition V (G) = A ∪B∪J , |A| = t and a pair a1 ∈ A, b1 ∈ B such that G[A] = Kt, G[B]
is the empty graph, G(A, B) is a complete bipartite graph and for every c ∈ J one has 
N(c) = {a1, b1}. Every member of G ∈ G3(n, k) is defined by a partition V (G) = A ∪B∪J , 
|A| = t such that G[A] = Kt, G(A, B) is a complete bipartite graph, and

• G[J ] has more than one component
• all components of G[J ] are stars with at least two vertices each
• there is a 2-element subset A′ of A such that N(J) ∩ (A ∪B) = A′

• for every component S of G[J ] with at least 3 vertices, all leaves of S are adjacent 
to the same vertex a(S) in A′.

The class G4(n, k) is empty unless k = 10. Each member of G4(n, 10) has a 3-vertex set 
A such that G[A] = K3 and G −A is a star forest such that if a component S of G −A

has more than two vertices then all its leaves are adjacent to the same vertex a(S) in A. 
These classes are illustrated in Fig. 1.

Statement of main theorem. Having defined the classes Gi(n, k) for i ≤ 4, we now state 
a theorem which implies Theorem 1.4 for k ≥ 9 and shows that the extremal graphs are 
the graphs in the classes Gi(n, k):

Theorem 4.1 (Main theorem). Let k ≥ 9, n ≥ 3k
2 and t =

⌊
k−1
2

⌋
. Let G be an n-vertex 

2-connected graph with no cycle of length at least k. Then e(G) ≤ h(n, k, t − 1) or G is 
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a subgraph of a graph in G(n, k), where

(1) if k is odd, then G(n, k) := G1(n, k) = {Hn,k,t};
(2) if k is even and k �= 10, then G(n, k) := G1(n, k) ∪ G2(n, k) ∪ G3(n, k);
(3) if k = 10, then G(n, k) := G1(n, 10) ∪ G2(n, 10) ∪ G3(n, 10) ∪ G4(n, 10).

We prove this theorem in this section. We also observe that if k ≥ 11, then the only 
graph in the classes Gi(n, k) that is 3-connected is Hn,k,t. Therefore Theorem 4.1 implies 
Corollary 1.5.

The idea of the proof is to take a graph G satisfying the conditions of the theorem with 
c(G) < k, and to contract edges while preserving the average degree and 2-connectivity 
of G. A key fact is that if a graph contains a cycle of length at least k and is obtained 
from another graph by contracting edges, then that other graph also contains a cycle of 
length at least k. The process terminates with an m-vertex graph Gm such that Gm is 
2-connected, m ≥ k, and if m > k then Gm has minimum degree at least t −1. If m > k, 
then we apply Theorem 2.7 to show that Gm is a dense subgraph of Hm,k,t. If m = k, then 
we apply Theorems 2.1, 2.2, 2.5, and 2.6 to show that Gm is a dense subgraph of Hk,k,t. 
Using this, we show that Gm contains a dense nice subgraph. Analyzing contractions, we 
then show that G itself contains a dense nice subgraph. Finally, we show that every dense 
n-vertex graph containing a dense nice subgraph but not containing a cycle of length at 
least k must be a subgraph of a graph in one of the classes described in Theorem 4.1.

4.1. Basic Procedure

Let k, n be positive integers with n ≥ k. Let G be an n-vertex 2-connected graph 
with c(G) < k and e(G) ≥ h(n, k, t − 1) + 1. We denote G as Gn and run the following 
procedure.

Basic Procedure. At the beginning of each round, for some j : k ≤ j ≤ n, we have a 
j-vertex 2-connected graph Gj with e(Gj) ≥ h(j, k, t − 1) + 1.

(R1) If j = k, then we stop.
(R2) If there is an edge xy with TGj

(xy) ≤ t −2 such that Gj/xy is 2-connected, choose 
one such edge so that
(i) TGj

(xy) is minimum, and subject to this
(ii) xy is incident to a vertex of minimum possible degree.
Then obtain Gj−1 by contracting xy.

(R3) If (R2) does not hold, j ≥ k + t − 1 and there is uv ∈ E(Gj) such that Gj − u − v

has at least 3 components and one of the components, say H1 is a Kt−1, then let 
Gj−t+1 = Gj − V (H1).

(R4) If neither (R2) nor (R3) occurs, then we stop.
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Remark 1. By construction, every obtained Gj is 2-connected and has c(Gj) < k. Let us 
check that

e(Gj) ≥ h(j, k, t− 1) + 1 (8)

for all m ≤ j ≤ n. For j = n, (8) holds by assumption. Suppose j > m and (8)
holds. If we apply (R2) to Gj , then the number of edges decreases by at most t − 1, and 
(h(j, k, t −1) +1) −(h(j−1, k, t −1) +1) = t −1. If we apply (R3) to Gj , then the number of 
edges decreases by at most 

(
t+1
2
)
−1, and (h(j, k, t −1) +1) −(h(j−(t −1)), k, t −1) +1) =

(t − 1)2. But for k ≥ 9, (t − 1)2 ≥
(
t+1
2
)
− 1. Thus every step of the basic procedure 

preserves (8).

Let Gm denote the graph with which the procedure terminates.

Remark 2. Note that if the rule (R3) applies for some Gj, then the set {u, v} is still 
separating in Gj−t+1, and TGj−t+1(xy) ≥ t − 1 for every edge xy such that Gj−t+1/xy

is 2-connected. In particular, δ(Gj−t+1) ≥ t. So after any application of (R3), rule (R2) 
does not apply, and δ(Gm) ≥ t.

4.2. The structure of Gm

In the next two subsections, we prove Proposition 4.2 below, considering the cases 
m = k and m > k separately. Let F4 be the graph obtained from K3,6 by adding three 
independent edges in the part of size six. In this section we usually suppose that n ≥ 3t, 
t ≥ 4, although many steps work for smaller values as well.

Proposition 4.2. The graph Gm satisfies the following properties:

(1) Gm ⊆ Hm,k,t or
(2) m > k = 10 and Gm ⊇ F4.

4.2.1. The case m = k

If Gk is hamiltonian, then c(G) ≥ k, a contradiction. So Gk is not hamiltonian.
By Theorem 2.5, for every non-hamiltonian n-vertex graph G with vertex degrees 

d1 ≤ d2 ≤ . . . ≤ dn, we define

r(G) := min{i : di ≤ i and dn−i < n− i}.

Lemma 4.3. Let t ≥ 4, n ≥ 3t. If the vertex degrees of Gk are d1 ≤ d2 ≤ . . . ≤ dk, then 
r(Gk) = t.

Proof for k = 2t +2. Note that r(Gk) ≤ t since r(G) < n/2 (see Theorem 2.5). Suppose 
r := r(Gk) ≤ t − 1. Then by Remark 2, rule (R3) never applied, and Gk was obtained 
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from G by a sequence of n −m edge contractions according (R2). We may assume that 
for all m ≤ j < n, graph Gj was obtained from Gj+1 by contracting edge xjyj . Then 
conditions for (R2) imply

TGj
(xj−1yj−1) ≤ t− 2 for every m + 1 ≤ j ≤ n. (9)

By Lemma 3.3, δ(Gm+1) ≤ r. This together with (9) and (4) yield that for every 
m < j ≤ n,

δ(Gj) ≤ r + j −m− 1 and so TGj
(xj−1yj−1) ≤ min{r + j −m− 2, t− 2}. (10)

Contracting edge xj−1yj−1 in Gj , we lose TGj
(xj−1yj−1) + 1 edges. Since e(G) ≥

h(n, k, t − 1) + 1, by (5) we obtain

e(Gk) ≥ h(n, k, t− 1) + 1 −
n∑

j=m+1
min{t− 1, r + j −m− 1} (11)

=
(
t + 3

2

)
+ (t− 1)(n− t− 3) + 1 −

n∑
j=m+1

min{t− 1, r + j −m− 1}

=
(
t + 3

2

)
+ (t− 1)(n− t− 3) + 1 − (t− 1)(n−m)

+
n∑

j=m+1
max{0,m + t− r − j}

= 3t2 + t + 10
2 +

n∑
j=m+1

max{0, 3t + 2 − r − j}.

Since n ≥ 3t, {max{0, 3t +2 −r−j} : m +1 ≤ j ≤ n} = {0, 1, 2, . . . , t −1 −r}. Therefore

e(Gk) ≥
3t2 + t + 10

2 +
t−1−r∑
i=1

i = 3t2 + t + 10
2 +

(
t− r

2

)
. (12)

On the other hand, by the definition of r, Gm has at most r2 edges incident with 
the r vertices of the smallest degrees and at most 

(
m−r

2
)

other edges. Thus e(Gm) ≤
r2 +

(2t+2−r
2

)
. Hence

3t2 + t + 10
2 +

(
t− r

2

)
≤ r2 +

(
2t + 2 − r

2

)
. (13)

Expanding the binomial terms in (13) and regrouping we get

t(r − 3) ≤ r2 − 2r − 4. (14)
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If r = 3, then the left hand side of (14) is 0 and the right hand side is −1, a contradiction. 
If r ≥ 4, then dividing both sides of (14) by r − 3 we get t ≤ r + 1 − 1/(r − 3), which 
yields r ≥ t, as claimed.

