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Let Tn,p denote the complete p-partite graph of order n having 
the maximum number of edges. The following sharpening of 
Turán’s theorem is proved. Every Kp+1-free graph with n
vertices and e(Tn,p) − t edges contains a p-partite subgraph 
with at least e(Tn,p) − 2t edges.
As a corollary of this result we present a concise, contemporary 
proof (i.e., one applying the Removal Lemma, a corollary of 
Szemerédi’s regularity lemma) for the classical stability result 
of Simonovits [25].

© 2015 Elsevier Inc. All rights reserved.

1. The Turán problem

Given a graph G with vertex set V (G) and edge set E(G) its number of edges is 
denoted by e(G). The neighborhood of a vertex x ∈ V is denoted by N(x), note that 
x /∈ N(x). For any A ⊂ V the restricted neighborhood NG(x|A) stands for N(x) ∩ A. 
Similarly, degG(x|A) := |N(x) ∩ A|. If the graph is well understood from the text we 

E-mail address: z-furedi@illinois.edu.
1 Research supported in part by the Hungarian National Science Foundation OTKA 104343, by the Simons 

Foundation Collaboration Grant #317487, and by the European Research Council Advanced Investigators 
Grant 267195.
http://dx.doi.org/10.1016/j.jctb.2015.05.001
0095-8956/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jctb.2015.05.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
mailto:z-furedi@illinois.edu
http://dx.doi.org/10.1016/j.jctb.2015.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jctb.2015.05.001&domain=pdf


Z. Füredi / Journal of Combinatorial Theory, Series B 115 (2015) 66–71 67
leave out subscripts. The Turán graph Tn,p is the largest p-chromatic graph having n
vertices, n, p ≥ 1. Given a partition (V1, . . . , Vp) of V the complete multipartite graph 
K(V1, . . . , Vp) has vertex set V and all the edges joining distinct partite sets. A � B

stands for the symmetric difference of the sets A and B. For further notations and 
notions undefined here see, e.g., the monograph of Bollobás [4].

Turán [27] proved that if an n-vertex graph G has at least e(Tn,p) edges then it contains 
a complete subgraph Kp+1, except if G = Tn,p. Given a class of graphs L, a graph G is 
called L-free if it does not contain any subgraph isomorphic to any member of L. The 
Turán number ex(n, L) is defined as the largest size of an n-vertex, L-free graph. Erdős 
and Simonovits [12] gave the following general asymptotic for the Turán number. Let 
p + 1 := min{χ(L) : L ∈ L}. Then

ex(n,L) =
(

1 − 1
p

)(
n

2

)
+ o(n2) as n → ∞. (1)

They also showed that if G is an extremal graph, i.e., e(G) = ex(n, L), then it can be 
obtained from Tn,p by adding and deleting at most o(n2) edges. This result is usually 
called Erdős–Stone–Simonovits theorem, although it was proved first in [12], but indeed 
(1) easily follows from a result of Erdős and Stone [13].

The aim of this paper is to present a new proof for the following stronger version 
of (1), a structural stability theorem, originally proved by Erdős and Simonovits [12], 
Erdős [6,7], and Simonovits [25].

Theorem 1. For every ε > 0 and forbidden subgraph class L there is a δ > 0, and n0
such that if n > n0 and G is an n-vertex, L-free graph then

e(G) ≥
(

1 − 1
p

)(
n

2

)
− δn2 implies |E(Gn) � E(Tn,p)| ≤ εn2. (2)

I.e., one can change (add and delete) at most εn2 edges of G to obtain a complete p-partite 
graph. In other words, if an n-vertex L-free graph G is almost extremal, min{χ(L):
L ∈ L} = p + 1, then the structure of G is close to a p-partite Turán graph. This result 
is usually called Simonovits’ stability of the extremum. Its simplest, elementary proof 
can be found in Lovász and Simonovits [20]. In Section 3 we use Szemerédi’s regularity 
to give an even simpler, more transparent proof.

