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and is smaller than Kopylov’s bound h(n,k,t) by a term of
n—t—0(1).
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A cornerstone of extremal combinatorics is the study of Turdn-type problems for
graphs. One of the fundamental questions in extremal graph theory is to determine the
maximum number of edges in an n-vertex graph with no k-vertex path. According to [10],
this problem was posed by Turan. A solution to the problem was obtained by Erddés and
Gallai [7]:

Theorem 1.1 (Erdés and Gallai [7]). Let G be an n-vertex graph with more than §(k—2)n
edges, k > 2. Then G contains a k-vertex path Py.

This result is best possible for n divisible by k£ — 1, due to the n-vertex graph whose
components are cliques of order k—1. To obtain Theorem 1.1, Erd6s and Gallai observed
that if H is an n-vertex graph without a k-vertex path Py, then adding a new vertex
and joining it to all other vertices we have a graph H’ on n + 1 vertices e(H) + n
edges and containing no cycle Cj1 or longer. Then Theorem 1.1 is a consequence of the
following;:

Theorem 1.2 (Erdds and Gallai [7]). Let G be an n-vertex graph with more than 3(k —
1)(n —1) edges, k > 3. Then G contains a cycle of length at least k.

This result is best possible for n — 1 divisible by k — 2, due to any n-vertex graph
where each block is a clique of order k — 1. Let ex(n, P;) be the maximum number
of edges in an n-vertex graph with no k-vertex path; Theorem 1.1 shows ex(n, Py) <
%(k — 2)n with equality for n divisible by k& — 1. Several proofs and sharpenings of the
Erdés—Gallai theorem were obtained by Woodall [16], Lewin [12], Faudree and Schelp
[8,9] and Kopylov [11] — see [10] for further details. The strongest version was proved
by Kopylov [11]. To describe his result, we require the following graphs. Suppose that
n >k, (k/2) > a > 1. Define the n-vertex graph H, i, as follows. The vertex set of
H, k. is partitioned into three sets A, B, C such that |A| = a, |B| = n —k + a and
|C| = k — 2a and the edge set of H,, i, consists of all edges between A and B together
with all edges in AU C. Let

k—a

h(n,k,a) == e(Hn ko) = ( 5

) +ato—k+ )
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Theorem 1.3 (Kopylov [11]). Let n > k > 5 and t = [E52|. If G is an n-vertez
2-connected graph with no cycle of length at least k, then

e(G) < max{h(n,k,2), h(n, k,t)} (1)
with equality only if G = Hyp 2 or G = Hp 1.

In this paper, we prove a stability version of Theorems 1.1 and 1.3. A star forest is a
vertex-disjoint union of stars.

Theorem 1.4. Let t > 2 and n > 3t and k € {2t + 1,2t + 2}. Let G be a 2-connected
n-vertex graph containing no cycle of length at least k. Then e(G) < h(n, k,t —1) unless

(a) k=2t+1, k#7, and GC Hy ; or
(b) k=2t+2 ork =17, and G— A is a star forest for some A C V(G) of size at most t.

This result is best possible in the following sense. Note that H, ;:—1 contains no
cycle of length at least k, is not a subgraph of H,, +, and Hy 2:42+—1 — A has a cycle
for every A C V(Hy, 2142,+—1) with |A| = ¢. Thus the claim of Theorem 1.4 does not hold
for G = H,, k1—1. Therefore the condition e(G) < h(n,k,t — 1) in Theorem 1.4 is best
possible. Since

h(n, 2t +2,1) = (;) =) +1=h(n, 2%+ 1,8) + 1
and
h(n,2t+2,t —1) = (;) +{t—-1)(n—t)+6="nh(n2t+1,t—1)+3,
the difference between Kopylov’s bound and the bound in Theorem 1.4 is

n—t—3 ifk=2t+1

2
n—t—>5 ifk=2t+2. 2)

h(n,k,t) — h(n,k,t — 1) = {
It is interesting that for a fixed k, the difference in (2) divided by h(n, k,t) does not
tend to 0 when n — oo.
We will need to prove a more detailed version of Theorem 1.4. This version, Theo-
rem 4.1, will yield the following cleaner claim for 3-connected graphs.

Corollary 1.5. Let k > 11, t = \_%J, and n > % If G is an n-vertex 3-connected graph

with no cycle of length at least k, then e(G) < h(n,k,t — 1) unless G C Hy, 1, ;.

In the same way that Theorem 1.2 implies Theorem 1.1, Theorem 1.4 applies to give
a stability theorem for paths:
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Theorem 1.6. Let t > 2 and n > 3t — 1 and k € {2t,2t + 1}, and let G be a connected
n-vertex graph containing no k-vertex path. Then e(G) < h(n+1,k+1,t—1) —n unless

() k=2t, k#6, and G C Hy j1—1 or
(b) k=2t+1 or k=6, and G — A is a star forest for some A C V(G) of size at most
t—1.

Indeed, let G’ be obtained from an n-vertex connected graph G with more than
h(n+1,k+1,t—1) —n edges by adding a vertex adjacent to all vertices in G. Then G’
is 2-connected and G’ has more than h(n + 1,k + 1,¢t — 1) edges. If G has no k-vertex
path, then G’ has no cycle of length at least k + 1. By Theorem 1.4, G’ satisfies (a) or
(b) in Theorem 1.4, which means G satisfies (a) or (b) in Theorem 1.6. Repeating this
argument, Corollary 1.5 implies the following.

Corollary 1.7. Let k > 11, t = L%J, and n > % If G is an n-vertex 2-connected graph
with no k-vertex paths, then e(G) < h(n+1,k+1,t —1) —n unless G C Hy, g 4—1.

Organization. The proof of Theorem 1.4 will use a number of classical results listed
in Section 2 and some lemmas on contractions proved in Section 3. Then in Section 4
we describe several families of extremal graphs and state and prove a more technical
Theorem 4.1, implying Theorem 1.4 for k > 9. Finally, in Section 5 we prove the analog
of our technical Theorem 4.1 for 4 < k < 8. In particular, we describe all 2-connected
graphs with no cycles of length at least 6.

Notation. We use standard notation of graph theory. Given a simple graph G = (V, E),
the neighborhood of v € V| i.e. the set of vertices adjacent to v, is denoted by Ng(v)
or N(v) for short, and the closed neighborhood is N[v] := N(v) U {v}. The degree of
vertex v is dg(v) := |Ng(v)|. Given A C V we also use Ng(v, A) for N(v) N A, d(v, A)
for [N(v) N Al, and N(A) := U,ca N(v)\A. For an edge xy in G, let Tg(vy) denote
the number of triangles containing zy and T'(G) := min{Tg(zy) : zy € E}. The min-
imum degree of G is denoted by §(G). For an edge zy in G, G/xy denotes the graph
obtained from G by contracting xy. We frequently use x * y for the new vertex. The
length of the longest cycle in G is denoted by ¢(G), and e(G) := |E|. Denote by K,
the complete n-vertex graph, and K (A, B) the complete bipartite graph with parts A
and B (AN B = (). Given vertex-disjoint graphs G; = (V1,E;) and Gy = (Va, Es),
the graph G7 + G2 has vertex set V3 UV, and edge set E; U Ey U E(K(Vy,Vs)). If
G is a graph, then G denotes the complement of G and for a positive integer ¢, {G
denotes the graph consisting of ¢ components, each isomorphic to G. For disjoint sets
A, B C V(G), let G(A, B) denote the bipartite graph with parts A and B counsisting
of all edges of G between A and B, and for A C V(G), let G[A] denote the subgraph
induced by A.



Z. Furedi et al. / Journal of Combinatorial Theory, Series B 121 (2016) 197-228 201

2. Classical theorems

We require a number of theorems on long paths and cycles in dense graphs. The
following is an extension to 2-connected graphs of the well-known fact that an n-vertex
non-hamiltonian graph has at most (";1) + 1 edges:

Theorem 2.1 (Erdds [6]). Let d > 1 and n > 2d be integers, and

{3 )eo (F)+ 22}

Then every n-vertex graph G with §(G) > d and e(G) > £, q is hamiltonian.

The bound on ¢, 4 is sharp, due to the graphs Hy, 2 and H, , |(n—1)/2/- Since
0(G) > 2 for every 2-connected G, this has the following corollary.

Theorem 2.2 (Erdds [6]). If n > 5 and G is an n-vertex 2-connected non-hamiltonian
graph, then e(G) < (";2) + 4, with equality only for G = Hy, 2.

It is well-known that every graph of minimum degree at least d > 2 contains a cycle of
length at least d + 1. A stronger statement was proved by Dirac for 2-connected graphs:

Theorem 2.3 (Dirac [4]). If G is 2-connected then ¢(G) > min{n,20}.
This theorem was strengthened as follows by Kopylov [11], based on ideas of Pésa [14]:

Theorem 2.4 (Kopylov [11]). If G is 2-connected, P is an x,y-path of £ vertices, then
¢(G) > min{¢,d(x, P) + d(y, P)}.

Theorem 2.5 (Chuvdtal [3]). Let n > 3 and G be an n-vertex graph with vertex degrees
dy <dy <...<d,. If G is not hamiltonian, then there is some i < n/2 such that d; <1
and d,_; <n —1.

The k-closure of a graph G is the unique smallest graph H of order n := |V(G)| such
that G C H and dp(u) +dp(v) < k for all wv ¢ E(H). The k-closure of G is denoted by
Cli(G), and can be obtained from G by a recursive procedure which consists of joining
nonadjacent vertices with degree-sum at least k.

Theorem 2.6 (Bondy and Chvdtal [1]). If Cl,,(G) is hamiltonian, then so is G. Therefore
if Cl,(G) = K, n >3, then G is hamiltonian.