So suppose r = 2 and let v1, v2 be two vertices of degree 2 in Gk. Then by (12), the 
graph H = Gk − v1 − v2 has at least

3t2 + t + 10
2 +

(
t− 2

2

)
− 2(2) = 2t2 − 2t + 4

edges. So the complement of H has at most t − 4 edges and thus, for u, w ∈ V (H):

dH(u) + dH(w) ≥ 2(2t− 1) − (t− 4) − 1 = 3t + 1 = |V (H)| + t + 1.

Hence by Theorem 2.8,

for each linear forest F ⊆ H with e(F ) ≤ t + 1, H has a spanning cycle

containing E(F ).
(15)

If N(vi) = {ui, wi} for i = 1, 2 and v1v2 ∈ E(Gk), say u1 = v2 and u2 = v1, then 
w1 �= w2 since H is 2-connected. Thus by (15), graph H ′ = H + w1w2 has a spanning 
cycle containing w1w2, and this cycle yields a hamiltonian cycle in Gk, a contradiction. 
So v1v2 /∈ E(Gk). Similarly, if N(v1) �= N(v2), then by (15), graph H ′′ = H+u1w1+u2w2

has a spanning cycle containing u1w1 and u2w2. Again this yields a hamiltonian cycle 
in Gk. Thus we may assume N(v1) = N(v2) = {u, w}. Let

H0 = H + uw if uw /∈ E(G) and H0 = H otherwise. (16)

If xm∗ym /∈ N [v1] ∪N [v2], then TGm+1(xmym) ≤ 1 (since TGm+1(v1u1) ≤ 1) and Gm+1

contains vertices v1 and v2 of degree 2. So by Lemma 3.3 for h = 2, Gm+2 also has a 
vertex of degree 2. Thus by (4) for r = 2 instead of (10) we have for every m +2 ≤ j ≤ n,

δ(Gj) ≤ min{j −m, t− 1} and so TGj
(xj−1yj−1) ≤ min{j −m− 1, t− 2}. (17)

Plugging (17) instead of (10) into (11) for r = 2, we will instead of (13) get the stronger 
inequality

3t2 + t + 10
2 + (t− 3) +

(
t− 2

2

)
≤ 22 +

(
2t + 2 − 2

2

)
. (18)

Thus instead of (14) we have for r = 2 the stronger inequality t(2 −3) +(t −3) ≤ 22−4 −4, 
which does not hold. This contradiction implies xm ∗ ym ∈ N [v1] ∪N [v2]. By symmetry 
we have two cases.
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Case 1: xm ∗ ym = v1. As above, graph H0 has a spanning cycle C containing uw. If

xmu, ymw ∈ E(Gm+1), (19)

then C extends to a k-cycle in Gm+1 by replacing uw with path u, xm, ym, w. A similar 
situation holds if

xmw, ymu ∈ E(Gm+1). (20)

But by degree conditions each of xm, ym has a neighbor in {u, w}. By definition, each 
of u, w has a neighbor in {xm, ym}. So at least one of (19) and (20) holds.

Case 2: xm∗ym = u. If dGm+1(v1) = dGm+1(v2) = 2, then as before we get (18) instead 
of (14) and get a contradiction. So by symmetry we may assume that v1 is adjacent to 
both xm and ym in Gm+1. Since Gm is 2-connected, vertex w does not separate {v1, v2, u}
from the rest of the graph. Thus by symmetry we may assume that ym has a neighbor 
z ∈ V (Gm+1) \ {xm, v1, v2, w}. Again by (15), graph H0 defined by (16) has a spanning 
cycle containing edges uw and uz, and again this cycle yields a k-cycle in Gm+1 (using 
path w, v1, xm, ym, z), a contradiction. �
Proof for k = 2t + 1. We repeat the argument for k = 2t + 2, but instead of (12) and 
(13), we get

3t2 − t + 6
2 +

(
t− r

2

)
≤ e(Gk) ≤ r2 +

(
2t + 1 − r

2

)
.

Expanding the binomial terms and regrouping, similarly to (14), we get

t(r − 2) ≤ r2 − r − 3.

The analysis of this inequality is simpler than that of (14): If r = 2, then the left hand 
side is 0 and the right hand side is −1, while if r ≥ 3, then dividing both sides by r − 2
we get t ≤ r + 1 − 1/(r − 2), which yields r ≥ t, as claimed. �
Lemma 4.4. Under the conditions of Lemma 4.3, Gk is a subgraph of the graph Hk,k,t.

Proof for k = 2t + 2. By Lemma 4.3, r(Gk) = t. Let G′ be the k-closure of Gk and 
d′1 ≤ d′2 ≤ . . . ≤ d′k be the vertex degrees in G′. By the definition of the k-closure,

d(u) + d(v) ≤ k − 1 for every non-edge uv in G′. (21)

Since d′i ≥ di for every i and G′ is also non-hamiltonian, r(G′) ≥ r(Gk) = t. Since 
r(G′) ≤ t from r(G) < n/2, r(G′) = t. Let V (G′) = {v1, . . . , vk} where dG′(vi) = d′i for 
all i. By the definition of r(G′), on the one hand d′t ≤ t and d′k−t ≤ k − t − 1 = t + 1, 
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on the other hand either d′t−1 > t − 1 or d′k−(t−1) ≥ k − (t − 1) = t + 3. In any case, 
d′t+3 ≥ t. Summarizing,

d′t+3 ≥ t, d′t ≤ t and d′t+1 ≤ d′t+2 ≤ t + 1. (22)

Let B = {v1, . . . , vt+2} and A = V (G′) \B. If d′t+4 ≤ t + 2, then

k∑
i=1

d′i ≤ (t|B| + 2) + (t + 2)2 + (2t + 1)(t− 2) = 3t2 + t + 4,

a contradiction to e(Gk) ≥ h(k, k, t − 1) + 1. Thus d′t+4 ≥ t + 3, and by (21) and (22), 
G′[A] = Kt. In summary,

d′t+4 ≥ t + 3 and G′[A] = Kt. (23)

Suppose that there are distinct vi1 , vi2 ∈ B and distinct vj1 , vj2 ∈ A such that vi1vj1
and vi2vj2 are non-edges in G′. Then by (21) and (22),

2t+2∑
i=1

d′i ≤ (2t + 1)2 + t(|B| − 2) + 2 + (2t + 1)(|A| − 2)

= 4t + 2 + t2 + 2 + 2t2 − 3t− 2 = 3t2 + t + 2.

This contradicts e(Gk) > h(k, k, t − 1). So, some vj is incident with all non-edges of G′

connecting A with B.
Case 1: j ≤ t + 2, i.e. vj ∈ B. Then each v ∈ B − vj has t neighbors in A. Thus each 

v ∈ B \ {vj , vt+1, vt+2} has no neighbors in B, and each of vt+1, vt+2 has at most one 
neighbor in B. If each of vt+1, vt+2 is adjacent to vj , then G′ has a hamiltonian cycle 
using edges vt+1vj and vjvt+2. Otherwise G′[B] has at most one edge, as claimed.

Case 2: j ≥ t + 3, i.e. vj ∈ A. Together with (23), this yields that G′ contains 
Kt−1,t+3 with partite sets A \ {vj} and B ∪ {vj}. In particular, all pairs of vertices 
in A \ {vj} are adjacent. So, G′ is obtained from K2t+2 − E(Kt+3) by adding at least 
e(G′) −

(2t+2
2

)
+
(
t+3
2
)
≥ 7 edges. If G′[B ∪{vj}] contains a linear forest with four edges, 

then G′ has a hamiltonian cycle. So suppose

G′[B ∪ {vj}] contains no linear forests with four edges. (24)

Case 2.1: G′[B ∪ {vj}] contains a cycle C. By (24), |C| ≤ 4 and if |C| = 4, then each 
other edge in G′[B∪{vj}] has both ends in V (C). Thus G′[B∪{vj}] has at most 6 edges, 
a contradiction. So suppose C = (x, y, z). If no other edge is incident with V (C), then 
the set of the remaining at least four edges in G′[B ∪ {vj}] contains a linear forest with 
two edges, a contradiction to (24). Thus we may assume that G′[B ∪ {vj}] has an edge 
xu where u /∈ {y, z}. Then by (24) and the fact that G′[B ∪ {vj}] contains no 4-cycles, 
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none of u, y, z is incident with other edges. On the other hand, if G′[B ∪ {vj}] has an 
edge not incident with V (C), this would contradict (24). Hence G′[B ∪ {vj} \ {x}] has 
only the edge yz, as claimed.