Our main tool is a very simple new proof for the case L = {Kp+1} in Section 2. It was 
known that this special case implies (2), and we present an elegant way to accomplish 
this in Section 3.

Stability results are usually more important than their extremal counterparts. That 
is why there are so many investigations concerning the edit distance of graphs. Let 
G1 = (V, E1) and G2 = (V, E2) be two (finite, undirected) graphs on the same vertex set. 
The edit distance from G1 to G2 is ed(G1, G2) := |E1�E2|. Let P denote a class of graphs 
and G be a fixed graph. The edit distance from G to P is ed(G, P) = min{ed(G, F ) :
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F ∈ P, V (G) = V (F )}. After several earlier results by different researchers, this notion 
was explicitly introduced in [3]. Alon and Stav [2] proved connections with Turán theory. 
For more recent results see Martin [21].

2. How to make a Kp+1-free graph p-chromatic

Ever since Erdős [8] observed that one can always delete at most e/2 edges from any 
graph G to make it bipartite there are many generalizations and applications of this 
(see, e.g., Alon [1] for a more precise form). Here we prove a version dealing with a 
narrower class of graphs. Recall that e(Tn,p) := max{e(K(V1, . . . , Vp)) :

∑
|Vi| = n}, the 

maximum size of a p-chromatic graph.

Theorem 2. Suppose that Kp+1 
⊂ G, |V (G)| = n, t ≥ 0, and

e(G) = e(Tn,p) − t.

Then there exists an (at most) p-chromatic subgraph H0, E(H0) ⊂ E(G) such that

e(H0) ≥ e(G) − t.

Corollary 3 (Stability of ex(n, Kp+1)). Suppose that G is Kp+1-free with e(G) ≥
e(Tn,p) − t. Then there is a complete p-chromatic graph K := K(V1, . . . , Vp) with 
V (K) = V (G), such that

|E(G) � E(K)| ≤ 3t.

Proof of Corollary 3. Delete t edges of G to obtain the p-chromatic H0. Since e(H0) ≥
e(Tn,p) − 2t one can add at most 2t edges to make it a complete p-partite graph. (Here 
Vi = ∅ is allowed.) �

There are other more exact stability results, e.g., Hanson and Toft [17] showed that 
for t < �n/p
 − 1 the graph G itself is p-chromatic, there is no need to delete any edge. 
(Earlier Simonovits [25] proved this for t < n/p −Op(1).) Results of Győri [16] imply a 
stronger form, namely that e(H0) ≥ e(G) −O(t2/n2). Erdős, Győri, and Simonovits [11]
investigated dense triangle-free graphs. The advantage of our Theorem 2 is that it con-
tains no ε, δ, n0, it is true for every n, p and t.

The inequality in Corollary 3 is simple because we estimate the edit distance of G from 
a not necessarily balanced p-partite graph K. If we are interested in ed(G, Tn,p) then we 
can use the following inequality obtained by a simple calculation. If e(K((V1, . . . , Vp)) ≥
e(Tn,p) − 2t, then the sizes of Vi’s should be ‘close’ to n/p. More exactly we get 4t ≥∑

i(|Vi| − (n/p))2. Hence

ed(K,Tn,p) ≤ 2n
√

t/p . (3)
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Proof of Theorem 2. We find the large p-partite subgraph H0 ⊂ G by analyzing Erdős’ 
degree majorization algorithm [9] to prove Turán’s theorem. Our input is the Kp+1-free 
graph G and the output is a partition V1, V2, . . . , Vp of V (G) such that 

∑
i e(G|Vi) ≤ t.

Let x1 ∈ V (G) be a vertex of maximum degree and let V1 := V \N(x1), V +
1 := N(x1). 

Note that x1 ∈ V1 and deg(x) ≤ |V +
1 | for all x ∈ V1. Hence

2e(G|V1) + e(V1, V
+
1 ) =

∑
x∈V1

deg(x) ≤ |V1||V +
1 |.

