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Abstract. Let X be an n—element finite set, 0 < k < n/2 an integer. Suppose
that {A1, A} and {Bq, By} are pairs of disjoint k-element subsets of X (that is,
|A1] = |Az| = |B1| = |B2| =k, A{NAy =0, By N By = ). Define the distance
of these pairs by d({A, Az}, {B1, Bo}) = min{|A; — By| + |Ay — By, |A] —
By| + | Ay — Bpl}. This is the minimum number of elements of A; U A, one has
to move to obtain the other pair {B}, By}. Let C(n, k, d) be the maximum size of
a family of pairs of disjoint k-subsets, such that the distance of any two pairs is at
least d.

Here we establish a conjecture of Brightwell and Katona concerning an asymp-
totic formula for C (n, k, d) for k, d are fixed and n — oo. Also, we find the exact
value of C(n, k, d) in an infinite number of cases, by using special difference sets
of integers. Finally, the questions discussed above are put into a more general
context and a number of coding theory type problems are proposed.

1 The transportation distance

Let X be a finite set of n elements. When it is convenient we identify
it with the set [n] := {1, 2, ..., n}. The family of the k-sets of an un-
derlying set X is denoted by ({). For 0 < k < n/2 let ) be the fam-
ily of unordered disjoint pairs {A;, A,} of k-element subsets of X (that
is, |A1] = |Az] = k, Ay N Ay = ). The transportation distance or
Enomoto-Katona distance d on Y is defined by

d({A1, Az}, {B1, B2})

. (L.1)
=min{|A; — Bi| + |Ay — Bz|, |A| — Bao| + [|Ay — Byl}.
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In fact, this is an instance of a more general notion. Whenever (Z, p) is
a metric space, we can define a metric p® on Z©®, the set of unordered
s-tuples from Z, by

PV x b s D) = min 2,)@,., o). (12)
1=

It is not hard to verify that p*® satisfies the triangle inequality, i.e., it
really is a metric. The transportation distance defined above is obtained
by taking s = 2, Z to be the set of k-elements subsets of X and p is half
of their symmetric difference.

The minimization problem (1.2) (where p can be an arbitrary metric) is
one of the fundamental combinatorial optimization problems, a so called
assignment problem, a special case of a more general Monge-Kantorovich
transportation problem (see, e.g.., the monograph [18]).

The transportation distance between finite sets of the same cardinalities
is one of the interesting measurements among many different ways to
define how two sets differ from each other. In [1], Ajtai, Komldés and
Tusnady considered the assignment problem from a different perspective,
and determined with high probability the transportation distance between
two sets of points randomly chosen in a unit square.

Since the transportation distance is an important notion, especially
from the algorithmic point of view, there are monographs and graduate
texts about this topic, see, e.g.., [18]. It is also mentioned in the Encyclo-
pedia of Distances [5] as the “KMMW metric” (page 245 in Chapter 14)
or as the “c-transportation distance”. Nevertheless, many combinatorial
problems are still unsolved. The packing of sets in spherical spaces with
large transportation distance will be discussed in [8].

2 Packings and codes

Given a metric space (Z, p) and a distance & > 0, the packing num-
ber §(Z,> h) is the maximum number of elements in Z with pairwise
distance at least /.

A (v, k, t) packing P C ([Z]) is a family of k-sets with pairwise inter-
sections at most # —1 (here v > k > ¢ > 1). In other words, every 7-subset
is covered at most once. Its maximum size is denoted by P (v, k, t). Ob-

viously,
P.k.1) < C) / (f) . 2.1)

If here equality holds then P is called a Steiner system S(v, k, ), or a
t-design of parameters v, k, t and A = 1 (for more definitions concerning
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symmetric combinatorial structures esp., difference sets, etc. see, e.g..,
the monograph by Hall [10]). More generally, for a set K of integers,
a family P on v elements is called a (v, K, #)-design (packing) if every
t-subset of [v] is contained in exactly one (at most one) member of P and
|P| € K forevery P € P.