Case 2.2: G′[B ∪ {vj}] is a forest. By (24), there is x ∈ B ∪ {vj} of degree at least 3
in G′[B ∪ {vj}]. If there is another vertex y of degree at least 3 in G′[B ∪ {vj}], then we 
can choose two edges incident with x and two edges incident with y that together form 
a linear forest with four edges. So G′[B ∪{vj} \ {x}] is a linear forest, call it F , and thus 
has at most 3 edges. Each edge of F has at most one end adjacent to x and the degree 
of x in G′[B ∪ {vj}] is at least four. So if F has exactly m ∈ {2, 3} edges, then we can 
choose 4 − m edges incident with x so that together with F they form a linear forest. 
And if F has at most one edge, then the lemma holds. �
Proof for k = 2t +1. The proof is almost identical to the case k = 2t +2. By Lemma 4.3, 
r(Gk) = t. Let G′ be the k-closure of Gk and d′1 ≤ d′2 ≤ . . . ≤ d′k be the vertex degrees 
in G′. As in (21), we have

d(u) + d(v) ≤ k − 1 = 2t for every non-edge uv in G′. (25)

As in the proof in the case k = 2t + 2, r(G′) = t. Let V (G′) = {v1, . . . , vk} where 
dG′(vi) = d′i for all i. Instead of (22), we get the stronger claim

d′t+2 ≥ t and d′t ≤ d′t+1 = t. (26)

Let B = {v1, . . . , vt+1} and A = V (G′) \B. If d′t+3 ≤ t + 1, then

2t+1∑
i=1

d′i ≤ t|B| + (t + 1)2 + (2t)(t− 2) = 3t2 − t + 2 ≤ h(k, k, t− 1),

a contradiction. Thus,

d′t+3 ≥ t + 2 so by (25) and (26), G′[A] = Kt. (27)

If there are distinct vi1 , vi2 ∈ B and distinct vj1 , vj2 ∈ A such that vi1vj1 and vi2vj2
are non-edges in G′, then by (25) and (26),

k∑
i=1

d′i ≤ (2t)2 + t(|B| − 2) + (2t)(|A| − 2) = 4t + t2 − t + 2t2 − 4t = 3t2 − t

≤ h(k, k, t− 1),

a contradiction. So, some vj is incident with all non-edges of G′ connecting A with B.
Case 1: j ≤ t + 1, i.e. vj ∈ B. Then each v ∈ B − vj has t neighbors in A. Thus 

by (26), each v ∈ B − vj has no neighbors in B, hence B is independent, as claimed.
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Case 2: j ≥ t + 2, i.e. vj ∈ A. Together with (27), this yields that G′ − vj contains 
Kt−1,t+2 with partite sets A \ {vj} and B ∪ {vj}. In particular, each vertex in A \ {vj}
is all-adjacent. So, G′ is obtained from Kk − E(Kt+2) by adding at least four edges. If 
G′[B ∪ {vj}] contains a linear forest with three edges, then G′ has a hamiltonian cycle. 
Every graph with at least four edges not containing a linear forest with three edges is 
a star plus isolated vertices. And if G′[B ∪ {vj}] is a star plus isolated vertices, then 
G′ ⊆ Hk,k,t. �
4.2.2. The case m > k

Lemma 4.5. Let m > k ≥ 9.

(1) If k �= 10, then Gm ⊆ Hm,k,t.
(2) If k = 10 then Gm ⊆ Hm,k,t or Gm ⊇ F4.

Proof for k = 2t + 2. Gm is an m-vertex 2-connected graph with c(Gm) ≤ 2t + 1
satisfying e(G) ≥ h(n, k, t − 1) + 1. Since (R2) is not applicable,

TGm
(xy) ≥ t− 1 for every non-separating edge xy. (28)

By Lemmas 3.2 and 3.1, (28) implies

δ(Gm) ≥ t and for each v ∈ V (Gm) with d(v) = t, Gm[N(v)] = Kt+1. (29)

Let C = (v1, . . . , vq) be a longest cycle in Gm. Since δ(Gm) ≥ t, Dirac’s Theorem 
(Theorem 2.3) yields q ≥ 2t. Obviously, q ≤ 2t + 1.

By (28) and Lemma 3.4, each edge of C is in at least t −1 triangles. By the maximality 
of C, the third vertex of each such triangle is in V (C). So

the minimum degree of Gm[V (C)] is at least t. (30)

We now prove that

Gm[V (C)] is 3-connected. (31)

Indeed, assume (31) fails and Gm[V (C)] has a separating set S of size 2. By symmetry, 
we may assume that S = {v1, vj} and that j ≤ �q/2� +1 ≤ t +1. Then by (30), j = t +1
and Gm[{v1, . . . , vt+1}] = Kt+1. In particular,

v1vt+1 ∈ E(Gm). (32)

Let H1 = Gm[{v1, . . . , vt+1}] and H2 = Gm[{vt+1, . . . , vq, v1}]. Similarly to H1, graph 
H2 is either Kt+1 (when q = 2t) or is obtained from Kt+2 by deleting some matching 
(when q = 2t + 1).
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Concerning almost complete graphs we need the following statement which is an easy 
consequence of Theorem 2.8 (or one can prove it directly).

For p ≥ 6 and for any matching M ⊆ Kp, every two edges of Kp −M

are in a common hamiltonian cycle of Kp −M .
(33)

Since Gm is 2-connected, each component F of Gm−V (C) has at least two neighbors, 
say y(F ) and y′(F ), in C. If at least one of them, say y′(F ), is not in S = {v1, vt+1}, 
then we can construct a cycle longer than C as follows.

If y(F ) ∈ V (H1) \ {v1, vt+1} and y′(F ) ∈ V (H2) \ {v1, vt+1}, then H1 − vt+1 has a 
hamiltonian v1, y(F )-path P1 (recall that H1 − vt+1 is a complete graph), and H2 has a 
hamiltonian v1, y′(F )-path P2, by (33) and since k ≥ 4. So P1∪P2 and a y(F ), y′(F )-path 
through F form a longer than C cycle in Gm.

If both, y(F ) and y′(F ) are in the same Hj , then we let H ′
j be the graph obtained 

from Hj by adding the edge y(F )y′(F ). Recall that by (32), v1vt+1 ∈ E(Hj). If we 
have a hamiltonian cycle C ′ in H ′

j containing y(F )y′(F ) and v1vt+1, then let P be the 
v1, vt+1-path obtained from C ′ by deleting edge v1vt+1 and replacing edge y(F )y′(F )
with a y(F ), y′(F )-path P ′ through F , and then replace in C the v1, vt+1-path through 
V (Hj) with the longer path P . There is such a C ′ if |V (Hj)| ≥ 6 by (33), and also if 
|V (Hj)| = 5 because in the latter case |V (Hj)| = t + 1 with t = 4 and it is a complete 
graph.

Thus every component F of Gm − V (C) is adjacent only to S, and S is a separating 
set in Gm. In particular, H1 − S = Kt−1 and H2 − S are components of Gm − S. So, 
if m ≥ 3t + 1, then rule (R3) is applicable, contradicting the definition of Gm. Hence 
2t + 2 ≤ m ≤ 3t. On the other hand, by (29), every component of Gm − S has at least 
t − 1 vertices, and so m − q ≥ t − 1. Therefore, 3t − 1 ≤ m ≤ 3t.

If m = 3t − 1, then q = 2t, H2 = Kt+1 and H3 := Gm − (V (C) − S) = Kt+1. Hence

e(Gm) − h(m, k, t− 1) − 1 = 3
(
t + 1

2

)
− 2 − h(3t− 1, k, t− 1) − 1

= 3t2 + 3t− 4
2 − 5t2 − 7t + 16

2 = −t2 + 5t− 10 < 0.

Similarly, if m = 3t, then the component sizes of Gm − S are t, t − 1, t − 1. Thus in this 
case

e(Gm) − h(m, k, t− 1) − 1 ≤ t2 + t +
(
t + 2

2

)
− 2 − h(3t, k, t− 1) − 1

= 3t2 + 5t
2 − 1 − 5t2 − 5t + 14

2 = −t2 + 5t− 8 < 0.

These contradictions prove (31).



Z. Füredi et al. / Journal of Combinatorial Theory, Series B 121 (2016) 197–228 215
So by (31) and Theorem 2.7 for n = q, s = 2t and H = Gm[V (C)], one of three cases 
below holds:

Case 1: Kt + Kq−t ⊆ Gm[V (C)] ⊆ Kt + Kq−t. Let B be the independent set of size 
q − t in Gm[V (C)] and A = V (C) \ B. In this case, since Gm[V (C)] has hamiltonian 
cycle C and an independent set B of size q − t, we need q = 2t.