Concerning long paths between prescribed vertices in a graph, Lovdsz [13] showed
that if G is a 2-connected graph in which every vertex other than v and v has degree at
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least k, then there is a u,v-path of length at least k 4+ 1. This result was strengthened
by Enomoto. The following theorem immediately follows from Corollary 1 in [5]:

Theorem 2.7 (Enomoto [5]). Let 5 < s < mn and £ := 2(n — 3)/(s — 4). Suppose H is a
3-connected n-vertex graph with d(z)+d(y) > s for all non-adjacent distinct z,y € V(H).
Then for every distinct vertices x and y of H, there is an x,y-path of length at least s—2.
Moreover, if for some distinct x,y € V(H), there is no x,y-path of length at least s — 1,
then either

KS/Q + ans/Q CHC Ks/2 + ans/Q
or £ is an integer and
E—FEKS/Q,Q CHCK; +£Ks/272'

A further strengthening of this result was given by Bondy and Jackson [2]. Finally,
we require some results on cycles containing prescribed sets of edges. The following was
proved by Pésa [15]:

Theorem 2.8 (Pdsa [15]). Let n > 3, k < n and let G be an n-vertex graph such that
d(u) +dv) >n+k for every non-edge uv in G. (3)

Then for every linear forest F with k edges contained in G, the graph G has a hamiltonian
cycle containing all edges of F.

The analog of Pésa’s Theorem for bipartite graphs below is a simple corollary of
Theorem 7.3 in [17].

Theorem 2.9 (Zamani and West [17]). Let s > 3 and K be a subgraph of the complete
bipartite graph K s with partite sets A and B such that for every x € A and y € B with
xy ¢ B(K), d(z)+d(y) > s+ 1+1i. Then for every linear forest F C K with at most 2i
edges, there is a hamiltonian cycle in K containing all edges of F'.

We will use only the following partial case of Theorem 2.9.
Corollary 2.10. Let s > 4,1 <11 < 2 and K be a subgraph of K, s with at least §2—s+2+41
edges. If F C K 1is a linear forest with at most 2i edges and at most two components,
then K has a hamiltonian cycle containing all edges of F'.

3. Lemmas on contractions

An essential part of the proof of Theorem 1.4 is to analyze contractions of edges
in graphs. Specifically, we shall start with a graph G and contract edges according to
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some basic rules. Let us mention that the extensive use of contractions to prove the
Erd6s—Gallai Theorem was introduced by Lewin [12]. In this section, we present some
basic structural lemmas on contractions.

Lemma 3.1. Let n > 4 and let G be an n-vertex 2-connected graph. Let v € V(G) and
W () :=={w e N(v) : Nv]| € N[wl}. If W(v) # 0, then there is w € W(v) such that
G /vw is 2-connected.

Proof. Let w € W(v), G, = G/vw. Recall that v * w is the vertex in G,, obtained by
contracting v with w. Since G is 2-connected, G,, is connected. If x # v % w is a cut
vertex in Gy, then it is a cut vertex in G, a contradiction. So, the only cut vertex in G,
can be v * w. Thus, if the lemma does not hold, then for every w € W (v), v * w is the
unique cut vertex in G,,. This means that for every w € W (v), {v,w} is a separating set
in G.

Choose w € W (v) so that to minimize the order of a minimum component in G—v—w.
Let C be the vertex set of such a component in G —v—w and ¢’ = V(G) \ (CU{v,w}).
Since G is 2-connected, v has a neighbor u € C and a neighbor v’ € C’. Since uu’ ¢ E(G),
u € W(v). But the vertex set of every component of G — v — u not containing w is
contained in C'. This contradicts the choice of w. O

This lemma yields the following fact.

Lemma 3.2. Let n > 4 and let G be an n-vertex 2-connected graph. For every v € V(QG),
there exists w € N(v) such that G/vw is 2-connected.

Proof. If W (v) # (), this follows from Lemma 3.1. Suppose W(v) = ). This means
G[N(v)] is a clique. Then contracting any edge incident with v is equivalent to deleting v.
Let G’ = G — v. Since d(v) > 2 and G[N(v)] is a clique, any cut vertex in G’ is also a
cut vertex in G. O

For an edge zy in a graph H, let Ty (zy) denote the number of triangles containing xy.
Let T(H) := min{Ty(zy) : zy € E(H)}. When we contract an edge wv in a graph H,
the degree of every x € V(H) \ {u, v} either does not change or decreases by 1. Also the
degree of u x v in H/uv is at least max{dg(u),dg(v)} — 1. Thus

0(H/uv) > §(H) — 1 for every graph H and wv € E(H). (4)
Similarly,

T(H/uv) > T(H) — 1 for every graph H and uv € E(H). (5)

Suppose we contract edges of a 2-connected graph one at a step, choosing always an
edge xy so that
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(i) the new graph is 2-connected and,
(ii) zy is in the fewest triangles;
(iii) the contracted edge xy is incident to a vertex of degree as small as possible up
to (ii).

Lemma 3.3. Let h be a positive integer. Suppose a 2-connected graph G is obtained from
a 2-connected graph G’ by contracting edge xy into x x y using the above rules (i)—(%ii).
If G has at least h vertices of degree at most h, then either G' = Ko or G’ also has a
vertex of degree at most h.

Proof. Since G is 2-connected, h > 2. If G has a vertex of degree less than h, the lemma
holds by (4). So, let A; denote the set of vertices of degree exactly j in G, and assume
|Ap| > h. Let A} = Ay \ {x * y}. Suppose the lemma does not hold. Then we have

each v € A} has degree h+ 1 in G’ and is adjacent to both, z and y in G'.  (6)

Case 1: |[A}| > h. Then by (6), zy belongs to at least h triangles in which the third
vertex is in Ap. So by (iii) and the symmetry between z and y, we may assume dg () =
h + 1. This in turn yields Ng/(x) = Ay U {y}. Since G’ is 2-connected each v € A} is
not a cut vertex. Even more, zv is not a cut edge. Indeed, y is a common neighbor of all
neighbors of z so all neighbors of x must be in the same component as y in G’ — xz — v.
It follows that

for every v € A}, G’ /vx is 2-connected. (7)

If uv ¢ E(G) for some u,v € Ay, then by (7) and (ii), we would contract the edge zu
and not xzy. Thus G'[A), U {z,y}] = K12 and so either G’ = K}, 42 or y is a cut vertex
in G', as claimed.

Case 2: |A}| = h— 1. Then z * y € A,. We obtain that dg/(z) = de/(y) = h+ 1 and
Ne¢r[z] = Ner[y]. So by (6), there is z € V(G) such that Ng/[z] = Ne/[y] = A, U{z, vy, z}.
Again (7) holds (for the same reason that Ng-[2] C Ng-[y]). Thus similarly vu € E(G’)
for every v € A} and every u € A} U {z}. Hence G'[A4} U {z,y,z}] = Kj4+2 and either
G' = Kp1o or z is a cut vertex in G/, as claimed. 0O

Lemma 3.4. Suppose that G is a 2-connected graph and C is a longest cycle in it. Then
no two consecutive vertices of C' form a separating set.

Proof. Indeed, if for some i the set {v;,v;11} is separating, then let H; and Hs be two
components of G — {v;,v;41} such that V(C) NV (Hy) # 0. Then V(C) \ {vi,viy1} C
V(H;). Let € V(Hs). Since G is 2-connected, it contains two paths from x to {v;, v;11}
that share only z. Since {v;,v;4+1} separates V(Hs) from the rest, these paths are fully
contained in V(Hsz) U {v;,v;41}. So adding these paths to C' — v;v;41 creates a cycle
longer than C, a contradiction. O
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Fig. 1. Classes G2(n, k), G3(n, k) and G4(n, 10).

4. Proof of the main result, Theorem 1.4, for &k > 9

In this section, we give a precise description of the extremal graphs for Theorem 1.4
for k > 9. The description for k& < 8 is postponed to Section 5. For Theorem 1.4(a),
when k = 2t + 1 and ¢ # 3, these are simply subgraphs of the graphs H,, , +: recall that
H, 1. has a partition into three sets A, B, C such that |A| = q, |B| =n—k+a and
|C| = k — 2a and the edge set of Hy, j , consists of all edges between A and B together
with all edges in AU C. For Theorem 1.4(b), when k& = 2t + 2 or k = 7, the extremal
graphs G contain a set A of size at most ¢ such that G — A is a star forest. In this case
a more detailed description is required.

Classes G;(n, k) for i < 3. Let G1(n,k) := {Hp 1} Each G € Ga(n, k) is defined by a
partition V(G) = AUBUJ, |A| =t and a pair a; € A, by € B such that G[A] = K, G|B]
is the empty graph, G(A, B) is a complete bipartite graph and for every ¢ € J one has
N(c) = {a1,b1}. Every member of G € G3(n, k) is defined by a partition V(G) = AUBUJ,
|A| =t such that G[A] = K, G(A, B) is a complete bipartite graph, and

o (J] has more than one component

o all components of G[J] are stars with at least two vertices each

o there is a 2-element subset A’ of A such that N(J)N (AU B) = A’

o for every component S of G[J] with at least 3 vertices, all leaves of S are adjacent
to the same vertex a(S) in A’.

The class G4(n, k) is empty unless & = 10. Each member of G4(n, 10) has a 3-vertex set
A such that G[A] = K3 and G — A is a star forest such that if a component S of G — A
has more than two vertices then all its leaves are adjacent to the same vertex a(S) in A.
These classes are illustrated in Fig. 1.

Statement of main theorem. Having defined the classes G;(n, k) for i < 4, we now state
a theorem which implies Theorem 1.4 for k£ > 9 and shows that the extremal graphs are
the graphs in the classes G;(n, k):

Theorem 4.1 (Main theorem). Let k > 9, n > % and t = L%J Let G be an n-vertex
2-connected graph with no cycle of length at least k. Then e(G) < h(n,k,t — 1) or G is
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a subgraph of a graph in G(n, k), where

(1) if k is odd, then G(n, k) :== Gi(n, k) = {Hn k1 };
(2) if k is even and k # 10, then G(n, k) := G1(n, k) U Ga(n, k) U Gs(n, k);
(3) if k =10, then G(n, k) := G1(n,10) U G2(n, 10) U G3(n, 10) U G4(n, 10).

We prove this theorem in this section. We also observe that if £ > 11, then the only
graph in the classes G;(n, k) that is 3-connected is H,, i ¢. Therefore Theorem 4.1 implies
Corollary 1.5.

