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a b s t r a c t

There are many generalizations of the Erdős–Ko–Rado theorem.
Here the new results (and problems) concern families of t-inter-
secting k-element multisets of an n-set. We point out connections
to coding theory and geometry. We verify the conjecture that for
n ≥ t(k−t)+2 such a family can have atmost

n+k−t−1
k−t


members.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The isodiametric problem

In 1963 Mel’nikov [12] proved that the ball has the maximal volume among all sets with a given
diameter in every Banach space of finite dimension. We call the problem of finding the maximal
volume among the sets with given diameter in ametric space the isodiametric problem. Various results
have been achieved concerning the discrete versions of this problem.

Kleitman [10] as a slight generalization of a theoremof Katona [9] determined themaximal volume
among subsets with diameter of r in {0, 1}n with the Hamming distance (that is, the distance of
(x1, . . . , xn), (y1, . . . , yn) ∈ {0, 1}n is |{i ≤ n : xi ≠ yi}|) and proved that it is achieved if the subset is a
ball of radius r/2 if r is even. Ahlswede and Khachatrian [1] generalized this result to {0, 1, . . . , q−1}n
and solved the isodiametric problem for all q, n and diameter r .

Du and Kleitman [5] considered and Bollobás and Leader [3] completely solved the isodiametric
problem in [k]n with the ℓ1 distance. Here [k] := {1, 2, . . . , k} and the distance of (x1, . . . , xn),
(y1, . . . , yn) ∈ [k]n is

n
i=1 |xi − yi|.
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1.2. Erdős–Ko–Rado type theorems

Let us call a set system F intersecting if |F1 ∩ F2| ≥ 1 for all F1, F2 ∈ F . It is easy to see that the
cardinality of an intersecting set system of subsets of [n] is at most 2n−1. By restrictions on the sizes
of the subsets, the problem becomes more difficult.

Let us use the following notation

[n]
k


:= {A ⊆ [n] : |A| = k}. In the 1930’s Erdős, Ko and Rado

proved (and published in 1961) the following theorem:

Theorem 1.1 ([6]). If n ≥ 2k and F ⊆

[n]
k


intersecting then

|F | ≤


n − 1
k − 1


.

Observe that if one considers the indicator functions of subsets of [n] as elements of {0, 1}n (Ham-
ming distance and ℓ1 distance are the same in this case), then the intersecting property ofF ⊆


[n]
k


is

equivalent with the fact that the diameter of the set of the indicator functions of the elements of F is
at most 2k − 1. So as the inequality is sharp in the Erdős–Ko–Rado theorem, it solves an isodiametric
problem.

A set system F is called t-intersecting if |F1 ∩ F2| ≥ t for all F1, F2 ∈ F . Erdős, Ko and Rado also
proved in the same article that if n is large enough, every member of the largest t-intersecting family
of k-subsets of [n] contains a fixed t-element set. They did not give the optimal threshold. Frankl [7]
showed for t ≥ 15 and Wilson [13] for every t that the optimal threshold is n = (k − t + 1)(t + 1).
Finally, Ahlswede and Khachatrian [2] determined the maximal families for all values of n. For 0 ≤

t ≤ k ≤ n and 0 ≤ i ≤ k − t let

An,k,t,i := {A : A ⊆ [n], |A| = k, |A ∩ [t + 2i]| ≥ t + i}.

Theorem 1.2 ([2]). Let 0 ≤ t ≤ k ≤ n. If F ⊆

[n]
k


is t-intersecting then

|F | ≤ max
0≤i≤k−t

|An,k,t,i| =: AK(n, k, t).

This result is also a solution to an isodiametric problem.

1.3. Multiset context, definitions, notation

We think of k-multisets as choosing k elements of [n] with repetition and without ordering, so
there are

n+k−1
k


k-multisets. Let m(i, F) show how many times we chose the element i. We define

two further equivalent representations.

Definition 1.3. A multiset F of [n] is a sequence (m(1, F),m(2, F), . . . ,m(n, F)) ∈ Rn of n natural
(i.e., non-negative integer) numbers. We call m(i, F) the multiplicity of i in F ,

n
i=1 m(i, F) the

cardinality of F .
We denote the cardinality of F by |F | and we say that F is a k-multiset if |F | = k.
The intersection of two multisets G and F is a multiset defined as

(min{m(1, F),m(1,G)},min{m(2, F),m(2,G)}, . . . ,min{m(n, F),m(n,G)}).