Determining the packing number is a central problem of Coding The-
ory, it is essentially the same problem as finding the rate of a large-
distance error-correcting code.

If equality holds in (2.1) then every i-subset of [v] is contained in
(=H)/(*=1)y members of P fori = 0,1,...,¢ — 1. We say that v, k,
and ¢ satisfy the divisibility conditions if these t fractions are integers. It
was recently proved by Keevash [13] that for any given k and ¢ there ex-
ists a bound vy (k, t) such that these trivial necessary conditions are also
sufficient for the existence of a 7-design.

An S(v, k, t) exists if v, k, and ¢ satisfy 22)
the divisibility conditions and v > vy (k, ). '

This implies Rodl’s theorem [17], that for given k£ and ¢ as v — o0
v k
P(v,k,t) = (1 +0(1)) (t)/(t)- (2.3)

Even more, (2.2) implies that here the error term is only O(v'~!). The
case ¢ = 2 was proved much earlier by Wilson [19]. For this case he also
proved the following more general version. For a finite K there exists a
bound vy (K, 2) such that for v > vy(K, 2)

a (v, K, 2) design exists if v and K satisfy 2.4)
the generalized divisibility conditions, '

namely,g.c.d.((’ﬁ) :k € K)divides (5) and g.c.d.(k—1 : k € K) divides
v—1.

3 Packing pairs of subsets

In this paper, we concentrate on the space ) of pairs of disjoint k-subsets.
We say that a set C C Y of such pairs is a 2-(n, k, d)—code if the distance
of any two elements is at least d. Let C(n, k, d) be the maximum size
of a 2-(n, k, d)-code. Enomoto and Katona in [6] proposed the prob-
lem of determining C(n, k, d). For the origin of the problem see [4].
Connections to Hamilton cycles in the Kneser graph K (n, k) are dis-
cussed in [12]. The problem makes sense only when d < 2k < n.
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It is obvious, that a maximal 2-(n, k, 1) code consists of all the pairs,
Cn,k, 1) =) = %(Z)(”;k). A 2-(n, k, 2k) code consists of mutually
disjoint k-sets, hance C(n, k, 2k) = |n/2k].

In Section 5 we present a method for the determination the exact value
of C(n, k, 2k — 1) for infinitely many n. However, we were able to com-
plete the cases k = 2, 3 only, the cases of pairs and triple systems.

Theorem 3.1. Ifn = 1 mod 8 and n > ng then C(n, 2, 3) = "=,

Ifn=1,19 mod 342 and n > ny then C(n, 3,5) = %

The following theorem was proved in [2]. Let d < 2k < n be integers.
Then

1 nn—1)---(n—2k+d)

C(n,k,d) < = :
(n. &, )52k(k—l)---(%}-k(k—l)---L%J

(3.1

Quisdorff [16] gave a new proof and using ideas from classical coding
theory he significantly improved the upper bound for small values of n
(for n < 4k). For completeness, in Section 6 we reprove (3.1) in an even
more streamlined way.

Concerning larger values of n one can build a 2-(n, k, d) code from
smaller ones using the following observation. If [(A;UA;)N(B1UBy)| <
2k — d holds for the disjoint pairs {A;, A} € YV, {By, B»} € ) then
d({Ai1, Az}, {B1, By}) > d. Take a (2k —d + 1)-packing P on n elements
and choose a 2-(| P|, k, d)-code on each members P € P. We obtain

Y C(P|k,d) < C(n,k,d). (32)
PeP
This gives
P(n,p,2k—d+1)C(p,k,d) <C(n,k,d). 3.3)

Fix p (and k, ¢ and d) then RodI’s theorem (2.3) gives

—1
n p
(1+o(1)) <2k s 1) (Zk s 1) C(p,k,d) < C(n, k,d).

Rearranging we get, that the sequence C(n, k, d)/(x_'q41) is essentially
nondecreasing in n, for any fixed p (and k, ¢ and d)

p

C(p’k’d)/(zk—d+l

) =asomcamrar(y " ).
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Since, obviously, C (2k,k,d) > 1 we obtain that lim C(n,k,d)/(% ly11)
n—>0oo

exists, it is positive, it equals to its supremum, and finite by (3.1).
It was conjectured ([2], Conjecture 8) that the upper estimate (3.1) is
asymptotically sharp. We prove this conjecture in Section 7.