The idea of the proof is to take a graph G satisfying the conditions of the theorem with
¢(@) < k, and to contract edges while preserving the average degree and 2-connectivity
of G. A key fact is that if a graph contains a cycle of length at least k and is obtained
from another graph by contracting edges, then that other graph also contains a cycle of
length at least k. The process terminates with an m-vertex graph G,, such that G,, is
2-connected, m > k, and if m > k then GG, has minimum degree at least t — 1. If m > k,
then we apply Theorem 2.7 to show that G, is a dense subgraph of H,, j ;. If m = k, then
we apply Theorems 2.1, 2.2, 2.5, and 2.6 to show that G, is a dense subgraph of Hy j +.
Using this, we show that G,,, contains a dense nice subgraph. Analyzing contractions, we
then show that G itself contains a dense nice subgraph. Finally, we show that every dense
n-vertex graph containing a dense nice subgraph but not containing a cycle of length at
least k must be a subgraph of a graph in one of the classes described in Theorem 4.1.

4.1. Basic Procedure

Let k, n be positive integers with n > k. Let G be an n-vertex 2-connected graph
with ¢(G) < k and e(G) > h(n,k,t — 1) + 1. We denote G as G, and run the following
procedure.

Basic Procedure. At the beginning of each round, for some j : k < j < n, we have a
j-vertex 2-connected graph G; with e(G;) > h(j,k,t — 1)+ 1.

(R1) If j = k, then we stop.

(R2) If there is an edge xy with T, (zy) <t —2 such that G;/xy is 2-connected, choose
one such edge so that

(i) Tg,(zy) is minimum, and subject to this
(ii) wxy is incident to a vertex of minimum possible degree.
Then obtain G;_; by contracting xy.

(R3) If (R2) does not hold, j > k+t — 1 and there is uv € E(G;) such that G; —u —v
has at least 3 components and one of the components, say H; is a K;_1, then let
Gj—t+1 =G — V(Hy).

(R4) If neither (R2) nor (R3) occurs, then we stop.
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Remark 1. By construction, every obtained G is 2-connected and has ¢(G;) < k. Let us
check that

e(Gy) > h(j kit —1) +1 (8)

for all m < j7 < n. For j = n, (8) holds by assumption. Suppose j > m and (8)
holds. If we apply (R2) to G;, then the number of edges decreases by at most ¢t — 1, and
(h(j, k,t—=1)+1)—(h(j—1,k,t—1)+1) = t—1. If we apply (R3) to G;, then the number of
edges decreases by at most (t'gl) —1,and (h(j,k,t—1)+1)—(h(j—(t—1)),k,t—1)+1) =
(t—1)% But for k > 9, (t —1)% > (t'gl) — 1. Thus every step of the basic procedure
preserves (8).

Let G, denote the graph with which the procedure terminates.

Remark 2. Note that if the rule (R3) applies for some G, then the set {u,v} is still
separating in G; 4,1, and Tg,_,,, (vy) >t — 1 for every edge xy such that G;_;11/zy
is 2-connected. In particular, §(Gj_¢41) > t. So after any application of (R3), rule (R2)
does not apply, and §(G,,) > t.

4.2. The structure of G,

In the next two subsections, we prove Proposition 4.2 below, considering the cases
m = k and m > k separately. Let Fy be the graph obtained from K3 ¢ by adding three
independent edges in the part of size six. In this section we usually suppose that n > 3t,
t > 4, although many steps work for smaller values as well.

Proposition 4.2. The graph G,, satisfies the following properties:

(1) Goy C Hpy o o7
(2) m> k=10 and G, 2 F;.

4.2.1. The case m =k

If Gy, is hamiltonian, then ¢(G) > k, a contradiction. So Gy, is not hamiltonian.

By Theorem 2.5, for every non-hamiltonian n-vertex graph G with vertex degrees
di <ds <...<d,, we define

r(G):=min{i :d; <i and dp,_; <n—i}.

Lemma 4.3. Let t > 4, n > 3t. If the vertex degrees of Gy are di < ds < ... < dy, then
T(Gk) =1.

Proof for k = 2¢t+2. Note that r(Gy) < t since r(G) < n/2 (see Theorem 2.5). Suppose
r:=r(Gg) <t —1. Then by Remark 2, rule (R3) never applied, and G}, was obtained



208 Z. Firedi et al. / Journal of Combinatorial Theory, Series B 121 (2016) 197-228

from G by a sequence of n — m edge contractions according (R2). We may assume that
for all m < j < n, graph G; was obtained from G41 by contracting edge z;y;. Then
conditions for (R2) imply

Te,(xj1yj—1) <t —2 forevery m+1<j<n. (9)

By Lemma 3.3, §(Gpmt1) < r. This together with (9) and (4) yield that for every
m<j<n,

3(Gj) <r+j—m—1andso Tg,(v;_1y;—1) < min{r +j —m —2,t - 2}. (10)

Contracting edge x;_1y;-1 in G, we lose T, (xj_1y;-1) + 1 edges. Since e(G) >
h(n,k,t —1) 4+ 1, by (5) we obtain

n

e(Gr) = h(n,k,t—1)+1— Y min{t—1,r+j—-m—1} (11)
j=m+1

- (t—12—3)+(t—1)(n—t—3)+1— 3 minf{t — Lr+j-m -1}

j=m+1

- (t;3)+(t—1)(n—t—3)+1—(t—l)(n—m)

n
+ Z max{0,m+t—r —j}
j=m+1

32 +t+10
=Y max{0, 3+ 27—
j=m+1

n

Since n > 3t, {max{0,3t+2—r—j} :m+1<j<n}=1{0,1,2,...,t—1—r}. Therefore
3t2+t+10 ' 32 4t4+10 [t
)=+ :

e(Gy) > 5

(12)

i=1
On the other hand, by the definition of 7, G,, has at most 72 edges incident with

the r vertices of the smallest degrees and at most (™;") other edges. Thus e(Gy,) <
r? + (***277). Hence

t?+t4+1 t— 2 +2—
W+( 2r)§r2+< ’ ”). (13)

Expanding the binomial terms in (13) and regrouping we get

tir—3) <r*—2r —4. (14)
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If r = 3, then the left hand side of (14) is 0 and the right hand side is —1, a contradiction.
If r > 4, then dividing both sides of (14) by r — 3 we get t < r + 1 —1/(r — 3), which
yields r > t, as claimed.

So suppose 7 = 2 and let vy, vy be two vertices of degree 2 in Gj. Then by (12), the
graph H = G} — v1 — v has at least

3t24+t+10 t—2
2 T oo

)—2(2):2t2—2t+4

edges. So the complement of H has at most ¢t — 4 edges and thus, for u,w € V(H):
dg(u) +dg(w) >22t—1)—(t—4)—-1=3t+1=|V(H)|+t+ 1.
Hence by Theorem 2.8,

for each linear forest F C H with e(F) <t+ 1, H has a spanning cycle
(15)
containing E(F).

If N(v;) = {us,w;} for i = 1,2 and vive € E(Gg), say up = vz and us = vq, then
wy # we since H is 2-connected. Thus by (15), graph H' = H + wjws has a spanning
cycle containing wjws, and this cycle yields a hamiltonian cycle in Gy, a contradiction.
So vivg ¢ E(G}). Similarly, if N(v1) # N(vs), then by (15), graph H” = H+4ujw; +ugws
has a spanning cycle containing uyw; and usws. Again this yields a hamiltonian cycle
in G. Thus we may assume N(v1) = N(vz) = {u, w}. Let

Hy = H + uw if vw ¢ F(G) and Hy = H otherwise. (16)
If &y %Y & N[v1]UN[v2], then T, . (Tmym) < 1 (since Tg,, ., (viur) < 1) and Gyq

contains vertices v; and vy of degree 2. So by Lemma 3.3 for h = 2, G412 also has a
vertex of degree 2. Thus by (4) for r = 2 instead of (10) we have for every m+2 < j < n,

0(G5) <min{j —m,t — 1} and so Tg, (x;_1y;-1) < min{j —m — 1,t — 2}. (17)

Plugging (17) instead of (10) into (11) for r = 2, we will instead of (13) get the stronger
inequality

3t2+t+10 t—2 2 +2—2
+2++(t3)+( ) )322+< +2 ) (18)

Thus instead of (14) we have for r = 2 the stronger inequality ¢(2—3)+(t—3) < 22—-4—4,
which does not hold. This contradiction implies x,, * Y, € N[v1] U N[vg]. By symmetry
we have two cases.
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Case 1: z,, * ¥, = v1. As above, graph H has a spanning cycle C' containing uw. If
Ty Ymw € E(Gpy1), (19)

then C' extends to a k-cycle in G,,41 by replacing uw with path w, Z,,, Ym,w. A similar
situation holds if

T W, Ymt € E(Gpy1). (20)

But by degree conditions each of Z,,, ¥, has a neighbor in {u,w}. By definition, each
of u, w has a neighbor in {z,,, ym}. So at least one of (19) and (20) holds.

Case 2: z,, ¥ym = u. If dg,,,, (v1) = dg,,,, (v2) = 2, then as before we get (18) instead
of (14) and get a contradiction. So by symmetry we may assume that v, is adjacent to
both z,, and ¥, in Gy, 41. Since G, is 2-connected, vertex w does not separate {vy, vy, u}
from the rest of the graph. Thus by symmetry we may assume that y,, has a neighbor
2 € V(Gms1) \ {&m,v1,v2,w}. Again by (15), graph Hy defined by (16) has a spanning
cycle containing edges uw and uz, and again this cycle yields a k-cycle in G,,41 (using
path w,v1, Zm, Ym, 2), a contradiction. O

Proof for k = 2t + 1. We repeat the argument for k = 2¢ + 2, but instead of (12) and

(13), we get

3t2—t+6 t—r 26 4+1—7r
- <e(Gy) <r? .
5 + < 5 > <e(Gg) <r+ < 9
Expanding the binomial terms and regrouping, similarly to (14), we get

t(r—2)§r2—r—3.

The analysis of this inequality is simpler than that of (14): If » = 2, then the left hand
side is 0 and the right hand side is —1, while if » > 3, then dividing both sides by r — 2
we get t <r+1—1/(r —2), which yields r > ¢, as claimed. O

Lemma 4.4. Under the conditions of Lemma 4.3, G, is a subgraph of the graph Hy, j, ;.