We will use the notation M(n, k, t) := {F : F is t-intersecting family of k-multisets of [n]}.

If it does not cause any misunderstanding to simplify notations we use the same letter F for a
multiset from


[n]
k


and the corresponding vector from Rn. For example F = (3, 1, 2, 0, 0), G =

(2, 2, 0, 1, 1) and F ∩ G = (2, 1, 0, 0, 0) with vector notation if F = {a, a, a, b, c, c} and G =

{a, a, b, b, d, e} are 6-multisets of a five element set {a, b, c, d, e} (and F ∩ G = {a, a, b}).
By definition the k-multisets of [n] lie on the intersection of {0, 1, . . . , k}n and the hyperplanen
i=1 xi = k. Concerning cardinality of F ∩ Gwe have
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|F ∩ G| =

n
i=1

min{m(i, F),m(i,G)}

=

n
i=1

1
2
(m(i, F)+ m(i,G)− |m(i, F)− m(i,G)|) = k −

1
2
dℓ1(F ,G),

where dℓ1 denotes the ℓ1 distance. This implies that a lower bound on the cardinality of the inter-
section of two elements gives an upper bound on their ℓ1 distance. So again, an upper bound on the
cardinality of a t-intersecting family of k-multisets gives a result for an isodiametric problem (in the
metric space of the intersection of a hyperplane and {0, 1, . . . , k}n).

We give a third representation of multisets, which wewill usemost in the proofs of our results. Let
n and ℓ be positive integers and letM(n, ℓ) := {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ ℓ} be a ℓ×n rectangle with
ℓ rows and n columns. Due to practical reasons we changed the ‘usual’ indexing of rows and columns.
We call A ⊆ M(n, ℓ) a k-multiset if the cardinality of A is k and (i, j) ∈ A implies (i, j′) ∈ A for all j′ ≤ j.
Certainlym(i, F) = max{s : (i, s) ∈ F} gives the equivalence with our original vector definition.

1.4. The history of t-intersecting k-multisets

Brockman and Kay [4] stated the following conjecture:

Conjecture 1.4 ([4], Conjecture 5.2). There is an n0(k, t) such that if n ≥ n0(k, t) and F ∈ M(n, k, t),
then

|F | ≤


n + k − t − 1

k − t


.

Furthermore, equality is achieved if and only if each member of F contains a fixed t-multiset of
M(n, k).

Meagher and Purdy [11] answered the case t = 1.

Theorem 1.5 ([11]). If n ≥ k + 1 and F ∈ M(n, k, 1), then

|F | ≤


n + k − 2
k − 1


.

If n > k + 1, then equality holds if and only if all members of F contain a fixed element of M(n, k).

They also gave a possible candidate for the threshold n0(k, t).

Conjecture 1.6 ([11], Conjecture 4.1). Let k, n and t be positive integers with t ≤ k, t(k − t) + 2 ≤ n
and F ∈ M(n, k, t), then

|F | ≤


n + k − t − 1

k − t


.

Moreover, if n > t(k − t) + 2, then equality holds if and only if all members of F contain a fixed
t-multiset of M(n, k).

If n < t(k−t)+2, then the family consisting of allmultisets ofM(n, k) containing a fixed t-multiset
of M(n, k) still has cardinality

n+k−t−1
k−t


, but it cannot be the largest one for n ≥ t + 2. Indeed, if we

fix a (t + 2)-element set T and consider the family of the multisets F with |F ∩ T | ≥ t + 1, we get a
larger family.

1.5. The main result: extremal families have kernels

Amultiset T is called a t-kernel of the multiset family F if |F1 ∩ F2 ∩ T | ≥ t holds for all F1, F2 ∈ F .
Obviously such a family F is t-intersecting. Conjecture 1.4 claims that an extremal F ∈ M(n, k, t)
has a t element kernel, whenever n is large. We will show that the general situation is more complex
and determine the size of the maximal t-intersecting families for all n ≥ 2k − t .
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The main idea of our proof is the following: instead of the well-known left-compression operation,
which is a usual method in the theory of intersecting families, we define (in two different ways) an
operation f on M(n, k, t)which can be called a kind of down-compression.

Theorem 1.7. Let 1 ≤ t ≤ k, 2k − t ≤ n be arbitrary. There exists a function

f : M(n, k, t) → M(n, k, t)

satisfying the following properties:
(i) |F | = |f (F )| for all F ∈ M(n, k, t),
(ii)M(n, 1) is a t-kernel for f (F ).