Suppose that Gm−V (C) has a component D with at least two vertices. By Menger’s 
Theorem, there are two fully disjoint paths, say P1 and P2, connecting some two distinct 
vertices, say u and v, of D with two distinct vertices, say x and y, of C. Since Gm[V (C)]
contains Kt,t, it has an x, y-path with at least 2t − 1 vertices. This path together with 
P1, P2 and a u, v-path in D form a cycle of length at least 2t + 1, a contradiction to 
the maximality of C. Thus each component of Gm − V (C) is a single vertex and is 
adjacent either only to vertices in A or only to vertices in B. Moreover, by (29), each 
such vertex has degree exactly t, and thus its neighborhood is a complete graph. Since 
B is independent, each v ∈ V (Gm) − C is adjacent only to vertices in A. Thus Gm =
Km − E(Km−t) = Hm,k−1,t ⊆ Hm,k,t.

Case 2: K3 + �Kt−2 ⊆ Gm[V (C)] ⊆ K3 + �Kt−2, where � = 2(q − 3)/(2t − 4). 
Again, since Gm[V (C)] has hamiltonian cycle C and a separating set of size 3 (call this 
set A), � ≤ 3. If � ≤ 2, then q ≤ 3 + 2(t − 2) < 2t, a contradiction. Thus, � = 3 and 
q = 3 + 3(t − 2) = 3t − 3. Since 2t ≤ q ≤ 2t + 1, we get t ∈ {3, 4}. Since t ≥ 4 by 
assumption, we obtain that t = 4 and F4 ⊆ Gm.

Case 3: For every two distinct x, y ∈ V (C), the graph Gm[V (C)] contains an x, y-path 
with at least 2t vertices. Let W = V (Gm) −V (C). Repeating the argument of the second 
paragraph of Case 1, we obtain that in our case

each component of Gm[W ] is a singleton and so N(w) ⊆ V (C) for each w ∈ W . (34)

Since no w ∈ W is adjacent to two consecutive vertices of C (by the maximality of C) 
and q ≤ 2t + 1, by (29),

dGm
(w) = t for every w ∈ W. (35)

Fix some w1 ∈ W . Then we may relabel the vertices of C so that NGm
(w1) =

{v1, v3, v5, . . . , v2t−1}. By (29), this also yields Gm[{v1, v3, . . . , v2t−1}] = Kt and thus 
dGm

(vi) ≥ t + 1 for all i ∈ {1, 3, . . . , 2t − 1}. In particular,

dGm
(v) ≥ t + 1 for every v ∈ NGm

(w1). (36)

Then for every j ∈ {2, 4, . . . , 2t −2} (and for j = 2t in the case q = 2t) we can replace vj
with w1 in C and obtain another longest cycle. By (35) and (34), this yields dGm

(vj) = t

and

NGm
(vj) ⊆ V (C) for all j ∈ {2, 4, . . . , 2t− 2}

(and for j = 2t in the case q = 2t).
(37)
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Case 3.1: q = 2t. Switching the roles of w1 with vj together with (36) yields

NGm
(vj) = {v1, v3, v5, . . . , v2t−1} for all j = 2, 4, . . . , 2t. (38)

By (35) and (38), NGm
(w) = {v1, v3, v5, . . . , v2t−1} for all w ∈ V (Gm) − {v1, v3, v5, . . . ,

v2t−1}. This means Gm ⊆ Hm,2t+2,t, as claimed.
Case 3.2: q = 2t + 1. Since m ≥ 2t + 3, there is w2 ∈ W − w1. By (37), vertex w2 is 

not adjacent to vj for j ∈ {2, 4, . . . , 2t − 2}. Suppose that w2 is adjacent to v2t or v2t+1, 
say w2v2t ∈ E(Gm). Then by the maximality of C, w2v2t+1, w2v2t−1 /∈ E(Gm). So the 
only possible t-element set of neighbors of w2 is {v1, v3, . . . , v2t−3, v2t}. But then Gm has 
the (2t + 2)-cycle (w2, v3, v4, v5, . . . , v2t−1, w1, v1, v2t+1, v2t, w2), a contradiction. Thus

NGm
(w) = {v1, v3, v5, . . . , v2t−1} for all w ∈ W . (39)

Since we can replace in C any vj for j ∈ {2, 4, . . . , 2t −2} with w1, (39) yields NGm
(vj) =

{v1, v3, v5, . . . , v2t−1} for all j = 2, 4, . . . , 2t −2. It follows that {v1, v3, v5, . . . , v2t−1} cov-
ers all edges in Gm apart from edge v2tv2t+1. This means Gm ⊆ Hm,2t+2,t, as claimed. �
Proof for k = 2t + 1. Similarly to the proof for k = 2t + 2, we have (28) and (29). Let 
C = (v1, . . . , vq) be a longest cycle in Gm. Since δ(Gm) ≥ t, by Theorem 2.3, q ≥ 2t; so 
c(Gm) < k yields q = 2t. Then repeating the argument for k = 2t + 2, we obtain (30)
and finally (31). So by Theorem 2.7 for n = s = 2t and H = Gm[V (C)], one of three 
cases below holds:

Case 1: Kt + Kt ⊆ Gm[V (C)] ⊆ Kt + Kt. As in the proof for k = 2t + 2, we derive 
Gm = Km − E(Km−t) = Hm,k,t.

Case 2: K3 + �Kt−2 ⊆ Gm[V (C)] ⊆ K3 + �Kt−2, where � = 2(2t − 3)/(2t − 4). Again, 
since Gm[V (C)] has hamiltonian cycle C and a separating set of size three (call this 
set A), � ≤ 3. Since t ≥ 4, � �= 3. If � ≤ 2, then q ≤ 3 + 2(t − 2) < 2t, a contradiction.

Case 3: For every two distinct x, y ∈ V (C), graph Gm[V (C)] contains a hamiltonian 
x, y-path. Then for any component H of Gm − V (C), let x and y be neighbors of H in 
V (C). By the case, Gm[V (C)] contains a 2t-vertex path, say P . Then P together with 
an x, y-path through H forms a cycle with at least k vertices, a contradiction. But since 
m > k, such a component H does exist. �
4.3. Subgraphs of Gm

In this section, we define classes of graphs which we shall show are subgraphs of Gm, 
and these subgraphs will have the important property that they have many long paths 
and are preserved by the reverse of the contraction process in the Basic Procedure.

For a graph F and a nonnegative integer s, we denote by K−s(F ) the family of graphs 
obtained from F by deleting at most s edges.
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Let F0 = F0(t) denote the complete bipartite graph Kt,t+1 with partite sets A and 
B where |A| = t and |B| = t + 1. Let F0 := K−t+3(F0), i.e., the family of subgraphs of 
Kt,t+1 with at least t(t + 1) − t + 3 edges.

Let F1 = F1(t) denote the complete bipartite graph Kt,t+2 with partite sets A and 
B where |A| = t and |B| = t + 2. Let F1 := K−t+4(F1), i.e., the family of subgraphs of 
Kt,t+2 with at least t(t + 2) − t + 4 edges.

Let F2 denote the family of graphs obtained from a graph in K−t+4(F1) by subdividing 
an edge a1b1 with a new vertex c1, where a1 ∈ A and b1 ∈ B. Note that any member 
H ∈ F2 has at least |A||B| − (t − 3) edges between A and B and the pair a1b1 is not an 
edge.

Let F3 = F3(t, t′) denote the complete bipartite graph Kt,t′ with partite sets A and B
where |A| = t and |B| = t′. Take a graph from K−t+4(F3), select two non-empty subsets 
A1, A2 ⊆ A with |A1 ∪ A2| ≥ 3 such that A1 ∩ A2 = ∅ if min{|A1|, |A2|} = 1, add two 
vertices c1 and c2, join them to each other and add the edges from ci to the elements 
of Ai (i = 1, 2). The class of obtained graphs is denoted by F(A, B, A1, A2). The family 
F3 consists of these graphs when |A| = |B| = t, |A1| = |A2| = 2 and A1 ∩ A2 = ∅. In 
particular, for t = 4 the family F3 consists of exactly one graph, call it F3(4).

Recall that F4 is a 9-vertex graph with vertex set A ∪ B, A = {a1, a2, a3}, B :=
{b1, b2, . . . , b6} and edges of the complete bipartite graph K(A, B) and three extra edges 
b1b2, b3b4, and b5b6. Define F ′

4 as the (only) member of F(A, B, A1, A2) where |A| =
|B| = t = 4, A1 = A2, and |Ai| = 3. Let F4 := {F4, F ′

4}, which is defined only for t = 4.
In this subsection we will prove two useful properties of graphs in F0 ∪ · · · ∪F4: First 

we show that Gm contains one of them (Proposition 4.6) and then show that such graphs 
have long paths with given end-vertices (Lemma 4.8).