Proof for k = 2t 4+ 2. By Lemma 4.3, r(Gy) = t. Let G’ be the k-closure of Gj and
dy <dy <...<dj be the vertex degrees in G'. By the definition of the k-closure,

d(u) +d(v) <k-1 for every non-edge uwv in G'. (21)
Since d; > d; for every i and G’ is also non-hamiltonian, r(G') > r(Gy) = t. Since

r(G') <t from r(G) < n/2, r(G') =t. Let V(G’) = {v1,...,v;} where d¢/(v;) = d} for
all i. By the definition of r(G’), on the one hand d}; < tand d)_, <k—-t—-1=t+1,
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on the other hand either di_y >t —1ord;__ ;) =k —(t—1)=1t+3. In any case,
dj 5 > t. Summarizing,

dig>t, dy<t and dj , <dj,, <t+1 (22)

Let B ={v1,...,v42} and A=V(G')\ B. If dj,, <t + 2, then

k
> di < (Bl +2) + (t+2)2+ (2t + 1)(t — 2) =3+ + 4,
i=1

a contradiction to e(Gy) > h(k,k,t —1) + 1. Thus d;,, >t + 3, and by (21) and (22),
G'[A] = K;. In summary,

diy>t+3 and G'[A]=K,. (23)

Suppose that there are distinct v;,,v;, € B and distinct v;,,v;, € A such that v;, vy,
and v;,v;, are non-edges in G’. Then by (21) and (22),

2t+42
> odp< (2t +1)2+ (Bl —2) + 2+ (2t + 1)(|A] - 2)
i=1

=4t 4+ 242 4+24+2% -3t —2=3t2+t+2.

This contradicts e(Gy) > h(k,k,t — 1). So, some v; is incident with all non-edges of G’
connecting A with B.

Case 1: j <t +2,ie v; € B. Then each v € B — v; has t neighbors in A. Thus each
v € B\ {’Uj,/Ut+1, v¢12} has no neighbors in B, and each of vy 1, vs42 has at most one
neighbor in B. If each of vyy1,ve42 is adjacent to v;, then G’ has a hamiltonian cycle
using edges v;41v; and v;v4o. Otherwise G'[B] has at most one edge, as claimed.

Case 2: j > t+ 3, i.e. v; € A. Together with (23), this yields that G’ contains
K 1,443 with partite sets A\ {v;} and B U {v;}. In particular, all pairs of vertices
in A\ {v;} are adjacent. So, G’ is obtained from Ko;4o — E(K;43) by adding at least
e(G") — (*F%) + (*1%) > 7 edges. If G'[BU{v;}] contains a linear forest with four edges,
then G’ has a hamiltonian cycle. So suppose

G'[B U {v;}] contains no linear forests with four edges. (24)

Case 2.1: G'[B U {v;}] contains a cycle C. By (24), |C| < 4 and if |C| = 4, then each
other edge in G'[BU{v,}] has both ends in V(C). Thus G’'[BU{v;}] has at most 6 edges,
a contradiction. So suppose C' = (z,y, z). If no other edge is incident with V' (C), then
the set of the remaining at least four edges in G'[B U {v,}| contains a linear forest with
two edges, a contradiction to (24). Thus we may assume that G'[B U {v;}] has an edge
zu where u ¢ {y, z}. Then by (24) and the fact that G'[B U {v;}] contains no 4-cycles,
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none of u, y, z is incident with other edges. On the other hand, if G’'[B U {v,}| has an
edge not incident with V(C'), this would contradict (24). Hence G'[B U {v;} \ {z}] has
only the edge yz, as claimed.

Case 2.2: G'[B U {v,}] is a forest. By (24), there is € B U {v;} of degree at least 3
in G'[BU{v;}]. If there is another vertex y of degree at least 3 in G’'[B U{v,}], then we
can choose two edges incident with x and two edges incident with y that together form
a linear forest with four edges. So G'[BU{v;}\ {z}] is a linear forest, call it F', and thus
has at most 3 edges. Each edge of F' has at most one end adjacent to x and the degree
of x in G'[B U {v;}] is at least four. So if F' has exactly m € {2,3} edges, then we can
choose 4 — m edges incident with = so that together with F' they form a linear forest.
And if F has at most one edge, then the lemma holds. 0O

Proof for k = 2t+1. The proof is almost identical to the case k = 2t+2. By Lemma 4.3,
r(Gr) = t. Let G’ be the k-closure of Gy, and d} < dy < ... < d}, be the vertex degrees
in G'. As in (21), we have

dlu) +dv) <k—-1=2t¢ for every non-edge uv in G'. (25)

As in the proof in the case k = 2t + 2, r(G’') = t. Let V(G’') = {v1,...,vr} where
de(v;) = d} for all i. Instead of (22), we get the stronger claim

tio >t and dp < dj =t (26)
Let B ={v1,...,v41} and A =V(G')\ B. If d} . 5 <t +1, then
2641
ST d <tB|+(t+1)2+ 20t —2) =362 — t+2 < hik, k, t — 1),
i=1
a contradiction. Thus,
43 > t+2 so by (25) and (26), G'[A] = K;. (27)
If there are distinct v;,,v;, € B and distinct v;,,v;, € A such that v;, v, and v;, vy,
are non-edges in G’, then by (25) and (26),
k
S di < 202+ (Bl = 2) + (2t)(|A| - 2) = 4t + £ — t + 2> — 4t = 3t — t
i=1

S h’(k7kat - 1)7

a contradiction. So, some v; is incident with all non-edges of G’ connecting A with B.
Case 1: j < t+ 1, ie. v; € B. Then each v € B — v; has t neighbors in A. Thus
by (26), each v € B — v; has no neighbors in B, hence B is independent, as claimed.
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Case 2: j > t+ 2, i.e. v; € A. Together with (27), this yields that G’ — v; contains
K1 +42 with partite sets A\ {v;} and B U {v;}. In particular, each vertex in A\ {v;}
is all-adjacent. So, G’ is obtained from K} — E(K;y2) by adding at least four edges. If
G'[B U {v;}] contains a linear forest with three edges, then G’ has a hamiltonian cycle.
Every graph with at least four edges not containing a linear forest with three edges is
a star plus isolated vertices. And if G'[B U {v;}] is a star plus isolated vertices, then
G' CHigy O

4.2.2. The case m >k
Lemma 4.5. Let m > k > 9.

(1) If k # 10, then Gy, € Hpy ot
(2) If k =10 then Gy, C Hpy op o Gy, 2 Fy.

Proof for & = 2t + 2. GG,, is an m-vertex 2-connected graph with ¢(G,,) < 2t + 1
satisfying e(G) > h(n,k,t — 1) + 1. Since (R2) is not applicable,

Te, (xvy) >t — 1 for every non-separating edge xy. (28)
By Lemmas 3.2 and 3.1, (28) implies
0(Gy) >t and for each v € V(Gy,) with d(v) =1t, Gp[N(v)] = Kit1. (29)

Let C = (v1,...,v4) be a longest cycle in Gy,. Since 6(G,,) > ¢, Dirac’s Theorem
(Theorem 2.3) yields ¢ > 2t. Obviously, ¢ < 2¢ + 1.

By (28) and Lemma 3.4, each edge of C is in at least ¢t — 1 triangles. By the maximality
of C, the third vertex of each such triangle is in V(C). So

the minimum degree of G, [V (C)] is at least t. (30)
We now prove that
G [V(C)] is 3-connected. (31)

Indeed, assume (31) fails and G,,, [V (C)] has a separating set S of size 2. By symmetry,
we may assume that S = {v1,v;} and that j < [¢/2] +1 < ¢+ 1. Then by (30), j =t+1
and G, [{v1,...,ve41}] = Kiy1. In particular,

V1Vt41 € E(Gm) (32)

Let Hy = Gu[{v1,...,v41}] and Hy = Gy [{v41,- ..,V v1}]. Similarly to Hy, graph
H, is either K;y; (when ¢ = 2t) or is obtained from Ko by deleting some matching
(when ¢ =2t +1).
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Concerning almost complete graphs we need the following statement which is an easy
consequence of Theorem 2.8 (or one can prove it directly).

For p > 6 and for any matching M C K,, every two edges of K, — M (33)
33
are in a common hamiltonian cycle of K, — M.

Since G, is 2-connected, each component F' of G, — V(C) has at least two neighbors,
say y(F) and y/'(F), in C. If at least one of them, say y'(F), is not in S = {v1,ve41},
then we can construct a cycle longer than C as follows.

If y(F) € V(H1) \ {v1,ve41} and ¢/ (F) € V(Hz) \ {v1,vi41}, then Hy — v;41 has a
hamiltonian vy, y(F)-path Py (recall that Hy — vy41 is a complete graph), and Hs has a
hamiltonian vy, 3’ (F')-path Py, by (33) and since k > 4. So PyUP, and a y(F),y'(F)-path
through F' form a longer than C cycle in G,,.

If both, y(F") and y'(F) are in the same H}, then we let H} be the graph obtained
from H; by adding the edge y(F)y'(F). Recall that by (32), vivi41 € E(H;). If we
have a hamiltonian cycle C’ in H} containing y(F)y'(F') and vivi41, then let P be the
v1, v¢1-path obtained from C’ by deleting edge v1v:q1 and replacing edge y(F)y'(F)
with a y(F),y'(F)-path P’ through F', and then replace in C the vy, vs11-path through
V(H;) with the longer path P. There is such a C” if |[V(H;)| > 6 by (33), and also if
|V (H;)| = 5 because in the latter case |V (H;)| =t + 1 with ¢t = 4 and it is a complete
graph.

Thus every component F' of G,, — V(C) is adjacent only to S, and S is a separating
set in G,,. In particular, H; — S = K;_1 and Hy — S are components of G,, — S. So,
if m > 3t + 1, then rule (R3) is applicable, contradicting the definition of G,,. Hence
2t + 2 < m < 3t. On the other hand, by (29), every component of G,, — S has at least
t — 1 vertices, and so m — q¢ >t — 1. Therefore, 3t — 1 < m < 3t.