Theorem 3.2.

. Cn,k,d) 1 1
Iim =

nooo p2k—d+1 _5k(k—l)m[%W'k(k—l)mL%J'

4 The case d = 2, the exact values of C(n, k, 2)

Besides the cases mentioned in the previous Section (the cases d = 1,
d = 2k and (k,d) € {(2,3), (3,5)}) we can solve one more case eas-
ily, namely if d = 2. Since C(2k, k,2)] = |V| = 1(¥) the construc-
tion (3.3) gives P(n, 2k, 2k — 1)3(%¥) < C(n,k,2). Then the recent
result of Keevash (2.2) gives the lower bound in the following Proposi-
tion. The upper bound follows from (3.1).

Proposition 4.1. C(n, k,2) = (3, )ﬁ(%{k)for all n > ny(k) whenever
the divisibility conditions of (2.2) hold. ]

5 The case d = 2k — 1, the exact values of C(n, k, 2k — 1)

The distance §(a, b) of two integers mod m (1 < a,b < m) is defined
by
S(a,b) = min{|b — al, |b — a + m|}.

(Imagine that the integers 1,2, ..., m are listed around the cirle clock-
wise uniformly. Then §(a, b) is the smaller distance around the circle
fromatob.) §(a,b) < % is trivial. Observe that b —a = d — ¢ mod m
implies §(a, b) = §(c, d).

We say that the pair S = {s1,..., s}, T ={t1,...., %} C {1,...,m}
of disjoint sets is antagonistic mod m if

(i) all the k(k — 1) integers §(s;,s;) (i # j) and 8(#;,¢;) (i # j) are
different,
(i) the k? integers 8(s;, t ;) (1 <, j < k) are all different and
(i) 8(siv 1)) # 5 (1 =i, j < k).
If there is a pair of disjoint antagonistic k-element subsets mod m then
2k? + 1 < m must hold by (ii) and (iii).

Problem 5.1. Is there a pair of disjoint, antagonistic k-element sets
mod 2k* + 17
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We have an affirmative answer only in three cases.

Proposition 5.2. There is a pair of disjoint, antagonistic k-element sets
mod 2k% + 1 whenk = 1,2, 3.

Proof. We simply give such k-element sets in these cases. It is easy to
check that they satisfy the conditions.

k=1:.5={1},T = {2}.

k=2:5=1{1,8},T ={2,3}.

k=3:5=1{1,519}, T = {2, 13, 15}. O

Lemma 5.3. [If there is a pair of disjoint, antagonistic k-element sets
mod m then C(m,k,2k — 1) > m.

Proof. Let (S, T) be the antagonistic pair. The shifts S(#) = {a +u« mod
m:s eSS, Tu)={s4+umodm :s € T}0 < u < m) will serve as
pairs of disjoint subsets of X.

Suppose that S(x) and S(v) (u # v) have two elements in common:
S1+u=s8+v #£s3+u=s4+ v where sy, 52, 53,54 € S, (51,52) #
(s3, s4). The difference is s; — s, = s3 — s4 contradicting (i). One can
prove in the same way that 7'(#) and 7' (v) (# # v) and S(u) and T (v),
respectively, have at most one element in common. In other words the
intersection of any pair from the sets S(u), T (u), S(v), T (v) has at most
one element.

Suppose now that both S(u) N S(v) and T (u) N T (v) are non-empty
for some u # v. Then sy +u = s, + v, t; + u = t, + v holds for some
s1,8 € S,t1,t, € T. Thisleadsto v—u = s; —s, = t; —t,, contradicting
(i), again.

Finally, suppose that both S(u#) N T (v) and T (1) N S(v) are non-empty
for some u # v. Thens; +u = t; +v,t, +u = s, + v is true for
some s1,8, € S,t,tp € T. Here v —u = sy — t; = t, — s, is obtained,

contradicting either (ii) or (iii) (the latter one, if 51 — #; = #; — 51 i
obtained).