Using Theorem 1.7we prove the following theoremwhich not only verifies Conjecture 1.6, but also
gives the maximum cardinality of t-intersecting families of multisets even in the case 2k − t ≤ n <
t(k − t)+ 2.

Theorem 1.8. Let 1 ≤ t ≤ k and 2k − t ≤ n. If F ∈ M(n, k, t) then

|F | ≤ AK(n + k − 1, k, t),

where the AK function is defined in Theorem 1.2.

Beside proving Theorem 1.8 our aim is to present the most powerful techniques of extremal
hypergraph theory, namely the kernel and the shifting methods.

1.6. A warm up before the proofs

In this subsectionwe verify Conjecture 1.4 for very large n by applying the kernel method of Hajnal
and Rothschild [8]. Let T be a t-multiset. For any family F let FT := {F ∈ F : T ⊆ F}.

Lemma 1.9. Let F be a t-intersecting family of k-multisets and T be an arbitrary t-multiset. Then either
FT = F or |FT | = On(nk−t−1).

Proof. IfFT ≠ F , then there is amultiset F ∈ F which does not contain T , hence |F∩T | ≤ t−1. Every
member of FT contains T , one element of F \ T , and at most k − t − 1 further elements. The element
of F \ T can be chosen less than kways, and the other k− t − 1 elements have to be chosen out of the
nk elements of the rectangleM(n, k). There are at most k×

 nk
k−t−1


= On(nk−t−1)ways to do that. �

Corollary 1.10 (Conjecture 1.4). There is n0(k, t) such that if n ≥ n0(k, t) and F ∈ M(n, k, t), then

|F | ≤


n + k − t − 1

k − t


.

Furthermore, equality is achieved if and only if each member of F contains a fixed t element multiset.

Proof. Let F ∈ M(n, k, t) of maximum cardinality. If FT = F for a t-multiset T , the statement
follows. If not, then let us fix an F ∈ F . Every member of F contains a t-multiset which is also
contained in F , hence


{FT : T ⊂ F , |T | = t} = F . Thus |F | ≤


T⊂F ,|T |=t |FT |. By Lemma 1.9

|FT | = On(nk−t−1), and there are
k
t


members of the sum, hence |F | ≤

k
t


On(nk−t−1) <

n+k−t−1
k−t


if

n is large enough. �

To prove Conjecture 1.6 at first we applied a straight-forward generalization of the usual shifting.
However, we could not give a threshold below Ω(kt log k) using this method. Still we believe it is
worth mentioning, as it might be useful solving other related problems.

Suppose that F ⊆ M(n, ℓ) is a k-multiset such that m(i, F) < m(j, F) for some i < j. Let F ′ be
obtained by exchanging columns i and j, i.e.,

F ′
:= (F \ {(j,m(i, F)+ 1), . . . , (j,m(j, F))}) ∪ {(i,m(i, F)+ 1), . . . , (i,m(j, F))}.



228 Z. Füredi et al. / European Journal of Combinatorics 48 (2015) 224–233

Let F ∈ M(n, k, t). Define ci,j(F) for each F ∈ F as follows.

ci,j(F) :=


F ′ ifm(F , j)− m(F , i) > 0 and F ′

∉ F ,
F otherwise.

Let us use the following notation: ci,j(F ) = {ci,j(F) : F ∈ F }. Note that this is the same as the
well-known shifting operation on subsets of [n].

Lemma 1.11. ci,j(F ) ∈ M(n, k, t) for F ∈ M(n, k, t).

Proof. If both or neither of ci,j(F1) and ci,j(F2) are members of F , then |ci,j(F1) ∩ ci,j(F2)| = |F1 ∩ F2|
and this intersection has size at least t . From now on, we can assume ci,j(F1) = F ′

1 ∉ F and
ci,j(F2) = F2 ∈ F .

Case 1:m(F2, i) < m(F2, j). Since ci,j(F2) = F2, thismeans that F ′

2 ∈ F . Then |F ′

1∩F2| = |F ′

2∩F1| ≥ t .

Case 2:m(F2, i) ≥ m(F2, j). We know thatm(F1, i) ≤ m(F1, j).
Let x be the cardinality of the intersection of F1 and F2 in the complement of the union of the ith

and jth column. We have

|F1 ∩ F2| = x + min{m(F2, i),m(F1, i)} + min{m(F2, j),m(F1, j)} ≥ t and
|ci,j(F1) ∩ ci,j(F2)| = x + min{m(F2, i),m(F1, j)} + min{m(F2, j),m(F1, i)}.