If m =3t — 1, then ¢ = 2t, Hy = K41 and Hs := G, — (V(C) — S) = K;11. Hence

e(Gm)—h(m,k,t—l)—1—3<t;1> —2—hBt—1,kt—1)—1

32 +3t—4 52 —T7t+16
_ +2 _ 2+ — 24 5-10<0.

Similarly, if m = 3¢, then the component sizes of G,, — S are t,t — 1,¢ — 1. Thus in this

case
t+2
e(Gm)—h(m,k,t—l)—1§t2+t—|—(J;)—2—h(3t,k,t—1)—1
t? + 5t t2 — 5t + 14
_3 ;5 B Z+ = —t>4+5t—8<0.

These contradictions prove (31).
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So by (31) and Theorem 2.7 for n = ¢, s = 2t and H = G,,,[V(C)], one of three cases
below holds:

Case 1: K; + K, ; C G,u[V(0)] € K; + K,—+. Let B be the independent set of size
g—1tin G,[V(C)] and A = V(C) \ B. In this case, since G,,[V(C)] has hamiltonian
cycle C' and an independent set B of size ¢ — t, we need ¢ = 2t.

Suppose that G,,, — V(C) has a component D with at least two vertices. By Menger’s
Theorem, there are two fully disjoint paths, say P, and P», connecting some two distinct
vertices, say u and v, of D with two distinct vertices, say  and y, of C. Since G,,,[V (C)]
contains K¢, it has an x,y-path with at least 2¢ — 1 vertices. This path together with
P, P, and a u,v-path in D form a cycle of length at least 2t + 1, a contradiction to
the maximality of C. Thus each component of G,, — V(C) is a single vertex and is
adjacent either only to vertices in A or only to vertices in B. Moreover, by (29), each
such vertex has degree exactly ¢, and thus its neighborhood is a complete graph. Since
B is independent, each v € V(G,,) — C is adjacent only to vertices in A. Thus G,, =
K., — E(Kn:S) = Hm,kfl,t c Hm,k,t~

Case 2: K3 + (K o C Gn|V(C)] C K3 + (K;_o, where { = 2(q — 3)/(2t — 4).
Again, since G,,, [V (C)] has hamiltonian cycle C' and a separating set of size 3 (call this
set A), £ < 3. If £ < 2, then ¢ < 3+ 2(t — 2) < 2t, a contradiction. Thus, £ = 3 and
g =3+3(t—2) =3t—3.Since 2t < g < 2t+ 1, we get t € {3,4}. Since t > 4 by
assumption, we obtain that ¢t = 4 and Fy C G,,.

Case 3: For every two distinct x,y € V(C), the graph G,,[V(C)] contains an x,y-path
with at least 2t vertices. Let W = V(G,,) — V(C'). Repeating the argument of the second
paragraph of Case 1, we obtain that in our case

each component of Gp[W] is a singleton and so N(w) C V(C) for each w € W. (34)

Since no w € W is adjacent to two consecutive vertices of C' (by the maximality of C)
and ¢ <2t + 1, by (29),

dg,, (w) =1t for every w € W. (35)

Fix some w; € W. Then we may relabel the vertices of C so that Ng, (wi) =
{v1,v3,v5,...,v3:—1}. By (29), this also yields G,,[{v1,vs,...,v2:—1}] = K; and thus
dg, (vi) >t+1forallie {1,3,...,2t — 1}. In particular,

dg,, (vV) >t +1 for every v € Ng,, (w1). (36)

Then for every j € {2,4,...,2t —2} (and for j = 2t in the case ¢ = 2t) we can replace v;
with wy in C' and obtain another longest cycle. By (35) and (34), this yields dg,, (v;) =t
and

Ng,,.(v;) CV(C) forall j € {2,4,...,2t — 2}

(37)
(and for j = 2t in the case ¢ = 2t).
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Case 3.1: ¢ = 2t. Switching the roles of w; with v; together with (36) yields

Ng,, (vj) ={v1,v3,05,...,v20-1} for all j =2,4,...,2t. (38)
By (35) and (38), Ng,, (w) = {v1,v3,vs5,...,09—_1} for all w € V(Gy,) — {v1,v3,05,...,
vg¢—1}. This means Gy, C Hy, 21424, as claimed.

Case 3.2: ¢ = 2t + 1. Since m > 2t + 3, there is wo € W — wy. By (37), vertex ws is
not adjacent to v, for j € {2,4,...,2t — 2}. Suppose that wy is adjacent to vy or va41,
say wava: € E(Gy,). Then by the maximality of C, wavaii1, waver—1 ¢ E(Gy,). So the
only possible t-element set of neighbors of wy is {vy, vs, ..., V23, v }. But then G, has
the (2t + 2)-cycle (wa,v3,v4, Vs, ..., Va1, W1, V1, Vart1, V2t, We), & contradiction. Thus

Ng,, (w) = {v1,v3,v5,...,v24_1} for all w e W. (39)

Since we can replace in C any v; for j € {2,4,...,2t—2} with wy, (39) yields Ng,, (v;) =
{v1,v3,05,...,09¢_1} forall j = 2,4,...,2t—2. Tt follows that {vy,vs,vs,...,v2_1} cov-
ers all edges in G, apart from edge va; v 1. This means Gy, € Hyp, 2¢42,¢, as claimed. O

Proof for k = 2t + 1. Similarly to the proof for k = 2t + 2, we have (28) and (29). Let
C = (v1,...,94) be a longest cycle in G,,. Since §(G,,) > t, by Theorem 2.3, ¢ > 2t; so
¢(Gm) < k yields ¢ = 2¢t. Then repeating the argument for k = 2t + 2, we obtain (30)
and finally (31). So by Theorem 2.7 for n = s = 2t and H = G,,,[V(C)], one of three
cases below holds:

Case 1: K; + K; C G,,[V(C)] € K; + K;. As in the proof for k = 2t + 2, we derive
Gm =Ky — E(Kp—t) = Hp ot

Case 2: K3 +(K; 5 C G,,[V(C)] C K3+ {K;_, where £ = 2(2t — 3)/(2t — 4). Again,
since G,,[V(C)] has hamiltonian cycle C' and a separating set of size three (call this
set A), £ <3.Since t >4, £ #3.If £ <2, then ¢ < 3+ 2(t —2) < 2t, a contradiction.

Case 3: For every two distinct =,y € V(C'), graph G,,[V(C)] contains a hamiltonian
x,y-path. Then for any component H of G,, — V(C), let z and y be neighbors of H in
V(C). By the case, G,,[V(C)] contains a 2t-vertex path, say P. Then P together with
an x, y-path through H forms a cycle with at least & vertices, a contradiction. But since
m > k, such a component H does exist. O

4.8. Subgraphs of G,

In this section, we define classes of graphs which we shall show are subgraphs of G,,,
and these subgraphs will have the important property that they have many long paths
and are preserved by the reverse of the contraction process in the Basic Procedure.

For a graph F' and a nonnegative integer s, we denote by K~%(F) the family of graphs
obtained from F by deleting at most s edges.
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Let Fy = Fy(t) denote the complete bipartite graph K ;11 with partite sets A and
B where |A| =t and |B| =t + 1. Let Fy := K~ '*3(F), i.e., the family of subgraphs of
Ky 41 with at least t(¢ + 1) — ¢ + 3 edges.

Let Fy = Fi(t) denote the complete bipartite graph K, ;1o with partite sets A and
B where |A| =t and |B| =t + 2. Let F; := K~'t4(F}), i.e., the family of subgraphs of
Ky 4o with at least t(t +2) — ¢t + 4 edges.

Let F» denote the family of graphs obtained from a graph in ~**4(F}) by subdividing
an edge a1b; with a new vertex c;, where a; € A and b; € B. Note that any member
H € F; has at least |A||B| — (t — 3) edges between A and B and the pair a1b; is not an
edge.

Let F3 = F5(t,t') denote the complete bipartite graph K, ;s with partite sets A and B
where |A| =t and |B| = t/. Take a graph from K~'"4(F3), select two non-empty subsets
Ay, Ay C A with |A; U Ay| > 3 such that Ay N Ay = 0 if min{|A4,],|A2|} = 1, add two
vertices ¢; and co, join them to each other and add the edges from ¢; to the elements
of A; (i =1,2). The class of obtained graphs is denoted by F(A, B, Ay, As). The family
F3 consists of these graphs when |A| = |B| = t, |A;| = |[A2] =2 and Ay N Ay = 0. In
particular, for ¢ = 4 the family F3 consists of exactly one graph, call it F5(4).

Recall that Fjy is a 9-vertex graph with vertex set AU B, A = {a1,a2,a3}, B :=
{b1,ba,...,bs} and edges of the complete bipartite graph K (A, B) and three extra edges
b1ba, bsby, and bsbg. Define Fj as the (only) member of F(A, B, A1, Ay) where |A| =
|B| =t =4, Ay = Ay, and |4;| = 3. Let F, := {Fy, F}}, which is defined only for ¢ = 4.

In this subsection we will prove two useful properties of graphs in FyU---U Fy4: First
we show that G,,, contains one of them (Proposition 4.6) and then show that such graphs
have long paths with given end-vertices (Lemma 4.8).

Proposition 4.6. Let k > 9. If k is odd, then G, contains a member of Fy, and if k is
even then G,, contains a member of F1 U ---U Fy.

Proof. By Proposition 4.2, Gy, € Hyy ke or m > k = 10 and Fy; C G,. In the latter
case, the proof is complete. So assume G,,, C Hy, .+ and A, B, C are as in the definition
of Hy, 1.t First suppose k is even and C' = {¢1, c2}. If m = k then by (2),

e(Hpm ki) — e(Gr) < h(m,k,t) —h(m,k,t —1) —1=1t—4,

ie. Gy € K™ (Hypy kt)- Since Fi(t) € Hyy gty G contains a subgraph in Fp. If m > k
then by (R2) and Lemma 3.2, we have 6(G,,) > ¢. So, each v € B is adjacent to every
u € A and each of ¢1, ¢co has at least t—1 neighbors in A. Since |BU{c1}| > m—t—1 > t+2,
G contains a member of X~1(Fy(t)). Thus G,, contains a member of F; unless ¢t = 4,
m = 2t+3 and ¢; has a nonneighbor € A. But then ¢1¢5 € E(G,y,), and so G, contains
either F3(4) or F}.