This proves that the distance of the pairs (S(u), T (#)) and (S(v),
T (v)) (u # v) is at least 2k — 1. I

Corollary 5.4. Suppose that there is Steiner family S(n, 2k> + 1, 2) and
a disjoint, antagonistic pair of k-element subsets mod 2k + 1 then

nn—1)

Cn,k,2k—1) = T

Proof. The upper bound C(n, k, 2k — 1) < n(n — 1)/2k? is a corollary
of (3.1).
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The lower estimate is obtained from (3.3). By Lemma 5.3 one can
choose 2k? + 1 pairs of disjoint k-subsets with distance 2k — 1 in a set of
2k* 4 1 elements. This can be done in each of the members of S(n, 2k +
1, 2). Since the members have at most one common element, the distance
of two pairs in distinct members of S(n, 2k? 4 1, 2) will have distance at
least 2k — 1. Therefore all the
(%)

2
(251)

nn—1)
2k?

S(n, 2k% +1,2)|2k* + 1) = K>+ 1) =

pairs have distance at least 1. O

Proof of Theorem 3.1. We only need lower bounds, i.e., constructions.
The case k = 3 follows from Wilson’s theorem (2.2) of the existence of
S(n, 19, 2), Proposition 5.2 and Corollary 5.4.

Similarly, the case k = 2 forn = 1, 9 mod 72 follows in the same way
using Steiner systems S(n, 9, 2) and the fact C (9, 2, 3) = 9 from Corol-
lary 5.4. However, one can see that C(17, 3, 2) = 34 and then the results
follows from Wilson’s theorem (2.4) of the existence of S(n, {9, 17}, 2)
for all large n = 1 mod 8 and construction (3.2).

The construction for C (17, 2, 3) is similar to the proof of Lemma 5.3.
The 9 pairs there are defined as {{x + 1,x + 8}, {x +2,x +3}} : x €
Zo}. These correspond to a perfect edge decomposition of Kg into Cy4’s
with side lengths 1, 3, 4, and 2. For n = 17 we take the pairs {{x, x +
Thi{ix+2,x+6}} :x e Zptand {y,y + 11}, {y+7,y+8}} : y €
Z 17} which correspond to Cy4’s of side lengths (2, 5, 1, 6) and (7, 4, 3, 8),
respectively. U

Note that the method gives that C(n,1,1) = @ whenn=1, 3 mod6.
This, however, is trivial for all n.

6 A new proof of the upper estimate

The upper estimate in (3.1) was proved in [2]. We give a new, more
illuminating proof here.

Given a pair {A, B} of disjoint k-element sets let P({A, B}, u, v) de-
note the family of pairs {U, V} where |U| = u, |V| =vandU C A,V C
B or viceversa. We have

k k
PUA, BY, 1, v)] =2< )( )
u v

Suppose first # < v. Then the total number of pairs {U, V},U NV =
@A, |U| = u, |V| = v in an n-element set is

(")
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Let {A;, By}, {A2, By} be two pairs with distance at least d, and u < v be
two nonnegative integers such that u4+v = 2k—d+1. By definition (1.1),
P{Ay, Bi}, u,v)and P({As, B>}, u, v) are disjoint. We have

GO

cokd =35m0

nn—1)...(n —2k +d) 6.1)

T 2%k—1).. k—utDkk—1)...(k—v+1)

for every pair u, v that satisfies the above requirements. If u = v, then
equality (6.1) holds by similar arguments.

The numerator does not depend on u, and the denominator is maxi-
mized when u and v are as close as possible, i.e., for u = 2k — f%] and
v =72k — Ld%lj . Substituting these values, we obtain the upper estimate
in (3.1). O

7 Nearly perfect selection

Let W be the family of pairs {U, V} suchthat U,V C [n], U NV =,
and |U| 4+ |V| = 2k — d + 1 holds.