Apply the following inequality (1) below with a = m(F2, i), b = m(F2, j), c = m(F1, j), and
d = m(F1, i) to obtain |ci,j(F1)∩ ci,j(F2)| ≥ |F1 ∩ F2| ≥ t . This completes the proof of Lemma 1.11. �

If a ≥ b and c ≥ d reals then

min{a, c} + min{b, d} ≥ min{a, d} + min{b, c}. (1)

This inequality can be easily checked by listing all the 6 possible orderings of {a, b, c, d}. For example,
for a ≥ c ≥ d ≥ b the left hand side is c + b and the right hand side is d + b. �

Remark. It is worthmentioning that there is an evenmore straightforward generalization of shifting,
when we just decrease the multiplicity in column j by one and increase it in column i by one. Let
F ′

:= F ∪ {(i,m(i, F))+ 1} \ {(j,m(j, F))}, and

c ′

i,j(F) :=


F ′ ifm(j, F) > m(i, F) and F ′

∉ F ,
F otherwise.

But this operation does not necessarily preserve the t-intersecting property. However, if we apply
our shifting operation to a maximum t-intersecting family and for every pair (i, j), the resulting
family will be also shifted according to this second kind of shifting, meaning that applying this second
operation does not change the family.

After applying ci,j for every pair i, j, the resulting shifted family has several different t-kernels. For
example the union of two rectangles ⌊t1/2⌋ × (2k − t) ∪ t × ⌈

2k
t1/2

⌉ (more precisely its intersection
with M(n, l)) is a t-kernel. Another t-kernel is the subset of M(n, l)where the members (x, y) satisfy
yx ≤ k, x ≤ 2k − t, y ≤ k, x, y ≥ 0.

Using these t-kernels and some algebra, we achieved that n0(k, t) = O(kt log k). To lower this
threshold we had to develop the down-compression techniques described in the next section.

2. Proofs of Theorem 1.7

Both methods described below have underlying geometric ideas, it is a kind of discrete, tilted
version of symmetrizing a set with respect to the hyperplane xi = xj.

2.1. A constructive proof

First proof of Theorem 1.7.
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We will consider multisets which contain almost exactly the same elements, they differ only in
two columns. More precisely, we are interested in multisets whose symmetric difference is a subset
of {(i, j) : 1 ≤ j ≤ k} ∪ {(i′, j) : 1 ≤ j ≤ k} with i ≠ i′. If we are given two such multisets, we can
consider the two columns together, one going from k to 1 and the other going from 1 to k. This way
the restriction of twomultisets to these columns form a subinterval of an interval of length 2k (where
interval means set of consecutive integers). Hence we examine families of intervals.

2.1.1. A lemma about interval systems
Let X := {1, . . . , 2k}. Let Y ⊂ X be an interval and p be an integer with p ≤ |Y |, then we define a

family of intervals I(p, Y ) to be all the p-element subintervals of Y and let I := {I(p, Y )}.
We consider a shifted version, where the intervals are pushed to the middle. Let

ϕ(Y ) := {k − ⌊|Y |/2⌋, . . . , k + ⌈|Y |/2⌉ − 1} and ϕ(I(p, Y )) := I(p, ϕ(Y )).

We will show that this operation does not decrease the size of the intersection of two families in I.
Let

d(I(p, Y ), I(q, Y ′)) := min{|J ∩ J ′| : J ∈ I(p, Y ), J ′ ∈ I(q, Y ′)}.

Lemma 2.1. d(I(p, ϕ(Y )), I(q, ϕ(Y ′))) ≥ d(I(p, Y ), I(q, Y ′)) for all possible p, q, Y and Y ′.

Proof. Obviously the smallest intersection is the intersection of the first interval in one of the families
and the last interval in the other family. As the length of the intervals are always p and q, the only thing
thatmatters is the difference between the starting and ending points ofϕ(Y ) andϕ(Y ′).More precisely
we want to minimize the largest of y = maxϕ(Y ) − minϕ(Y ′) and y′

= maxϕ(Y ′) − minϕ(Y ). As
maxϕ(Y ) − minϕ(Y ) = |Y | − 1 and maxϕ(Y ′) − minϕ(Y ′) = |Y ′

| − 1, we know that y + y′ is
constant, hence we get the minimum if y and y′ is as close as possible. One can easily see that our
shifted system gives this. �

2.1.2. Interval systems and families of multisets
Now to apply the method of the previous subsection, we fix n − 2 coordinates, i.e., we are given

1 ≤ i < j ≤ n, g : ([n] \ {i, j}) → [1, k] and let

Fg := {F ∈ F : m(r, F) = g(r) for every r ≠ i, j}.