Similarly, if k¥ is odd and m = k, then by (2), G,, € K3 (H,, k). Thus, since
Hp k.t 2 Fo(t), Gy, contains a subgraph in Fy. If k is odd and m > k then by (R2) we
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have 6(G,,) > t. So, each v € V(G,,) — A is adjacent to every u € A. Hence Gy, contains
Kim—. O

In order to prove Lemma 4.8, we will use Corollary 2.10 and the following implication
of it.

Lemma 4.7. Let t > 4 and H € F(A, B, A1, Ag) with |B| > t—1, |A| =t. Let P be a
path ajcicaas and L be a subtree of H with |E(L)| < 2 such that P U L form a linear
forest. Then

H has a cycle C of length 2t 4+ 1 containing P U L. (40)

Proof. Choose some B’ C B with |B’| =t — 1 such that BNV (L) C B’. Let @ be the
bipartite graph whose t-element partite sets are A and B’ U {c} where c is a new vertex,
and the edge set consists of H[AU B’] and all edges joining ¢ to A. By the conditions of
the lemma, the set E’ := E(L) U {ajc, cag} forms a linear forest in Q. Since ) misses at
most ¢ — 4 edges connecting A with B’ U {c}, by Corollary 2.10 with s = ¢ and i = 2,
Q@ has a hamiltonian cycle C’ containing E’. Then the (2t + 1)-cycle C in H obtained
from C’ by replacing path ajcas with P satisfies (40). O

Lemma 4.8. Let H € FoUF, U---UFy and z,y € V(H).

(a) H contains an x,y-path of length at least 2t — 2;

(b) if H does not contain an x,y-path of length at least 2t — 1, then
(b0) H € Fy and {z,y} C A, or
(b1) H € F1 and {z,y} C A, or
(02) H=F, € Fy and {z,y} C A;

(¢) if H does not contain an x,y-path of length at least 2t, then
(c0) H € Fy, or
(cl) H € Fy and at least one of x,y is in A, or
(c2) H € Fy and either {x,y} C A or {z,y} = {a1,b1}, or
(¢3) H € F3 and {x,y} C A, or
(c4) H € Fy and {z,y} C A.

Proof. The statements concerning H € Fy U F; are the easiest. Using Corollary 2.10 (or
just using induction on t) it is easy to prove a bit more. Suppose that H € IC;t(iEz) (A, B),
t > 2. Then every pair z,y € AU B is joined by a path of maximum possible length.
This means that every pair of vertices by,bs € B is joined by a path of length 2t, every
pair a € A, b € B is joined by a path of length 2t — 1, and every pair a1, as € A is joined
by a path of length 2t — 2. For example, the proof for H € Fy, a € A and b € B is as
follows. Consider H' obtained from H by adding edge ab if ab ¢ E(H) and deleting any
b € B — b. Then by Corollary 2.10, H' has a hamiltonian cycle containing ab, which
yields an a, b-path in H of length 2¢ — 1.
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The cycle (bi1beaibsbsasbsbgashy) and path bibeaibsasbsasbsbs in Fy prove (b2) and
the part of (c4) related to Fj.

Suppose now that H € F» U F3 U{F}}; even in a more general setting suppose that
H € F(A,B, A1, Ay) with |B| = |A|] = ¢, |A1 U Ag] > 3, |4z > |A1| > 1 (and in case
of |A;| = 1 one has A; N A2 = 0)). We prove the statements in reverse order, first (c2)
and (c3), then (b), finally (a). When we comment below “Case BC” or “Case AA”, this
means that we consider paths from B to C or from A to A, respectively.

By Lemma 4.7, we already knew that cycs is contained in a cycle of length 2¢ + 1 so
these two vertices are joined by a path of length 2t (Case CC). If b € B, and a; € A;,
then the almost complete bipartite subgraph H[A U B] contains a b, a;-path of length
2t — 1, so b and c3_; is joined in H by a path of length 2¢ 4+ 1 (Case BC). Concerning
b1,by € B we can define HT by adding an extra vertex a;11 to A and joining it to
each vertex of B. Applying Lemma 4.7 to Ht (with ¢ + 1 in place of t) we get that it
has a cycle Co43 through byasy1b2. This cycle gives a by, be-path of length 2t + 1 in H
(Case BB). In case of z € A, y € A the high edge density of H implies that x and y have
a common neighbor b € B. One can find a path P = ajcjceas such that P and xby form
a linear forest. Then Lemma 4.7 yields a cycle Cy 41 through all these edges. Leaving
out b one gets an z,y-path of length 2t — 1 in H (Case AA). In case of z € A, y € B
maybe we have to add the edge xy to obtain a cycle Cy:y1 through it by Lemma 4.7.
This yields an x, y-path of length 2t (Case AB). Finally, if x € A, y = ¢; one uses a path
¢i,c3_;,x’ and an z,x’-path of length 2t — 2 in AU B to get an z, y-path of length 2t,
if this can be done. If such an 2’ # x does not exist, then z = a1 € Ay, |4;] = 1, and
y = cg. This is the case described in (c2) (Case AC). O

4.4. Reversing contraction

The aim of this section is to prove Lemma 4.9 below on preserving certain subgraphs
during the reverse of the Basic Procedure.

Lemma 4.9 (Main lemma on contraction). Let k > 9 and suppose F and F' are
2-connected graphs such that F = F'/zy and ¢(F') < k.

If k is even and F contains a subgraph H € Fy U ---U Fy, then F' has a subgraph
HcFU---UF.

If k is odd and F contains a subgraph H € Fy, then F' has a subgraph H' € Fy.

Proof for k even. Case 1. H € Fy. Let u = x xy. If uw ¢ V(H) then H C F’ and we
are done. In case of u € A consider the sets X := Np/(z) N B and Y := Np/(y) N B.
If X = XUY then F' restricted to (A \ {u}) U {z} U B contains a copy of H. If
X =XUY\{y'} fory’ € V(H'), then F’ restricted to (A\ {u})U{z} UBU{y} contains
a copy of a graph from Fy (with a; := z, by := ¢/, and ¢; := y). We proceed in the
same way if Y = X UY or if |[Y| =|X UY|— 1. In the remaining case | X \ Y| > 2 and
|Y"\ X| > 2, so one can choose five distinct elements by, x1, T2, y1,y2 from B such that
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{z1,22} € X \Y and {y1,y2} C Y\ X. Then the bipartite subgraph Qg of F’ generated
by the sets A\ {u} U {z,y} and B\ {bp} contains the linear forest L consisting of the
paths x1zxo and y1yys. If we define the graph @ by adding to Qo all edges joining =
and y to B\ {bo}, then Q has at least (t + 1)? — (¢t — 4) edges. So by Corollary 2.10 for
s =t+1 and i = 2, @ has a hamiltonian cycle Cy; 5 containing all edges of L, and this
cycle also appears in F’, contradicting ¢(F’) < k.

In case of u € B consider the sets X := Np/(z)NAand Y := Np (y)NA. If | X\Y] < 1
or [Y'\ X| <1, then we proceed as above and find a subgraph H’ of F either isomorphic
to H or belonging to Fp. If | X \ Y| > 2 and |Y \ X| > 2, then we have four distinct
elements x1, T2, y1,y2 in A such that {z1,22} C X \Y and {y1,92} C Y \ X. Then F’
contains a member of F3 with (¢1,¢2) = (x,y), A1 := {z1, 22}, and As := {y1,y2}.

Case 2. H € Fo UF3U{F,}. The proof in this case follows from two claims. We say that
the graph H has the Property (Wp) if the following holds.

(Wy) For all z € V(H) there exists w € N(z) such that for all w' € N(z)\{w}, the
graph H has a cycle Cy containing the path wzw'.

Claim 1. Suppose that the graph F contains a subgraph H satisfying Property (W), and
¢(F") < L. Then F' has a subgraph H' isomorphic to H.

Let z=axyand V=V(F)—z=V(F')—x—y. I V(H) C V, then there is nothing
to prove.

Suppose that z € V(H) C V(F) and define X := Np/ () N Ng(z) and Y := Np/(y) N
Ny (z). Then X UY = Ng(z). Let w € N(z) be the vertex from the definition of the
Property (Wp). Since Ny (z) = X UY, we may assume by symmetry that w € X.

We claim that Y — w = (. Indeed, suppose there is w’ € Y — w. By Property (W),
H has a cycle Cy containing the path wzw’. Then the path Cy — z in F’ together with
the edges w'y, yx and zw forms a cycle of length ¢ + 1, contradicting ¢(F’) < £.

This implies that Np/(z) contains Ny (z). So F’ contains a copy of H with the vertex
set (V(H)\{z})U{z}. O

Claim 2. If H € F, UF3 or H = Fj, then H satisfies Property (Wai41).

We prove a bit more: every H € F(A, B, A1, Ao) with |B] >t — 1, |A| = t satisfies
(Wat41). Indeed, for z = ¢; we can choose a w := c3_;. For z € B we can choose a w € A
arbitrarily. For z € A we can choose w € N(z) C B arbitrarily, except if 2 € A; and
|A;] = 1. In this latter case we can use w := ¢;. In each of these cases, given L := wzw’
one can find a path P := ajcjceas such that P U L is a linear forest. Then Lemma 4.7
yields that H has a cycle Cy;11 through wzw'.

Since each H € F, U F3 U {F;} belongs to such F(A, B, A1, A3), this completes the
proof of Claim 2. O
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Case 3. H = F. Let u = xxy. By symmetry, we can consider only two cases: u = a1 and
u = by. First, suppose u = a1 and zb; € E(F"). Then since ¢(F’) <9, y is not adjacent
to any of bs, bg, bs, bg. Thus z is adjacent to all of them, and if yby € E(F”), then the
cycle (ybabyasbsbyasbsbery) contradicts ¢(F') < 9. So xbs € E(F') and the subgraph of
F' with vertex set V(H) \ {u} U {z} contains Fj.