Note that W] = 3 3 _,co—as1 ()i tit1)— ). For a pair {A, B} of
disjoint k-element sets, let P({A, B}) denote the family of pairs {U, V} €
W for which U C A and V C B, or viceversa.

Lemma7.1. d({A), B}, {As, Bo) < d — 1 holds if and only if
P{A1, Bi) NP({A2, Bo}) #0.

Proof. Suppose that {U, V} € P({Ay, Bi})NP({Az, B2}),sayU C AN
Ayand V C BN B,. Then |[A] — Ay <k —|U|,|B — By] <k —|V]|
imply |A; — Ay + |B; — By| < 2k — |U| — |V| = d — 1 proving the
statement. The other case is analogous.

Conversely, if the distance is at most d — 1 then either |A; — Aj| +
|Bi — By <d—1or|A; — By| 4+ |B; — Az| < d — 1 must hold. Suppose
that the first one is true. Then |A; N Ay| 4+ |B1 N By| > 2k —d + 1 follows.
Take U = AiNAyandaV C BN Bysuchthat |V| =2k—d+1—|U].
Then P({A1, B1}) N P({Az, By}) # @ holds, as claimed. ]

We can view the sets P({A, B}) as the edges of a hypergraph on the
vertex set VV. Let us call this hypergraph . Then a 2-(n, k, d)-code
corresponds to a matching in H.

In his celebrated paper [17], RodlI established (2.3) in the following
way. He viewed the f-element sets as vertices of a (¥)-uniform hyper-
graph H,, whose edges correspond to the k-element subsets of [n]. Equal-
ity (2.3) is in fact a statement about the existence of an almost perfect
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matching in H,. Using the same key proof idea, a powerful general-
ization by Frankl and Rodl [7] guarantees the existence of almost per-
fect matchings in hypergraphs satisfying certain more general conditions.
Various generalizations and stronger versions versions were later proved,
e.g.., by Pippenger and Spencer [15].

A function ¢ : E(H) — R is a fractional matching of the hypergraph
‘H if ZeeE(H);xee t(e) < 1 holds for every vertex x € V(H). The frac-
tional matching number, denoted v*(H) is the maximumof ) _,_ £ t(€)
over all fractional matchings. If v(H) denotes the maximum size of a
matching in H, then clearly

v(H) < v*(H).

Kahn [11] proved that under certain conditions, asymptotic equality
holds. Both the hypotheses and the conclusion are in the spirit of the
Frankl-Rodl theorem.

Given a hypergraph H with vertex set [n], a fractional matching ¢
and a subset W C [n], define t(W) = ngeeE(H)t(e) and a(t) =
max{z({x, y}) : x,y € V(H), x # y}. In other words, «(¢) is a fractional
generalization of the codegree. Let () denote ) _,_ E(H) t(e). We say
that ‘H is s-bounded if each of its edges has size at most s.

Theorem 7.2 ([11]). For every s and every ¢ > O there is a § such that
whenever H is an s-bounded hypergraph and t a fractional matching
with a(t) < 6, then

v(H) > (1 —e)t(H).

Proof of Theorem 3.2. In the light of Lemma 7.1 it suffices to verify the
conditions of Theorem 7.2 and to produce a fractional matching ¢ of the
hypergraph ‘H of the desired size.

Define a constant weight function ¢ : E(H) — R by

L
[(6) = 2’1(17712

For a vertex x = {U, V} € WW with |U| = u and |V | = v we have

n—u—v\(n—k—v
T oot | Gl

nd—l nd—l

< <
T k—wlk =)t T )

hence ¢ is indeed a fractional matching. Note that # () is is asymptoti-
cally equal to the quantity in the statement of the Theorem 3.2.
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The hypergraph H is not regular but s-bounded with s = % >
((Zk—dlfi-l)—u)' Here s does not depend on n. For x,y € V(H) = W
let deg(x, y) denote the codegree of x = {U, V} and y = {U’, V'}, i.e.,
the number of hyperedges P({A, B}) that contain both x and y. If U U
V = U’ U V' (they partition the same (2k — d + 1)-element set) then the
codegre deg(x, y) = 0. Otherwise, | UUU' UV UV’'| > 2k —d+2and
(UUU'UVUV') C (AU B) imply that

deg({U, V},{U', V}) = 0(n"7?).