It impliesm(i, F)+ m(j, F) is the same number s := s(g) for every member F ∈ Fg .
Let us consider now the case F is maximal, i.e., no k-multiset can be added to it without violating

the t-intersecting property. We show that it implies that the integers m(i, F) are consecutive for
F ∈ Fg . Let mi := min{m(i, F) : F ∈ Fg} and Mi := max{m(i, F) : F ∈ Fg}. We define mj and
Mj similarly. Let us consider a set F ∉ F which satisfies m(r, F) = g(r) for all r ≠ i, j and also
mi ≤ m(i, F) ≤ Mi, and consequently mj ≤ m(j, F) ≤ Mj. It is easy to see that F can be added to F
without violating the t-intersecting property (and then it belongs to Fg ).

Now we give a bijection between these type of families and interval systems. We lay down both
columns, such that column i starts at its top, and column j start at its bottom. Then move them next
to each other to form an interval. More precisely let Ψi,j((i, u)) = k − u + 1 and Ψi,j((j, u)) = k + u.
We omit indices i and j for the sake of simplicity, and denote the function Ψi,j by Ψ . For a multiset
F let Ψ (F) = {Ψ ((i, u)) : (i, u) ∈ F} ∪ {Ψ ((j, u)) : (j, u) ∈ F} and for a family of multisets F let
Ψ (F ) = {Ψ (F) : F ∈ F }.

We show that Ψ (Fg) ∈ I. It is obvious that Ψ (F) is an interval for any multiset F , and that the
length of those intervals is the same number (more precisely s) for every member F ∈ Fg . We need
to show that the intervals Ψ (F) (where F ∈ Fg ) are all the subintervals of an interval Y . It is enough
to show that the starting points of these intervals are consecutive integers. The starting points of the
intervals Ψ (F) are Ψ ((i,m(i, F))), and it is easy to see that they are consecutive if and only if m(i, F)
are consecutive.

Since Ψ is a bijection, an interval system also defines a family in the two columns i and j. Let
us examine what family we get after applying operation ϕ from the previous section, i.e., what
F ′

= Ψ−1(ϕ(Ψ (Fg))) is. Obviously it is a family of s-multisets with the same cardinality as Fg .
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Simple calculations show that they are the s-multisets with m(i, F) ≤ ⌊(mi + Mj)/2⌋ + 1 and
m(j, F) ≤ ⌈(mi + Mj)/2⌉ − 1.

2.1.3. The construction of f
Let ψ(Fg) = Ψ−1(ϕ(Ψ (Fg))), i.e., the family we get from Fg by keeping everything in the other

n − 2 columns, but making it balanced in the columns i and j in the following sense. It contains all
the k-multisets where m(i, F) ≤ ⌊(mi + Mj)/2⌋ + 1, m(j, F) ≤ ⌈(mi + Mj)/2⌉ − 1 and the other
coordinates are given by g .

Now let us recall that i and j are fixed. Let Gi,j be the set of every g : ([n] \ {i, j}) → [1, k], i.e., every
possible way to fix the other n− 2 coordinates. Clearly F = ∪{Fg : g ∈ Gi,j} and they are all disjoint.
Let ψi,j(F ) denote the result of applying the appropriate ψ operation for every g at the same time,
i.e., ψi,j(F ) = ∪{ψ(Fg) : g ∈ Gi,j}.

Lemma 2.2. If F is t-intersecting, then ψi,j(F ) is t-intersecting.

Proof. Suppose there are F1, F2 ∈ ψi,j(F )with |F1 ∩ F2| < t . Let F1 ∈ ψi,j(Fg1) and F2 ∈ ψi,j(Fg2). Let
Ψ (Fg1) = I(p1, Y1) and Ψ (Fg2) = I(p2, Y2). Then Ψ (ψi,j(Fg1)) = ϕ(I(p1, Y1)) and Ψ (ψi,j(Fg2)) =

ϕ(I(p2, Y2)). It is important to see that Ψ is defined on the elements of M(n, k) such a way that the
size of the intersection is the same after applying Ψ .