Similarly, suppose u = by and xby € E(F’). Then to avoid a 10-cycle in F’, y has no
neighbors in A and thus z is adjacent to all of A. So, again the subgraph of F’ with
vertex set V(H) \ {u} U {z} contains F;. O

Proof for k odd. First we prove the following statement (41) which is true for every
t>2 Let H e K~'"2(K(A, B)) with |[A| =t, |B| = t+ 1. Let P be a path of length two
in H. Then

H has a cycle C of length 2t containing P. (41)

If every vertex of B\ P is joined to all vertices of A, then one can find a Cy; through
P directly. Otherwise, there is a vertex v € B\ P of degree at most t — 1, so H \ {v}
is a subgraph of K;; with at least t* — ¢ + 3 edges. Then the statement follows from
Corollary 2.10 for s =t and 7 = 1.

Now suppose that H € Fo, H C F, F' = F'/xzy, and H, F, F’ satisfy the constraints of
Lemma 4.9. Then (41) implies that H satisfies property (Ws;). Thus by Claim 1, F” has
a subgraph H’ isomorphic to H. 0O

4.5. Completing the proof of Theorem j.1

Proof for k even. Proposition 4.6 and Lemma 4.9 imply that there is a subgraph H
of G = G, such that H € F{U---UF;. Let G = G —V(H) and Sy,...,S5s be the
components of G'. Each of S; has at least two neighbors, say z; and y; in V(H). Let
¢; denote the length of a longest x;, y;-path in G[V(S;) U {z;,y;}]. Since ¢(G) < k, by
Lemma 4.8(a) and (b),

foralli, €;<3 andif He F,UF3U{F.}, then £; <2. (42)

Case 1: H € F3 U{F}}. By (42), ¢; < 2 for all ¢ and all choices of z; and y;. Since G
is 2-connected, this yields that each S; is a singleton, say v;. Moreover, Lemma 4.8(c3)
and (c4) imply N(v;) C A for all 4. So G is contained in a graph in Gi(n, k), and the
only edge outside A is cjco.

Case 2: H € F;. Again, by (42), ¢; < 2 for all ¢ and all choices of z; and y;. So again
this yields that each S; is a singleton, say v;. But now Lemma 4.8(c2) implies that for
all ¢, either N(v;) C A or N(v;) = {a1,b1}. Thus G is contained in a graph in Ga(n, k),
where the only possible star component of G — A with at least three vertices is a star
with center by and c; a leaf.
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Case 3: H € F;. Suppose first that some z; is in B. Then by Lemma 4.8(c3), y; € A and
by Lemma 4.8(b), ¢; = 2. So, denoting the common neighbor of z; and y; in S; by ¢,
we get Case 2. Thus it is enough to consider below only the situation when

N(S;)NV(H) C A for every i. (43)

We consider three cases.

Case 3.1: For some i # j, {; > 3 and ¢; > 3, say {1 > 3 and {5 > 3. Then by (42),
ly = Uy = 3. For i = 1,2, let (z;,v4,v},y;) denote an x;,y;-path of length three in
GV (S;)U{x;, yi }]- Also, by (43), 21, y1, 2, y2 € A. Suppose first that {x1,y1} # {z2,y2}.
We proceed as in the beginning of the proof of Lemma 4.9. Choose a (t—2)-element subset
B’ C B and add two new vertices b and b}, and join them to all vertices of A. Then the
obtained bipartite graph H' has at least t?> — t + 4 edges so there is a hamiltonian cycle
C’ containing the linear forest x1b]y; U 22b5ys by Corollary 2.10. This C” corresponds
to a cycle of length k in G, a contradiction.

It follows that every component S; with ¢; > 3 has exactly two neighbors in V(H)
and these two neighbors, say x1,y1, are the same for all such components; furthermore
x1,y1 € A. Furthermore, in order to have ¢; < 3, all leaves of S; have the same neighbor
in A. Thus G is contained in a graph in Gs(n, k).

Case 3.2: There exists exactly one ¢ with ¢; > 3, say £1 > 3. Then by (42), ¢; = 3. Let
(z1,v1,v],41) be an x1, y1-path of length 3 in G[V (S;) U {x1,y1}]. By (43), every other
component S; is a singleton, say v; with N(v;) C A. As in Case 3.2, in order to have
{1 < 3, 57 should be a star, and if S; # K, K7, then all leaves of S7 are adjacent to the
same vertex in A. Thus G is contained in a graph in G (n, k) U Ga(n, k).

Case 3.3: £; < 2 for all i. Here G is contained in a graph in G;(n, k). Then each S; is a
singleton with all neighbors in A. It follows that G — A is an independent set.

Case 4: H = F,. By Lemma 4.8(c4), (43) holds. Together with (42), this yields that
every component S of G — A is a star and if |[S| > 3, then all leaves of S have the same
neighbor in A. It follows that G € G4(n, k). O

Proof for k odd. By Proposition 4.6 and Lemma 4.9, G,, contains some H € Fy. Let
G' = G, — H and S1,...,Ss be the components of G’. Each of S; has at least two
neighbors, say x; and y; in V(H). Let ¢; denote the length of a longest x;,y;-path in
Gr[V(S;) U{z;,y:}]. Since ¢(Gy,) < 2t, by Lemma 4.8,

foralli, ¢; <2 and {z;,y;} C A. (44)

Then each S; is a singleton with all neighbors in A. It follows that G — A is an
independent set. This completes the proof of Theorem 4.1 for k odd. O
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5. Proof of Theorem 1.4 for k& < 8

Recall that Theorem 4.1 describes for £ > 9 and n > 3k/2 the n-vertex 2-connected
graphs with no cycle of length at least k and more than h(n, k,t—1) edges. In this section,
we will do the same for 4 < k < 8 and n > k. We will use for this the classes G;(n, k)
defined in Section 4 and the notion of a J3-bridge. For A C V(G) and S C V(G) \ A4,
S forms a Js-bridge of A with endpoints ay, as if a1,a2 € A, A’ := {a1,a2} is a cutset
of G, G[SUA'|U{ajaz} is a 2-connected graph, G[S] is connected, and the length of the
longest a1, ag-path in G[S U A’] is three.

Furthermore, since the description (but not the proof) for k£ = 8 is more sophisticated,
we will need four more special graph classes for k = 8: Each of the graph classes G;(n, 8)
(5 < i < 8) contains 2-connected n-vertex graphs G with ¢(G) < 8 and having a special
vertex set A = {a1,as,...,as} with G[A] being a complete graph and such that G \ A
consists of J3-bridges and isolated vertices having exactly two neighbors in A.

If G € G5(n,8), then s = 3 and a; is adjacent to each component in G \ A. So the
edge asag is contained in a unique triangle, namely ajaqas.

If G € Gg(n,8) UGr(n,8), then s = 4 and the endpoints of all Js-bridges are {a1,as}
while one of the neighbors of some isolated vertex ¢ of G\ A4 is a1 in case of Gg(n,8) and
N(c) = {as,aq} for all ¢ in case of Gz(n, 8).

If G € Gs(n,8), then s =5 and N(S) = {a1,as} for each component S of G — A.

Theorem 5.1. Let 4 < k < 8 and n > k. Let G be an n-vertexr 2-connected graph with
no cycle of length at least k. Then either 7 < k < 8 and e(G) < h(n,k,t —1) or G is a
subgraph of a graph in G(n, k), where

(1) G(n,4) =0,

(2) g(”) 5) = gl(n’ 5)7

(3) G(n,6) :=G1(n,6) U Ga(n,6)

(4) G(n,7) :={Hpr3}UGi(n,6)UGa(n,6)UGs(n,6),
(5) G(n,8) :== U1§i§8,i#4 Gi(n,8).

The proof scheme is that we consider a graph G satisfying the conditions of the theo-
rem and take a longest cycle C with vertex set, say X := {xg, 21, x2,..., 2, }. Moreover,
we will assume that C' has the maximum sum of the degrees of its vertices among the
longest cycles in G. Analyzing possibilities, we will derive that G € G(n, k).

A bridge of C' is the vertex set of a component of G — X.

We start from a sequence of simple claims on the structure of bridges and the edges
between X and the bridges. For brevity we denote by d¢ (i, j) the distance on C' between
xj and x;, i.e. min{|j —i|,7 + 1 — |j —i|}. For a bridge S and neighbors z,z" of S on C,
an (z,2’, 9)-path is an x, 2’-path whose all internal vertices are in S.

The maximality of |C| implies our first claim:
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Claim 5.2. For every bridge S and any x;,z; € N(S)NX, the length of any (z;,z;, S)-path
is at most d¢ (i, j). In particular, if S contains distinct ¢y, co such that z;c1,xjco € E(G),
then dc(4,7) > 3.

If |S| > 2, then by the 2-connectedness of G, there are two vertex-disjoint S, X-paths.
Thus if G[S] contains a cycle, then for some z;,z; € N(S)NX, the length of the longest
(xi,xj,5)-path is at least 4. Hence, since |C| < k—1 < 7, by Claim 5.2, we get the next
claim:

Claim 5.3. For every bridge S of X and any distinct z;,z; € N(S) N X, the length of
any (z;,2;,5)-path is at most 3. In particular, G[S] is acyclic (a tree).

Suppose that for some bridge S, and two leaves cj, ¢y of the tree G[S], there is a
¢1, ce-path P in G[S] of length at least 3. Then by Claim 5.3, each of ¢; and ¢y has exactly
one neighbor in X, and this is the same vertex, say x;. Again by the 2-connectedness
of G, there is ; € X N N(S) \ {x;}. Then there is an (z;, x;, S)-path of length at least
4 through either ¢y or co, which contradicts Claim 5.3. Thus we get:

Claim 5.4. For every bridge S of X, G[S] is a star. Moreover, if |S| > 3, then all leaves
of G[S] have degree 2 in G and the same neighbor, x(S), in X.

Suppose |S| > 2 and |N(S) N X| > 3, say {x,2',2"”"} C N(S)N X. Let ¢; be a
leaf of G[S]. If |S| > 3, then by Claim 5.3 it has a unique neighbor in X, say x. It
follows that there are an (z,2’,.5)-path and an (z, 2", S)-path of length at least 3. Also
there is an (2,2”,5)-path of length at least 2. Then by Claim 5.2, the distance on
C from z to 2’ and to z” is at least 3 and between 2z’ and z” is at least 2. Thus
|X| > 34342 = 8, a contradiction. Similarly, if S = {¢1, ca}, then by symmetry we may
assume that © € N(c1) N X and {2/,2"”} C N(cz) N X. In this case again by Claim 5.2,
|X| >3+ 3+ 2 =38, a contradiction. Thus summarizing this with the previous claims,
we have proved the following.