Hence a(t) = deg({U, V},{U’, V}) - t(e) = o(1) and Kahn’s theorem
completes the proof. U

8 s-tuples of sets, g-ary codes

Let Y be the family of s-tuples of pairwise disjoint k-element subsets
of [n]. A natural definition of a metric on Y was already mentioned
in the introduction, in equation (1.2). With p being half the symmetric
difference, the distance is defined as

s
WA, ..., A}, (B, ..., B)}) = mi Ai \ Byl
1% ({ 1s 5 S}v{ 1 P Y}) ?gg;l l\ n(t)|

Let Cs(n, k, d) denote the maximum size of a subfamily S of Y such
that any two elements in S have distance at least d. The proofs presented
in Sections 7 and 6 can be easily adapted to determining C,(n, k, d), as
well. The proof of the lower and the upper bounds in Theorem 8.1 is
completely analogous to the proofs of inequality (3.1) and Theorem 3.2.

Theorem 8.1.

i Cslnkod) 1 TSI T4
n—oo psk—d+1 ! (k‘)s

Let ), be the set of g-ary vectors of length n and weight k (weight is the
number of nonzero entries). Let A,(n, d, k) be the maximum size of a
subset C € Y, such that p(u, v) > d whenever u, v € C. Here p’ is the
Hamming distance.

With a slightly more technical proof along the same lines, the follow-
ing can be proven.

Theorem 8.2. Fixqg > 2,k and d. If d is odd, then, as n — 00,

g = DU ()

Ay(n,d, k) ~ T
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Ifd = 2 is even, then, as n — 00,

nkiH (g — DR (4 1)

k!

A (n.d. k) ~

To use random methods constructing codes is not a new idea. The best
known general bounds for the covering radius problems are obtained in
this way, see, e.g.., [9,14].

We can also consider pairs (or more generally s-tuples) of g-ary vec-
tors of weight k. For simplicity, we will only state the results for pairs
here. Define the set J)(* of pairs {u, v} of vectors such that

e u,ve{0,1,...,qg —1}"

e cach of u and v has exactly k nonzero entries

e the supports of u and v are disjoint (i.e. u; = 0O for all i such that
v; # 0,and v; = 0 for all i such that u; #~ 0).

Define the distance between these pairs by

§(fu, v}, {w, z}) = min{p’(u, w) + p'(v, 2), p'(u, 2) + p' (v, W)}

where o’ is again the Hamming distance.

In the following, A; (n, d, k) will denote the maximum size of a subset
C C y;2> such that §({u, v}, {w, z}) > d for any pair {u, v}, {w, z} of
members of C.

Theorem 8.3. Fix g,d and k. If d is odd and q > 3, then, as n — o0,

q ’ ’ 2 (k')z )

Ifd > 2is even and q > 2, then, as n — 00,

, 1 AR g - DR g1 - 1)!
Ag(n.d k) ~ = - T .

The distance § used here is twice the distance defined in Section 1, hence
the apparent inconsistency of this result for ¢ = 2 with Theorem 3.2.
Forq =2 and d odd we have A (n,d, k) = A;(n,d + 1,k).

9 Open problems

We believe that for an arbitrary pair of k and d, there are infinitely many
n’s with equality in inequality (3.1).
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10 Further developments

Let us note that since announcing the first version of the present pa-
per Theorem 3.1 has been greatly extended by Chee, Kiah, Zhang and
Zhang [3]. They determined the exact value of C(n, 2, d) completely,
and for any fixed k the exact value of C(n, k, 2k — 1) for all n > ng(k)
satisfying either n = 0 mod k orn = 1 mod k and n(n — 1) = 0
mod 2k>. Their proofs are different: they use more design theory. How-
ever, our Section 5 is still interesting for its own sake and Problem 5.1 is
still open.
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