Proposition 4.6. Let k ≥ 9. If k is odd, then Gm contains a member of F0, and if k is 
even then Gm contains a member of F1 ∪ · · · ∪ F4.

Proof. By Proposition 4.2, Gm ⊆ Hm,k,t or m > k = 10 and F4 ⊆ Gm. In the latter 
case, the proof is complete. So assume Gm ⊆ Hm,k,t and A, B, C are as in the definition 
of Hm,k,t. First suppose k is even and C = {c1, c2}. If m = k then by (2),

e(Hm,k,t) − e(Gm) ≤ h(m, k, t) − h(m, k, t− 1) − 1 = t− 4,

i.e. Gm ∈ K−t+4(Hm,k,t). Since F1(t) ⊆ Hm,k,t, Gm contains a subgraph in F1. If m > k

then by (R2) and Lemma 3.2, we have δ(Gm) ≥ t. So, each v ∈ B is adjacent to every 
u ∈ A and each of c1, c2 has at least t −1 neighbors in A. Since |B∪{c1}| ≥ m −t −1 ≥ t +2, 
Gm contains a member of K−1(F1(t)). Thus Gm contains a member of F1 unless t = 4, 
m = 2t +3 and c1 has a nonneighbor x ∈ A. But then c1c2 ∈ E(Gm), and so Gm contains 
either F3(4) or F ′

4.
Similarly, if k is odd and m = k, then by (2), Gm ∈ K−t+3(Hm,k,t). Thus, since 

Hm,k,t ⊇ F0(t), Gm contains a subgraph in F0. If k is odd and m > k then by (R2) we 
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have δ(Gm) ≥ t. So, each v ∈ V (Gm) −A is adjacent to every u ∈ A. Hence Gm contains 
Kt,m−t. �

In order to prove Lemma 4.8, we will use Corollary 2.10 and the following implication 
of it.

Lemma 4.7. Let t ≥ 4 and H ∈ F(A, B, A1, A2) with |B| ≥ t − 1, |A| = t. Let P be a 
path a1c1c2a2 and L be a subtree of H with |E(L)| ≤ 2 such that P ∪ L form a linear 
forest. Then

H has a cycle C of length 2t + 1 containing P ∪ L. (40)

Proof. Choose some B′ ⊆ B with |B′| = t − 1 such that B ∩ V (L) ⊆ B′. Let Q be the 
bipartite graph whose t-element partite sets are A and B′ ∪{c} where c is a new vertex, 
and the edge set consists of H[A ∪B′] and all edges joining c to A. By the conditions of 
the lemma, the set E′ := E(L) ∪ {a1c, ca2} forms a linear forest in Q. Since Q misses at 
most t − 4 edges connecting A with B′ ∪ {c}, by Corollary 2.10 with s = t and i = 2, 
Q has a hamiltonian cycle C ′ containing E′. Then the (2t + 1)-cycle C in H obtained 
from C ′ by replacing path a1ca2 with P satisfies (40). �
Lemma 4.8. Let H ∈ F0 ∪ F1 ∪ · · · ∪ F4 and x, y ∈ V (H).

(a) H contains an x, y-path of length at least 2t − 2;
(b) if H does not contain an x, y-path of length at least 2t − 1, then

(b0) H ∈ F0 and {x, y} ⊆ A, or
(b1) H ∈ F1 and {x, y} ⊆ A, or
(b2) H = F4 ∈ F4 and {x, y} ⊆ A;

(c) if H does not contain an x, y-path of length at least 2t, then
(c0) H ∈ F0, or
(c1) H ∈ F1 and at least one of x, y is in A, or
(c2) H ∈ F2 and either {x, y} ⊆ A or {x, y} = {a1, b1}, or
(c3) H ∈ F3 and {x, y} ⊆ A, or
(c4) H ∈ F4 and {x, y} ⊆ A.

Proof. The statements concerning H ∈ F0 ∪F1 are the easiest. Using Corollary 2.10 (or 
just using induction on t) it is easy to prove a bit more. Suppose that H ∈ K−(t−2)

t,t+1 (A, B), 
t ≥ 2. Then every pair x, y ∈ A ∪ B is joined by a path of maximum possible length. 
This means that every pair of vertices b1, b2 ∈ B is joined by a path of length 2t, every 
pair a ∈ A, b ∈ B is joined by a path of length 2t − 1, and every pair a1, a2 ∈ A is joined 
by a path of length 2t − 2. For example, the proof for H ∈ F0, a ∈ A and b ∈ B is as 
follows. Consider H ′ obtained from H by adding edge ab if ab /∈ E(H) and deleting any 
b′ ∈ B − b. Then by Corollary 2.10, H ′ has a hamiltonian cycle containing ab, which 
yields an a, b-path in H of length 2t − 1.
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The cycle (b1b2a1b3b4a2b5b6a3b1) and path b1b2a1b3a2b4a3b5b6 in F4 prove (b2) and 
the part of (c4) related to F4.

Suppose now that H ∈ F2 ∪ F3 ∪ {F ′
4}; even in a more general setting suppose that 

H ∈ F(A, B, A1, A2) with |B| = |A| = t, |A1 ∪ A2| ≥ 3, |A2| ≥ |A1| ≥ 1 (and in case 
of |A1| = 1 one has A1 ∩ A2 = ∅). We prove the statements in reverse order, first (c2) 
and (c3), then (b), finally (a). When we comment below “Case BC” or “Case AA”, this 
means that we consider paths from B to C or from A to A, respectively.

By Lemma 4.7, we already knew that c1c2 is contained in a cycle of length 2t + 1 so 
these two vertices are joined by a path of length 2t (Case CC). If b ∈ B, and ai ∈ Ai, 
then the almost complete bipartite subgraph H[A ∪ B] contains a b, ai-path of length 
2t − 1, so b and c3−i is joined in H by a path of length 2t + 1 (Case BC). Concerning 
b1, b2 ∈ B we can define H+ by adding an extra vertex at+1 to A and joining it to 
each vertex of B. Applying Lemma 4.7 to H+ (with t + 1 in place of t) we get that it 
has a cycle C2t+3 through b1at+1b2. This cycle gives a b1, b2-path of length 2t + 1 in H
(Case BB). In case of x ∈ A, y ∈ A the high edge density of H implies that x and y have 
a common neighbor b ∈ B. One can find a path P = a1c1c2a2 such that P and xby form 
a linear forest. Then Lemma 4.7 yields a cycle C2t+1 through all these edges. Leaving 
out b one gets an x, y-path of length 2t − 1 in H (Case AA). In case of x ∈ A, y ∈ B

maybe we have to add the edge xy to obtain a cycle C2t+1 through it by Lemma 4.7. 
This yields an x, y-path of length 2t (Case AB). Finally, if x ∈ A, y = ci one uses a path 
ci, c3−i, x′ and an x, x′-path of length 2t − 2 in A ∪ B to get an x, y-path of length 2t, 
if this can be done. If such an x′ �= x does not exist, then x = a1 ∈ A1, |A1| = 1, and 
y = c2. This is the case described in (c2) (Case AC). �
4.4. Reversing contraction

The aim of this section is to prove Lemma 4.9 below on preserving certain subgraphs 
during the reverse of the Basic Procedure.

Lemma 4.9 (Main lemma on contraction). Let k ≥ 9 and suppose F and F ′ are 
2-connected graphs such that F = F ′/xy and c(F ′) < k.

If k is even and F contains a subgraph H ∈ F1 ∪ · · · ∪ F4, then F ′ has a subgraph 
H ′ ∈ F1 ∪ · · · ∪ F4.

If k is odd and F contains a subgraph H ∈ F0, then F ′ has a subgraph H ′ ∈ F0.

Proof for k even. Case 1. H ∈ F1. Let u = x ∗ y. If u /∈ V (H) then H ⊆ F ′ and we 
are done. In case of u ∈ A consider the sets X := NF ′(x) ∩ B and Y := NF ′(y) ∩ B. 
If X = X ∪ Y then F ′ restricted to (A \ {u}) ∪ {x} ∪ B contains a copy of H. If 
X = X ∪Y \{y′} for y′ ∈ V (H ′), then F ′ restricted to (A \{u}) ∪{x} ∪B∪{y} contains 
a copy of a graph from F2 (with a1 := x, b1 := y′, and c1 := y). We proceed in the 
same way if Y = X ∪ Y or if |Y | = |X ∪ Y | − 1. In the remaining case |X \ Y | ≥ 2 and 
|Y \X| ≥ 2, so one can choose five distinct elements b0, x1, x2, y1, y2 from B such that 
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{x1, x2} ⊆ X \Y and {y1, y2} ⊆ Y \X. Then the bipartite subgraph Q0 of F ′ generated 
by the sets A \ {u} ∪ {x, y} and B \ {b0} contains the linear forest L consisting of the 
paths x1xx2 and y1yy2. If we define the graph Q by adding to Q0 all edges joining x
and y to B \ {b0}, then Q has at least (t + 1)2 − (t − 4) edges. So by Corollary 2.10 for 
s = t + 1 and i = 2, Q has a hamiltonian cycle C2t+2 containing all edges of L, and this 
cycle also appears in F ′, contradicting c(F ′) < k.