Claim 5.5. For every bridge S of X with |S| > 2, |[N(S) N X| = 2. Moreover, if |S| > 3,
then G[S] is a star and all leaves of G[S] have degree 2 in G and the same neighbor,
x(S), in X. In other words, each bridge S with |S| > 2 is a Js-bridge of X.

From Claims 5.2 and 5.5 we deduce:
Claim 5.6. For every Js-bridge S of X with endpoints x; and =, dc(i, ) > 3.

If there are i1 < is < i3 < i4 < r and bridges S1 and S; such that G contains an
(24,, iy, S1)-path Py and an (z;,, x;,, S2)-path Py, then we can construct two new cycles
C7 and C5 such that each of them contains the edges of P; and P, and each edge of
C belongs to exactly one of C7 and Cy. Then the total length of C; and Cs is at least
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|E(C)|+2(|E(P)|+ |E(Py)]) > (k—1)4+8 > 2k — 1. Thus at least one of them is longer
than C', a contradiction. Thus we have:

Claim 5.7. There are no i1 < is < i3 < iq4 < r and bridges S1 and Sy of X such that G
contains an (i, , iy, S1)-path and an (zi,, x;,, S2)-path. In particular, since k —1 <7,
any two Js-bridges share an endpoint.

We now can prove Theorem 5.1. Indeed, by Claim 5.2, |X| > 4. This proves
G(n,4) =0, i.e., Part 1 of the theorem.
We will consider 3 cases according to the value of | X|. As mentioned above, | X| > 4.

Case 1: 4 < | X| < 5. Then by Claims 5.5 and 5.6, each bridge is a singleton. Furthermore,
by Claim 5.2 each such singleton has exactly two (necessarily nonconsecutive) neighbors
in X. If | X| = 4, Claim 5.7 yields that this pair of neighbors is the same for all bridges,
say it is {xo,z2}. Then G is contained in H, 52 with A = {z¢, 22}, as claimed. This
proves Part 2.

Let | X| = 5. If also each bridge has the same pair of neighbors in X, say {xg,z2},
then since n > | X|+1 = 6, x; is not adjacent to {x3,24} to avoid a 6-cycle. Thus in this
case, G is contained in H,, g2 with A = {x,z2}, and so e(G) < h(n,6,2). Otherwise
by Claim 5.7, there are exactly two distinct pairs of neighbors of the bridges, and they
share a vertex. Suppose these pairs are {zg,z2} and {xo,z3} and for j € {2,3}, Y] is
the set of vertices adjacent to xy and x;. Then to avoid a 6-cycle, edges 124, z123 and
x2x4 are not present in G. Then G € Ga(n,6) with A = {xg, 22}, B = Yo U {23} and
J =Y3U{x4}. Since H,, 62 contains H, 5 2, this together with the previous paragraph
proves Part 3 of the theorem.

Case 2: | X| = 6. By Claims 5.5-5.7, it is enough to consider the following three subcases.

Case 2.1: X has a bridge S with [N(S) N X| > 3. By Claim 5.5, S is a single vertex,
say z, and by Claim 5.2, z has exactly 3 (nonconsecutive) neighbors on C, say g, =2
and x4. In view of the cycle xgzzorszsxs and the maximality of the degree sum of C,
d(x1) > d(z) > 3. By Claim 5.7, z; has no neighbors outside of C. In order to avoid
a T-cycle in G, zizs3, 125 ¢ E(G). So x1x4 € E(G). Similarly, zoxs, zors € E(Q),
so G contains K34 with parts A = {z¢, 22,24} and B = {z1,x3, x5, 2}. Moreover, B is
independent. Let C' be the vertex set of any component of G— A — B. If C has a neighbor
in B or is not a singleton, then G[AU B U (] has a cycle of length at least 7. Thus each
component of G — A — B is a singleton and has no neighbors in B. This means A meets
all edges and so G is a subgraph of H,, 7 3.

Case 2.2: X has a Js-bridge S. Then by Claim 5.2 and symmetry, we may assume
N(S) = {zo, z3}. In this case, G has 3 internally disjoint x¢, 23-paths of length 3. Thus
to have ¢(G) < 6, {xo,x3} separates internal vertices of distinct paths. It follows that
G — {zo, 23} is a collection of Js-bridges of {xg,z3} and isolated vertices each having
only xg and x3 as endpoints. Thus G is a subgraph of a graph in Gs(n,6).
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Case 2.3: V' \ X is independent and each z € V' \ X has degree 2. By Theorem 1.3,
for each z € V' \ X, graph G[X U {z}] has at most h(7,7,2) = 14 edges, which yields
e(@) < 2n = h(n,7,2). This proves Part 4 of Theorem 5.1.

Case 3: | X| = 7. By Claims 5.5-5.7, it is enough to consider the following four subcases.

Case 3.1: X has a bridge S with |[N(S) N X| > 3. As in Case 2.1, S is a single vertex,
say z, and we may assume N(S) N X = {xg,x2,24}. Again, similarly to Case 2.1, in
view of the 7-cycle xozzoxsxa2526, we obtain that d(z1) > d(z) > 3, and that (to avoid
a long cycle in G) the third neighbor of x; is x4. Similarly, zozs € E(G). Thus, G has
a subgraph consisting of K3 3 with parts A := {xo, 22,24} and B := {z1, 23,2} and an
attached 3-path zyzsxexg. Moreover, d(x1) = d(x3) = d(z) = 3 and these are isolated
vertices in G\ A. Let Y be the vertex set of the component of G — A containing {x5, z¢}.
If there is another component Y’ of G — A with |Y’| > 2, then to avoid a > 8-cycle,
G must be a subgraph of a graph in Gs(n,8). If all the bridges of A apart from A are
singletons, then G is a subgraph of a graph in either Gi(n,8) (if |Y| = 2) or G2(n,8) (if
Y] > 3)

Case 8.2: G has Js-bridges S; and S of X with N(S7) # N(S3). By Claims 5.7 and 5.6,
we may assume N (S1) = {xg,z3} and N(Sz) = {x0,z4}. By the 2-connectivity of G, we
may assume that there is an (xg, 3, S1)-path zoy1y2xs and an (4, xo, S2)-path z4ysysTo.
Let A = {zo,x3,24}. Then the edges y1y2, ysys, 122, T52Ze belong to distinct compo-
nents of G\ A. Thus to avoid long cycles in G, no bridge of A is adjacent to both, x3
and x4 and none of the bridges S of A contains an (zg, x3,.S)-path or an (xg, x4, S)-path
of length at least 4. It follows that G is a subgraph of a graph in Gs(n, 8).

Case 3.3: G has a Js-bridge S of X, and every other Js-bridge of X (if exists) has
the same neighbors as S in X. We may assume that N(S) N X = {xg,z4} and G
contains an (g, x4, S)-path zoysyszs. Then the edges ysys, x122, 526 belong to three
distinct components of G \ {zg, z4}. Let Y be the component of G \ {xo, x4} containing
{z1,x2,x3}. By the case, all other components are either isolated vertices or Js-bridges
of {zo,z4}. Also, every vertex y € (Y \ {x1,22,23}) has only neighbors in X (i.e.,
N(y) C {zo,x1,...,24}).

If Y| = 3 we obtain that G is a subgraph of a member of Gg(n,8) with A =
{0, %1, 22,23, 4}. Suppose |Y| > 4. If there is y € Y \ {x1, 22} with Ng(y) = {zo, 23},
then to avoid an 8- or 9-cycle, z1z4 ¢ E(G) and no 3y’ € Y \ {2,235} has Ng(y') =
{z1,24}. So, either {zg,z3} is a cut set in G or zaz4 € E(G). In the former case, G is a
subgraph of a graph in Gs(n,8) with A = {zg, 23,24} and a; = x¢. In the latter case, in
order to avoid an (xg, x4, Y )-path of length > 5, graph G[{x1, z2, x3, x4, y}] has only the
5 edges we already know and no vertex y' € Y — X —y has N(y') C {z1, 22, 23,24, y}.
This means G is a subgraph of a graph in Gg(n,8) with A = {xg, x4, 22,25}, where
a1 = xg and ag = x4. The case of y € Y \ {x1,22} with Ng(y) = {x1,24} is sym-
metrical. If there is y € Y \ {z1} with N(y) = {wo,x2}, then in order to avoid an
(x0,x4,Y)-path of length > 5, 1253 ¢ E(G) and every y € Y — X is adjacent to xs.
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This means G is a subgraph of a graph in Ga(n,8) U G3(n,8) with A = {2, 24,20}
The last possibility is that N(y) = {z1,z3} for every y € Y — X. Since |Y| > 4,
this yields zaxo,zozs ¢ E(G). Thus G is a subgraph of a member of Gr(n,8) with

{ay,a2} := {zo, 24} and {asz, a4} := {z1,23}.

Case 3.4: G\ X consists of isolated vertices only, each having degree 2 in G. By Theo-
rem 1.3, for each z € V' \ X, graph G[X U {z}] has at most h(8,8,2) = 19 edges, which
yields e(G) < 2n+3 = h(n,8,2). O

Theorem 5.1 yields the following analog of Theorem 4.1(1) for a smaller range of e(G).

Corollary 5.8. Suppose that G is a 2-connected, n-vertex graph with ¢(G) <7, n > 8. If
e(G) > |(5n — 6)/2] then G is a subgraph of H, 73, and this bound is best possible. O

6. Concluding remarks

It could be that for k¥ > 11, Theorem 1.4 holds already for n > 5k/4. Note that by
Theorem 1.3, it does not hold for n < 5k/4. It may also be possible, albeit complicated,
to describe the structure of 2-connected n-vertex graphs with no cycles of length at least
k = 2t+1 and at least h(n, k,t—2) edges. We leave these as avenues for further research.
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