In general, define V +
0 := V (G) and let xi be a vertex of maximum degree of the graph 

G|V +
i−1, let Vi := V +

i−1\N(xi), V +
i := V +

i−1∩N(xi). We have xi ∈ Vi, deg(x, V +
i−1) ≤ |V +

i |
for all x ∈ Vi and

2e(G|Vi) + e(Vi, V
+
i ) =

∑
x∈Vi

deg(x|V +
i−1) ≤ |Vi||V +

i |. (4)

The procedure stops in s steps when no more vertices left, i.e., if V1 ∪ · · · ∪ Vs = V (G). 
Note that s ≤ p because {x1, x2, . . . , xs} span a complete graph.

Add up the left hand side of (4) for 1 ≤ i ≤ s, we get e(G) + (
∑

i e(G|Vi)). The sum 
of the right hand sides is exactly e(K(V1, V2, . . . , Vs)). We obtain

e(Tn,p) − t +
(∑

i

e(G|Vi)
)

= e(G) +
(∑

i

e(G|Vi)
)

≤ e(K(V1, V2, . . . , Vp)) ≤ e(Tn,p)

implying 
∑

i e(G|Vi) ≤ t. �
Note that similar applications of Erdős’ proof appear in the literature even in hyper-

graph settings (see, e.g., Mubayi [22]).

3. An application of the Removal Lemma

We only need a simple consequence of Szemerédi’s regularity lemma [26]. Recall that 
the graph H contains a homomorphic image of F if there is a mapping ϕ : V (F ) → V (H)
such that the image of each F -edge is an H-edge. There is a homomorphism ϕ : V (F ) →
V (Ks) if and only if s ≥ χ(F ). If there is no any ϕ : V (F ) → V (H) homomorphism then 
H is called hom(F )-free.

Lemma 4 (A simple form of the Removal Lemma). For every α > 0 and graph F there 
is an n1 such that if n > n1 and G is an n-vertex, F -free graph then it contains a 
hom(F )-free subgraph H with e(H) > e(G) − αn2.

This means that H does not contain any homomorphic image of F as a subgraph, 
especially if χ(F ) = p + 1 then H is Kp+1-free. The Removal Lemma can be attributed 
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to Ruzsa and Szemerédi [24]. It appears in a more explicit form in [10] and [15]. For a 
survey of applications of Szemerédi’s regularity lemma see Komlós and Simonovits [19]
or Komlós, Shokoufandeh, Simonovits, and Szemerédi [18]. In fact, the Removal Lemma
can now be proved without the regularity lemma, with a much more reasonable bound 
on n1 in Lemma 4, see Fox [14], Conlon and Fox [5].

Proof of (2). Using Lemma 4 and Corollary 3. Suppose that F ∈ L, χ(F ) = p + 1
and α > 0 an arbitrary real. Suppose that G is F -free with n > n1(F, α) and e(G) >
e(Tn,p) −αn2. We have to show that the edit distance of G to Tn,p is small. First we claim 
that the edit distance of G to a complete p-partite graph K(V1, . . . , Vp) is at most 7αn2. 
Indeed, using the Removal Lemma we obtain a Kp+1-free subgraph H of G such that 
e(H) > e(G) −αn2 > e(Tn,p) −2αn2. Apply Theorem 2 to H we get a p-partite subgraph 
H0 with e(H0) > e(Tn,p) − 4αn2. Then Corollary 3 yields a K := K(V1, . . . , Vp) with 
ed(K, H) < 6αn2, giving ed(K, G) ≤ 7αn2.

Since e(K) ≥ e(H0) > e(Tn,p) − 4αn2, we can use (3) with t = 2αn2 to get 
ed(K, Tn,p) ≤ n2

√
8α/p. This completes the proof that ed(G, Tn,p) ≤ (7α+

√
8α/p )n2 <

(8
√
α )n2. �
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