In case of u ∈ B consider the sets X := NF ′(x) ∩A and Y := NF ′(y) ∩A. If |X \Y | ≤ 1
or |Y \X| ≤ 1, then we proceed as above and find a subgraph H ′ of F either isomorphic 
to H or belonging to F2. If |X \ Y | ≥ 2 and |Y \ X| ≥ 2, then we have four distinct 
elements x1, x2, y1, y2 in A such that {x1, x2} ⊆ X \ Y and {y1, y2} ⊆ Y \X. Then F ′

contains a member of F3 with (c1, c2) = (x, y), A1 := {x1, x2}, and A2 := {y1, y2}.

Case 2. H ∈ F2 ∪F3 ∪{F ′
4}. The proof in this case follows from two claims. We say that 

the graph H has the Property (W�) if the following holds.

(W�) For all z ∈ V (H) there exists w ∈ N(z) such that for all w′ ∈ N(z)\{w}, the 
graph H has a cycle C� containing the path wzw′.

Claim 1. Suppose that the graph F contains a subgraph H satisfying Property (W�), and 
c(F ′) ≤ �. Then F ′ has a subgraph H ′ isomorphic to H.

Let z = x ∗ y and V = V (F ) − z = V (F ′) −x − y. If V (H) ⊆ V , then there is nothing 
to prove.

Suppose that z ∈ V (H) ⊆ V (F ) and define X := NF ′(x) ∩NH(z) and Y := NF ′(y) ∩
NH(z). Then X ∪ Y = NH(z). Let w ∈ N(z) be the vertex from the definition of the 
Property (W�). Since NH(z) = X ∪ Y , we may assume by symmetry that w ∈ X.

We claim that Y − w = ∅. Indeed, suppose there is w′ ∈ Y − w. By Property (W�), 
H has a cycle C� containing the path wzw′. Then the path C� − z in F ′ together with 
the edges w′y, yx and xw forms a cycle of length � + 1, contradicting c(F ′) ≤ �.

This implies that NF ′(x) contains NH(z). So F ′ contains a copy of H with the vertex 
set (V (H) \ {z}) ∪ {x}. �
Claim 2. If H ∈ F2 ∪ F3 or H = F ′

4, then H satisfies Property (W2t+1).

We prove a bit more: every H ∈ F(A, B, A1, A2) with |B| ≥ t − 1, |A| = t satisfies 
(W2t+1). Indeed, for z = ci we can choose a w := c3−i. For z ∈ B we can choose a w ∈ A

arbitrarily. For z ∈ A we can choose w ∈ N(z) ⊆ B arbitrarily, except if z ∈ Ai and 
|Ai| = 1. In this latter case we can use w := ci. In each of these cases, given L := wzw′

one can find a path P := a1c1c2a2 such that P ∪ L is a linear forest. Then Lemma 4.7
yields that H has a cycle C2t+1 through wzw′.

Since each H ∈ F2 ∪ F3 ∪ {F ′
4} belongs to such F(A, B, A1, A2), this completes the 

proof of Claim 2. �
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Case 3. H = F4. Let u = x ∗y. By symmetry, we can consider only two cases: u = a1 and 
u = b1. First, suppose u = a1 and xb1 ∈ E(F ′). Then since c(F ′) ≤ 9, y is not adjacent 
to any of b3, b4, b5, b6. Thus x is adjacent to all of them, and if yb2 ∈ E(F ′), then the 
cycle (yb2b1a2b3b4a3b5b6xy) contradicts c(F ′) ≤ 9. So xb2 ∈ E(F ′) and the subgraph of 
F ′ with vertex set V (H) \ {u} ∪ {x} contains F4.

Similarly, suppose u = b1 and xb2 ∈ E(F ′). Then to avoid a 10-cycle in F ′, y has no 
neighbors in A and thus x is adjacent to all of A. So, again the subgraph of F ′ with 
vertex set V (H) \ {u} ∪ {x} contains F4. �
Proof for k odd. First we prove the following statement (41) which is true for every 
t ≥ 2. Let H ∈ K−t+2(K(A, B)) with |A| = t, |B| = t +1. Let P be a path of length two 
in H. Then

H has a cycle C of length 2t containing P. (41)

If every vertex of B \ P is joined to all vertices of A, then one can find a C2t through 
P directly. Otherwise, there is a vertex v ∈ B \ P of degree at most t − 1, so H \ {v}
is a subgraph of Kt,t with at least t2 − t + 3 edges. Then the statement follows from 
Corollary 2.10 for s = t and i = 1.

Now suppose that H ∈ F0, H ⊆ F , F = F ′/xy, and H, F , F ′ satisfy the constraints of 
Lemma 4.9. Then (41) implies that H satisfies property (W2t). Thus by Claim 1, F ′ has 
a subgraph H ′ isomorphic to H. �
4.5. Completing the proof of Theorem 4.1

Proof for k even. Proposition 4.6 and Lemma 4.9 imply that there is a subgraph H
of G = Gn such that H ∈ F1 ∪ · · · ∪ F4. Let G′ = G − V (H) and S1, . . . , Ss be the 
components of G′. Each of Si has at least two neighbors, say xi and yi in V (H). Let 
�i denote the length of a longest xi, yi-path in G[V (Si) ∪ {xi, yi}]. Since c(G) < k, by 
Lemma 4.8(a) and (b),

for all i, �i ≤ 3 and if H ∈ F2 ∪ F3 ∪ {F ′
4}, then �i ≤ 2. (42)

Case 1: H ∈ F3 ∪ {F ′
4}. By (42), �i ≤ 2 for all i and all choices of xi and yi. Since G

is 2-connected, this yields that each Si is a singleton, say vi. Moreover, Lemma 4.8(c3) 
and (c4) imply N(vi) ⊆ A for all i. So G is contained in a graph in G1(n, k), and the 
only edge outside A is c1c2.

Case 2: H ∈ F2. Again, by (42), �i ≤ 2 for all i and all choices of xi and yi. So again 
this yields that each Si is a singleton, say vi. But now Lemma 4.8(c2) implies that for 
all i, either N(vi) ⊆ A or N(vi) = {a1, b1}. Thus G is contained in a graph in G2(n, k), 
where the only possible star component of G − A with at least three vertices is a star 
with center b1 and c1 a leaf.
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Case 3: H ∈ F1. Suppose first that some xi is in B. Then by Lemma 4.8(c3), yi ∈ A and 
by Lemma 4.8(b), �i = 2. So, denoting the common neighbor of xi and yi in Si by c1, 
we get Case 2. Thus it is enough to consider below only the situation when

N(Si) ∩ V (H) ⊆ A for every i. (43)

We consider three cases.

Case 3.1: For some i �= j, �i ≥ 3 and �j ≥ 3, say �1 ≥ 3 and �2 ≥ 3. Then by (42), 
�1 = �2 = 3. For i = 1, 2, let (xi, vi, v′i, yi) denote an xi, yi-path of length three in 
G[V (Si) ∪{xi, yi}]. Also, by (43), x1, y1, x2, y2 ∈ A. Suppose first that {x1, y1} �= {x2, y2}. 
We proceed as in the beginning of the proof of Lemma 4.9. Choose a (t −2)-element subset 
B′ ⊆ B and add two new vertices b′1 and b′2 and join them to all vertices of A. Then the 
obtained bipartite graph H ′ has at least t2 − t + 4 edges so there is a hamiltonian cycle 
C ′ containing the linear forest x1b

′
1y1 ∪ x2b

′
2y2 by Corollary 2.10. This C ′ corresponds 

to a cycle of length k in G, a contradiction.
It follows that every component Si with �i ≥ 3 has exactly two neighbors in V (H)

and these two neighbors, say x1, y1, are the same for all such components; furthermore 
x1, y1 ∈ A. Furthermore, in order to have �i ≤ 3, all leaves of Si have the same neighbor 
in A. Thus G is contained in a graph in G3(n, k).

Case 3.2: There exists exactly one i with �i ≥ 3, say �1 ≥ 3. Then by (42), �1 = 3. Let 
(x1, v1, v′1, y1) be an x1, y1-path of length 3 in G[V (Si) ∪ {x1, y1}]. By (43), every other 
component Si is a singleton, say vi with N(vi) ⊆ A. As in Case 3.2, in order to have 
�1 ≤ 3, S1 should be a star, and if S1 �= K2, K1, then all leaves of S1 are adjacent to the 
same vertex in A. Thus G is contained in a graph in G1(n, k) ∪ G2(n, k).