By Lemma 2.1 d(I(p1, ϕ(Y1)), I(p2, ϕ(Y2))) ≥ d(I(p1, Y1), I(p2, Y2)), which means that there is
a member of Fg1 and a member of Fg2 such that their intersection has size at most the size of the
smallest intersection between members of ψi,j(Fg1), which is less than t , a contradiction.

Note that the result is clear if g1 is equal to g2. �

In the next lemma we give a non-negative integer function, that decreases when the family of
multisets changes after applyingψi,j. Which means that our process will finish in finitely many steps.

Lemma 2.3. If ψi,j(F ) ≠ F then
F ′∈ψi,j(F )


|F |nk2


i∈[n]

(m(i, F ′))2 +


i∈[n]

i(m(i, F ′))


<

F∈F


|F |nk2


i∈[n]

(m(i, F))2 +


i∈[n]

i(m(i, F))

. (2)

Sketch of the proof of Lemma 2.3. We know that after applying ψi,j we have
F ′∈ψi,j(F )


i∈[n]

m(i, F ′)2 ≤


F∈F


i∈[n]

m(i, F)2 (3)

by symmetrization. If the left hand side in (3) is less than the right hand side, then we are done, since
the coefficient of these terms is so big in (2), that the left hand side of (2) will be less than the right
hand side of it.

If the left hand side and the right hand side of (3) are equal, then using the property of the
symmetrization, that if i < j, then ψi,j(F ) contains all multisets with m(i, F) ≤ ⌊(mi + Mj)/2⌋ + 1
and m(j, F) ≤ ⌈(mi + Mj)/2⌉ − 1 so by ⌊(mi + Mj)/2⌋ + 1 > ⌈(mi + Mj)/2⌉ − 1 we have that

F ′∈ψi,j(F )


i∈[n]

im(i, F ′) <

F∈F


i∈[n]

im(i, F).

So we are done with Lemma 2.3. �

Nowwe are ready to define f (F ). If there is a pair (i, j) such thatψi,j(F ) ≠ F , let us replace F by
ψi,j(F ), and repeat this step. Lemma 2.3 implies that it can be done only finitelymany times, after that
we arrive to a family F ′ such that ψi,j(F

′) = F ′ for every pair (i, j). This family is denoted by f (F ).
We would like to prove that f satisfies Theorem 1.7(ii). This step is the only point we use that

n ≥ 2k − t .
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Lemma 2.4. |F1 ∩ F2 ∩ M(n, 1)| ≥ t for all F1, F2 ∈ f (F ).
Proof. We argue by contradiction. Let us choose F1 and F2 such a way that |F1 ∩ F2 ∩ M(n, 1)| is
the smallest (definitely less than t), and among those |F1 ∩ F2| is the smallest (definitely at least
t). Then there is a coordinate where both F1 and F2 have at least 2, and this implies there is an
other coordinate, where both have 0, as 2k − t ≤ n. More precisely, there is an i ≤ n with
2 ≤ min{m(i, F1),m(i, F2)} and a j ≤ n with m(j, F1) = m(j, F2) = 0. Let F ′

1 be defined the following
way:m(j, F ′

1) = 1,m(i, F ′

1) = m(i, F1)−1 andm(s, F ′

1) = m(s, F1) for s ≤ n, s ≠ i, j. One can easily see
that F ′

1 ∈ ψi,j(f (F )) = f (F ). However, |F ′

1∩F2| < |F1∩F2| and |F ′

1∩F2∩M(n, 1)| = |F1∩F2∩M(n, 1)|,
a contradiction. �

To finish the proof of Theorem 1.7 we have to deal with the case F is not maximal (even though it
is not needed in order to prove Theorem 1.8). For sake of brevity here we just give a sketch.

Note thatΨ can be similarly defined in this case. Themain difference is that the resulting family of
intervals is not in I, as it does not contain all the subintervals of an interval. Also note that ϕ(I(p, Y ))
is determined by the number and length of the intervals in I(p, Y ). Using this we can extend the
definition of ϕ to any family of intervals. This way we can define ψi,j as well. What happens is that
besides being more balanced in the columns i and j, the multisets in Fg are also pushed closer to each
other. Hence one can easily see that the intersections cannot be smaller in this case, which finishes
the proof of Theorem 1.7.

So we are done with the first proof of Theorem 1.7. �

2.2. A less constructive, second proof of Theorem 1.7

Proof. For F ∈ F ∈ M(n, k, t), 1 ≤ i, j ≤ n and 1 ≤ s ≤ k, if s ≤ m(i, F) then let

F ′
:= F \ (∪s≤t≤m(i,F)(i, t))


(∪1≤l≤m(i,F)−s+1(j, l)).