Case 3.3: �i ≤ 2 for all i. Here G is contained in a graph in G1(n, k). Then each Si is a 
singleton with all neighbors in A. It follows that G −A is an independent set.

Case 4: H = F4. By Lemma 4.8(c4), (43) holds. Together with (42), this yields that 
every component S of G −A is a star and if |S| ≥ 3, then all leaves of S have the same 
neighbor in A. It follows that G ∈ G4(n, k). �
Proof for k odd. By Proposition 4.6 and Lemma 4.9, Gn contains some H ∈ F0. Let 
G′ = Gn − H and S1, . . . , Ss be the components of G′. Each of Si has at least two 
neighbors, say xi and yi in V (H). Let �i denote the length of a longest xi, yi-path in 
Gn[V (Si) ∪ {xi, yi}]. Since c(Gn) ≤ 2t, by Lemma 4.8,

for all i, �i ≤ 2 and {xi, yi} ⊆ A. (44)

Then each Si is a singleton with all neighbors in A. It follows that G − A is an 
independent set. This completes the proof of Theorem 4.1 for k odd. �
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5. Proof of Theorem 1.4 for k ≤ 8

Recall that Theorem 4.1 describes for k ≥ 9 and n ≥ 3k/2 the n-vertex 2-connected 
graphs with no cycle of length at least k and more than h(n, k, t −1) edges. In this section, 
we will do the same for 4 ≤ k ≤ 8 and n ≥ k. We will use for this the classes Gi(n, k)
defined in Section 4 and the notion of a J3-bridge. For A ⊆ V (G) and S ⊆ V (G) \ A, 
S forms a J3-bridge of A with endpoints a1, a2 if a1, a2 ∈ A, A′ := {a1, a2} is a cutset 
of G, G[S ∪A′] ∪{a1a2} is a 2-connected graph, G[S] is connected, and the length of the 
longest a1, a2-path in G[S ∪A′] is three.

Furthermore, since the description (but not the proof) for k = 8 is more sophisticated, 
we will need four more special graph classes for k = 8: Each of the graph classes Gi(n, 8)
(5 ≤ i ≤ 8) contains 2-connected n-vertex graphs G with c(G) < 8 and having a special 
vertex set A = {a1, a2, . . . , as} with G[A] being a complete graph and such that G \ A
consists of J3-bridges and isolated vertices having exactly two neighbors in A.

If G ∈ G5(n, 8), then s = 3 and a1 is adjacent to each component in G \ A. So the 
edge a2a3 is contained in a unique triangle, namely a1a2a3.

If G ∈ G6(n, 8) ∪ G7(n, 8), then s = 4 and the endpoints of all J3-bridges are {a1, a2}
while one of the neighbors of some isolated vertex c of G \A is a1 in case of G6(n, 8) and 
N(c) = {a3, a4} for all c in case of G7(n, 8).

If G ∈ G8(n, 8), then s = 5 and N(S) = {a1, a2} for each component S of G −A.

Theorem 5.1. Let 4 ≤ k ≤ 8 and n ≥ k. Let G be an n-vertex 2-connected graph with 
no cycle of length at least k. Then either 7 ≤ k ≤ 8 and e(G) ≤ h(n, k, t − 1) or G is a 
subgraph of a graph in G(n, k), where

(1) G(n, 4) = ∅,
(2) G(n, 5) := G1(n, 5),
(3) G(n, 6) := G1(n, 6) ∪ G2(n, 6),
(4) G(n, 7) := {Hn,7,3} ∪ G1(n, 6) ∪ G2(n, 6) ∪ G3(n, 6),
(5) G(n, 8) :=

⋃
1≤i≤8,i �=4 Gi(n, 8).

The proof scheme is that we consider a graph G satisfying the conditions of the theo-
rem and take a longest cycle C with vertex set, say X := {x0, x1, x2, . . . , xr}. Moreover, 
we will assume that C has the maximum sum of the degrees of its vertices among the 
longest cycles in G. Analyzing possibilities, we will derive that G ∈ G(n, k).

A bridge of C is the vertex set of a component of G −X.
We start from a sequence of simple claims on the structure of bridges and the edges 

between X and the bridges. For brevity we denote by dC(i, j) the distance on C between 
xj and xi, i.e. min{|j − i|, r + 1 − |j − i|}. For a bridge S and neighbors x, x′ of S on C, 
an (x, x′, S)-path is an x, x′-path whose all internal vertices are in S.

The maximality of |C| implies our first claim:
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Claim 5.2. For every bridge S and any xi, xj ∈ N(S) ∩X, the length of any (xi, xj , S)-path 
is at most dC(i, j). In particular, if S contains distinct c1, c2 such that xic1, xjc2 ∈ E(G), 
then dC(i, j) ≥ 3.

If |S| ≥ 2, then by the 2-connectedness of G, there are two vertex-disjoint S, X-paths. 
Thus if G[S] contains a cycle, then for some xi, xj ∈ N(S) ∩X, the length of the longest 
(xi, xj , S)-path is at least 4. Hence, since |C| ≤ k− 1 ≤ 7, by Claim 5.2, we get the next 
claim:

Claim 5.3. For every bridge S of X and any distinct xi, xj ∈ N(S) ∩ X, the length of 
any (xi, xj , S)-path is at most 3. In particular, G[S] is acyclic (a tree).

Suppose that for some bridge S, and two leaves c1, c2 of the tree G[S], there is a 
c1, c2-path P in G[S] of length at least 3. Then by Claim 5.3, each of c1 and c2 has exactly 
one neighbor in X, and this is the same vertex, say xi. Again by the 2-connectedness 
of G, there is xj ∈ X ∩N(S) \ {xi}. Then there is an (xj, xi, S)-path of length at least 
4 through either c1 or c2, which contradicts Claim 5.3. Thus we get:

Claim 5.4. For every bridge S of X, G[S] is a star. Moreover, if |S| ≥ 3, then all leaves 
of G[S] have degree 2 in G and the same neighbor, x(S), in X.

Suppose |S| ≥ 2 and |N(S) ∩ X| ≥ 3, say {x, x′, x′′} ⊆ N(S) ∩ X. Let c1 be a 
leaf of G[S]. If |S| ≥ 3, then by Claim 5.3 it has a unique neighbor in X, say x. It 
follows that there are an (x, x′, S)-path and an (x, x′′, S)-path of length at least 3. Also 
there is an (x′, x′′, S)-path of length at least 2. Then by Claim 5.2, the distance on 
C from x to x′ and to x′′ is at least 3 and between x′ and x′′ is at least 2. Thus 
|X| ≥ 3 +3 +2 = 8, a contradiction. Similarly, if S = {c1, c2}, then by symmetry we may 
assume that x ∈ N(c1) ∩X and {x′, x′′} ⊆ N(c2) ∩X. In this case again by Claim 5.2, 
|X| ≥ 3 + 3 + 2 = 8, a contradiction. Thus summarizing this with the previous claims, 
we have proved the following.

Claim 5.5. For every bridge S of X with |S| ≥ 2, |N(S) ∩X| = 2. Moreover, if |S| ≥ 3, 
then G[S] is a star and all leaves of G[S] have degree 2 in G and the same neighbor, 
x(S), in X. In other words, each bridge S with |S| ≥ 2 is a J3-bridge of X.

From Claims 5.2 and 5.5 we deduce:

Claim 5.6. For every J3-bridge S of X with endpoints xi and xj, dC(i, j) ≥ 3.

If there are i1 < i2 < i3 < i4 ≤ r and bridges S1 and S2 such that G contains an 
(xi1 , xi3 , S1)-path P1 and an (xi2 , xi4 , S2)-path P2, then we can construct two new cycles 
C1 and C2 such that each of them contains the edges of P1 and P2 and each edge of 
C belongs to exactly one of C1 and C2. Then the total length of C1 and C2 is at least 
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|E(C)| +2(|E(P1)| + |E(P2)|) ≥ (k− 1) +8 ≥ 2k− 1. Thus at least one of them is longer 
than C, a contradiction. Thus we have:

Claim 5.7. There are no i1 < i2 < i3 < i4 ≤ r and bridges S1 and S2 of X such that G
contains an (xi1 , xi3 , S1)-path and an (xi2 , xi4 , S2)-path. In particular, since k − 1 ≤ 7, 
any two J3-bridges share an endpoint.

We now can prove Theorem 5.1. Indeed, by Claim 5.2, |X| ≥ 4. This proves 
G(n, 4) = ∅, i.e., Part 1 of the theorem.

We will consider 3 cases according to the value of |X|. As mentioned above, |X| ≥ 4.