Using this notation we define a shifting operation.

Definition 2.5. For F ∈ F ∈ M(n, k, t), 1 ≤ i, j ≤ n and 1 ≤ s ≤ k let

S((i, s), j)(F) :=


F ′ if (j, 1) ∉ F , F ′

∉ F and F ′ is defined,
F otherwise.

For F ∈ M(n, k, t) let S((i, s), j)(F ) := {S((i, s), j)(F) : F ∈ F }.
Now we prove that an operation defined in Definition 2.5 with special choice of s preserves the

t-intersection property of F . For F ∈ M(n, k, t) let K(F ) be the set of t-kernels of F which contain
M(n, 1) and are multisets.

Lemma 2.6. Suppose that 1 ≤ i, j ≤ n, F ∈ M(n, k, t) and T ∈ K(F ). Then and T ∈

K(S((i,m(i, T )), j)(F )).
Proof of Lemma 2.6. It is easy to see that the elements of S((i,m(i, T )), j)(F ) are multisets of
cardinality k. So we only have to prove that S((i,m(i, T )), j)(F ) is t-intersecting and T ∈

K(S((i,m(i, T )), j)(F )).
Choose two arbitrary members of F ,G ∈ F .
If both S((i,m(i, T )), j)(F) and S((i,m(i, T )), j)(G) are elements of F , then we are easily done.
If neither S((i,m(i, T )), j)(F) nor S((i,m(i, T )), j)(G) are elements of F , then we use the special

choice of s in Definition 2.5, i.e., s = m(i, T ). By this we have that

|(∪m(i,T )≤t≤m(i,F)(i, t)) ∩ F ∩ G| = 1.

However also by Definition 2.5 we have that (j, 1) ∉ F ∪ G and (j, 1) ∈ S((i,m(i, T )), j)(F) ∩

S((i,m(i, T )), j)(G) and since elements of K(F ) contains M(n, 1), so in this case we are done with
Lemma 2.6.

To finish the proof without loss of generality we can assume that S((i,m(i, T )), j)(F) ∉ F and
S((i,m(i, T )), j)(G) ∈ F . By this we know that either m(i, T ) ≤ m(i,G) and (j, 1) ∈ G or m(i,G) <
m(i, T ).
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If m(i, T ) ≤ m(i,G) and (j, 1) ∈ G, then we are done with Lemma 2.6 similarly as in the previous
case.

If m(i,G) < m(i, T ), then we have

|(∪m(i,T )≤t≤m(i,F)(i, t)) ∩ F ∩ G| = 0.

So in this case we are trivially done with Lemma 2.6.
We finished the proof of Lemma 2.6. �

For T ∈ K(F ) let T>1 := T \ M(n, 1). Now we define an operation (F ’) on M(n, k, t) such that
min{|T>1| : T ∈ K(F )} > min{|T>1| : T ∈ K(F ′)} for any F ∈ M(n, k, t) with min{|T>1| : T ∈

K(F )} > 0.
Choose anyF ∈ M(n, k, t), T ∈ K(F ) satisfying |T>1| > 0 and let us apply S((i,m(i, T )), 1) onF ,

then S((i,m(i, T )), 2) on the resulting family, and so on. Let F ′ be the resulting family after applying
S((i,m(i, T )), n), i.e.,

F ′
:= S((i,m(i, T )), n)[. . . .[S((i,m(i, T )), 2)[S((i,m(i, T )), 1)(F )]] . . .].

Lemma 2.7. Let F ∈ M(n, k, t), T ∈ K(F ) satisfying |T>1| > 0 and let 1 ≤ i ≤ n, 2 ≤ m(i, T ). Then
we have:
(i) F ′

∈ M(n, k, t) and |F | = |F ′
|,

(ii) (T \ (i,m(i, T ))) ∈ K(F ′).
Proof. We start by proving (i).

The facts that S((i,m(i, T )), n)[. . . .[S((i,m(i, T )), 2)[S((i,m(i, T )), 1)(F)]] . . .] ⊆ M(n, k), has
cardinality k for any F ∈ F and that |F ′

| = |F |, are trivial. The proof that F ′ is t-
intersecting is an easy consequence of applying Lemma 2.6 n times and using that T ∈

K(S((i,m(i, T )), n)[. . . .[S((i,m(i, T )), 2)[S((i,m(i, T )), 1)(F)]] . . .]).
It is enough to prove that S((i,m(i, T )), 1)(F ) is t-intersecting and that T is a t-kernel for the new

family, i.e., T ∈ K(S((i,m(i, T )), 1)(F )), since repeatedly applying this fact we will get the claim.