Case 1: 4 ≤ |X| ≤ 5. Then by Claims 5.5 and 5.6, each bridge is a singleton. Furthermore, 
by Claim 5.2 each such singleton has exactly two (necessarily nonconsecutive) neighbors 
in X. If |X| = 4, Claim 5.7 yields that this pair of neighbors is the same for all bridges, 
say it is {x0, x2}. Then G is contained in Hn,5,2 with A = {x0, x2}, as claimed. This 
proves Part 2.

Let |X| = 5. If also each bridge has the same pair of neighbors in X, say {x0, x2}, 
then since n ≥ |X| +1 = 6, x1 is not adjacent to {x3, x4} to avoid a 6-cycle. Thus in this 
case, G is contained in Hn,6,2 with A = {x0, x2}, and so e(G) ≤ h(n, 6, 2). Otherwise 
by Claim 5.7, there are exactly two distinct pairs of neighbors of the bridges, and they 
share a vertex. Suppose these pairs are {x0, x2} and {x0, x3} and for j ∈ {2, 3}, Yj is 
the set of vertices adjacent to x0 and xj . Then to avoid a 6-cycle, edges x1x4, x1x3 and 
x2x4 are not present in G. Then G ∈ G2(n, 6) with A = {x0, x2}, B = Y2 ∪ {x3} and 
J = Y3 ∪ {x4}. Since Hn,6,2 contains Hn,5,2, this together with the previous paragraph 
proves Part 3 of the theorem.

Case 2: |X| = 6. By Claims 5.5–5.7, it is enough to consider the following three subcases.

Case 2.1: X has a bridge S with |N(S) ∩ X| ≥ 3. By Claim 5.5, S is a single vertex, 
say z, and by Claim 5.2, z has exactly 3 (nonconsecutive) neighbors on C, say x0, x2
and x4. In view of the cycle x0zx2x3x4x5 and the maximality of the degree sum of C, 
d(x1) ≥ d(z) ≥ 3. By Claim 5.7, x1 has no neighbors outside of C. In order to avoid 
a 7-cycle in G, x1x3, x1x5 /∈ E(G). So x1x4 ∈ E(G). Similarly, x2x5, x0x3 ∈ E(G), 
so G contains K3,4 with parts A = {x0, x2, x4} and B = {x1, x3, x5, z}. Moreover, B is 
independent. Let C be the vertex set of any component of G −A −B. If C has a neighbor 
in B or is not a singleton, then G[A ∪B ∪C] has a cycle of length at least 7. Thus each 
component of G −A −B is a singleton and has no neighbors in B. This means A meets 
all edges and so G is a subgraph of Hn,7,3.

Case 2.2: X has a J3-bridge S. Then by Claim 5.2 and symmetry, we may assume 
N(S) = {x0, x3}. In this case, G has 3 internally disjoint x0, x3-paths of length 3. Thus 
to have c(G) ≤ 6, {x0, x3} separates internal vertices of distinct paths. It follows that 
G − {x0, x3} is a collection of J3-bridges of {x0, x3} and isolated vertices each having 
only x0 and x3 as endpoints. Thus G is a subgraph of a graph in G3(n, 6).
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Case 2.3: V \ X is independent and each z ∈ V \ X has degree 2. By Theorem 1.3, 
for each z ∈ V \ X, graph G[X ∪ {z}] has at most h(7, 7, 2) = 14 edges, which yields 
e(G) ≤ 2n = h(n, 7, 2). This proves Part 4 of Theorem 5.1.

Case 3: |X| = 7. By Claims 5.5–5.7, it is enough to consider the following four subcases.

Case 3.1: X has a bridge S with |N(S) ∩X| ≥ 3. As in Case 2.1, S is a single vertex, 
say z, and we may assume N(S) ∩ X = {x0, x2, x4}. Again, similarly to Case 2.1, in 
view of the 7-cycle x0zx2x3x4x5x6, we obtain that d(x1) ≥ d(z) ≥ 3, and that (to avoid 
a long cycle in G) the third neighbor of x1 is x4. Similarly, x0x3 ∈ E(G). Thus, G has 
a subgraph consisting of K3,3 with parts A := {x0, x2, x4} and B := {x1, x3, z} and an 
attached 3-path x4x5x6x0. Moreover, d(x1) = d(x3) = d(z) = 3 and these are isolated 
vertices in G \A. Let Y be the vertex set of the component of G −A containing {x5, x6}. 
If there is another component Y ′ of G − A with |Y ′| ≥ 2, then to avoid a ≥ 8-cycle, 
G must be a subgraph of a graph in G3(n, 8). If all the bridges of A apart from A are 
singletons, then G is a subgraph of a graph in either G1(n, 8) (if |Y | = 2) or G2(n, 8) (if 
|Y | ≥ 3).

Case 3.2: G has J3-bridges S1 and S2 of X with N(S1) �= N(S2). By Claims 5.7 and 5.6, 
we may assume N(S1) = {x0, x3} and N(S2) = {x0, x4}. By the 2-connectivity of G, we 
may assume that there is an (x0, x3, S1)-path x0y1y2x3 and an (x4, x0, S2)-path x4y5y6x0. 
Let A = {x0, x3, x4}. Then the edges y1y2, y5y6, x1x2, x5x6 belong to distinct compo-
nents of G \ A. Thus to avoid long cycles in G, no bridge of A is adjacent to both, x3
and x4 and none of the bridges S of A contains an (x0, x3, S)-path or an (x0, x4, S)-path 
of length at least 4. It follows that G is a subgraph of a graph in G5(n, 8).

Case 3.3: G has a J3-bridge S of X, and every other J3-bridge of X (if exists) has 
the same neighbors as S in X. We may assume that N(S) ∩ X = {x0, x4} and G
contains an (x0, x4, S)-path x0y6y5x4. Then the edges y5y6, x1x2, x5x6 belong to three 
distinct components of G \ {x0, x4}. Let Y be the component of G \ {x0, x4} containing 
{x1, x2, x3}. By the case, all other components are either isolated vertices or J3-bridges 
of {x0, x4}. Also, every vertex y ∈ (Y \ {x1, x2, x3}) has only neighbors in X (i.e., 
N(y) ⊂ {x0, x1, . . . , x4}).

If |Y | = 3 we obtain that G is a subgraph of a member of G8(n, 8) with A =
{x0, x1, x2, x3, x4}. Suppose |Y | ≥ 4. If there is y ∈ Y \ {x1, x2} with NG(y) = {x0, x3}, 
then to avoid an 8- or 9-cycle, x1x4 /∈ E(G) and no y′ ∈ Y \ {x2, x3} has NG(y′) =
{x1, x4}. So, either {x0, x3} is a cut set in G or x2x4 ∈ E(G). In the former case, G is a 
subgraph of a graph in G5(n, 8) with A = {x0, x3, x4} and a1 = x0. In the latter case, in 
order to avoid an (x0, x4, Y )-path of length ≥ 5, graph G[{x1, x2, x3, x4, y}] has only the 
5 edges we already know and no vertex y′ ∈ Y −X − y has N(y′) ⊆ {x1, x2, x3, x4, y}. 
This means G is a subgraph of a graph in G6(n, 8) with A = {x0, x4, x2, x3}, where 
a1 = x0 and a2 = x4. The case of y ∈ Y \ {x1, x2} with NG(y) = {x1, x4} is sym-
metrical. If there is y ∈ Y \ {x1} with N(y) = {x0, x2}, then in order to avoid an 
(x0, x4, Y )-path of length ≥ 5, x1x3 /∈ E(G) and every y′ ∈ Y − X is adjacent to x2. 
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This means G is a subgraph of a graph in G2(n, 8) ∪ G3(n, 8) with A = {x2, x4, x0}. 
The last possibility is that N(y) = {x1, x3} for every y ∈ Y − X. Since |Y | ≥ 4, 
this yields x2x0, x2x4 /∈ E(G). Thus G is a subgraph of a member of G7(n, 8) with 
{a1, a2} := {x0, x4} and {a3, a4} := {x1, x3}.

Case 3.4: G \X consists of isolated vertices only, each having degree 2 in G. By Theo-
rem 1.3, for each z ∈ V \X, graph G[X ∪ {z}] has at most h(8, 8, 2) = 19 edges, which 
yields e(G) ≤ 2n + 3 = h(n, 8, 2). �

Theorem 5.1 yields the following analog of Theorem 4.1(1) for a smaller range of e(G).

Corollary 5.8. Suppose that G is a 2-connected, n-vertex graph with c(G) < 7, n ≥ 8. If 
e(G) ≥ �(5n − 6)/2� then G is a subgraph of Hn,7,3, and this bound is best possible. �
6. Concluding remarks

It could be that for k ≥ 11, Theorem 1.4 holds already for n ≥ 5k/4. Note that by 
Theorem 1.3, it does not hold for n < 5k/4. It may also be possible, albeit complicated, 
to describe the structure of 2-connected n-vertex graphs with no cycles of length at least 
k = 2t +1 and at least h(n, k, t −2) edges. We leave these as avenues for further research.
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