We are done with the proof of (i) of Lemma 2.7.
Now we prove (ii):
Choose F ,G ∈ F and let us use the following notation:

S(F) := S((i,m(i, T )), n)[. . . .[S((i,m(i, T )), 2)[S((i,m(i, T )), 1)(F)]] . . .] and
S(G) := S((i,m(i, T )), n)[. . . .[S((i,m(i, T )), 2)[S((i,m(i, T )), 1)(G)]] . . .].

Now we have to prove that

|S(F) ∩ S(G) ∩ (T \ (i,m(i, T )))| ≥ t.

If S(F) ≠ F or S(G) ≠ G, then we are done similarly as in the previous claim using the fact that
(i,m(i, T )) ∉ S(F) ∩ S(G).

If S(F) = F and S(G) = G, then
(a) if (i,m(i, T )) ∉ F ∩ G we are easily done,
(b) if (i,m(i, T )) ∈ F ∩ G then since 2 ≤ m(i, T ) and 2k − t ≤ n, there is j ≤ nwith (j, 1) ∉ F ∪ G.

However as we have S(F) = F and S(G) = G now, S((i,m(i, T )), j)(F) ∈ F , so

t ≤ |S((i,m(i, T )), j)(F) ∩ G ∩ T | = |F ∩ G ∩ (T \ (i,m(i, T )))|.

We are done with the proof of Lemma 2.7. �

To finish the proof of Theorem 1.7, note that by Lemma 2.7 for any F ∈ M(n, k, t) there will be
a smallest natural number ℓ such that after applying the operation before Lemma 2.6 ℓ times on F
repeatedly, we get a family such thatM(n, 1) is a t-kernel of it. Let us define f (F ) to be this family.

We are done with the second proof of Theorem 1.7. �

3. Proof of Theorem 1.8

Let Gs := {F ∩ M(n, 1) : F ∈ f (F ), |F ∩ M(n, 1)| = s}. Let us consider G ∈ Gs and examine the
number of multisets F ∈ F with G = F ∩ M(n, 1). Obviously k − s further elements belong to F , and
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they are in the same s columns, they can be chosen at most
s+(k−s−1)

k−s


ways. Then we know that

|F | = |f (F )| ≤

k
s=t

|Gs|


s + (k − s − 1)

k − s


=

k
s=t

|Gs|


k − 1
k − s


.

Now consider a family F ′ of sets on an underlying set of size n + k − 1. Let it be the same on the
first n-elements as f (F ) inM(n, 1), and extend every s-element set there with all the (k− s)-element
subsets of the remaining k − 1 elements of the underlying set. It can happen

k−1
k−s


ways, thus the

cardinality of this family is the right hand side of the above inequality.
Note that F ′ is t-intersecting, hence its cardinality is at most AK(n+ k− 1, k, t), which completes

the proof of Theorem 1.8.

4. Concluding remarks

Note that the bound given in Theorem 1.8 is sharp. Using a family An+k−1,k,t,i we can define an
optimal t-intersecting family of k-multisets in M(n, k). However, we do not know any nontrivial
bounds in case of n < 2k − t .

After repeateddown-shiftingweget a following structure theorem. Let ei ∈ Rn denote the standard
unit vector with 1 in its ith coordinate.

Lemma 4.1 (Stable Extremal Families). There exists a family F ∈ M(n, ℓ, k, t) of maximum cardinality
satisfying the following two properties:
(i) ∀i ≠ j and F ∈ F ,m(i, F)+ 1 < m(j, F) imply that (F − ej + ei) ∈ F , too, and
(ii) the same holds if i < j and m(i, F)+ 1 ≤ m(j, F).

Knowing the structure of F might help to determine max |F | for all n.
The original Erdős–Ko–Rado theorem (Theorem1.1) concerns themaximumsize of an independent

set in the Kneser graph. A powerful method to estimate the size of an independent set was developed
by Lovász. Indeed, Wilson [13] extended the Erdős–Ko–Rado theorem by determining the Shannon
capacity of the generalized Kneser graph. It would be interesting if his ideas were usable for the
multiset case, too.
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