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Abstract: Let q be an odd prime power and let f (r) be the minimum size of the symmetric
difference of r lines in the Desarguesian projective plane P G(2, q). We prove some results
about the function f (r), in particular showing that there exists a constant C > 0 such that
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1 INTRODUCTION

Let q be an odd prime power and consider the Desarguesian projective plane PG(2, q).
(For detailed definitions of lines, coordinates, conics, etc., see, e.g. the monograph
Hirschfeld [11].) Write P and L for the set of points and lines of PG(2, q), respec-
tively. We shall consider the subsets of P or L as elements of a vector space isomorphic
to F

N
2 , N := q2 + q + 1, and will switch between the “subset” and “vector” interpre-

tations without further comment. For example, for subsets A and B of P or L, A + B

represents the symmetric difference of A and B.
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2 BALISTER, BOLLOBÁS, FÜREDI, AND THOMPSON

Define for 0 ≤ r ≤ N ,

f (r) = min

{∣∣∣∣∣
r∑

i=1

�i

∣∣∣∣∣ : �1, . . . , �r ∈ L distinct

}
, (1)

that is the minimal symmetric difference of r lines in PG(2, q).
The problem of determining f (r) is motivated by the fact that it is an algebraic version

of the Besicovitch-Kakeya [3] problem in a projective plane—determining the minimum
size of a set that contains lines (or segments) in many directions. For more results on
Kakeya’s problem in the finite fields see [5], [10] and the references there.

Given a set R of lines in PG(2, q), call a point odd if it is incident with an odd
number of lines in R, and define the terms “even point,” “single point,” “double point,”
etc., analogously. Let Po(R) be the set of odd points, and let Pe(R), Pk(R), P≥k(R) be
defined analogously as the set of points that are even, multiplicity k, and multiplicity at
least k, respectively.

Dually, for S ⊆ P , define Lo(S) to be the set of lines � ∈ L such that |� ∩ S| is odd.
Define Le(S), Lk(S), and L≥k(S) analogously.

By duality of lines and points in the projective plane PG(2, q) we can rewrite (1) in
the equivalent forms

f (r) = min
R⊆L, |R|=r

|Po(R)| = min
S⊆P, |S|=r

|Lo(S)|. (2)

We shall therefore often switch the viewpoint and consider sets of points that have odd
intersections with few lines.

The next observation, proved below, is that Po(R) almost determines R, and Lo(S)
almost determines S. Indeed, the N vectors specified by L span an (N − 1)-dimensional
subspace of F

P
2 and their only linear dependency is

∑
�∈L � = 0. This gives that Po(R) =

Po(R′) iff either R = R′ or R′ = L \ R. Indeed, it is well known that the N × N point
line 0–1 incidency matrix A has rank N − 1 (one can consider AAT = J + qI and this
has rank N − 1 over F2, see, e.g. Ryser [14]). The following useful lemma is based on
this observation.

Lemma 1. If R = Lo(S) then |R| is even and either S = Pe(R) (if |S| is odd) or
S = Po(R) (if |S| is even). Dually, if S = Po(R) then |S| is even and either R = Le(S)
(if |R| is odd) or R = Lo(S) (if |R| is even).

Proof. The maps Lo and Po can be thought of as F2-linear maps between the set
of subsets of P and L, each regarded as a vector space isomorphic to F

N
2 . For p ∈ P ,

|Lo({p})| = |{� ∈ L : p ∈ �}| = q + 1 is even, so |Lo(S)| is even for all S ⊆ P . Moreover

Po(Lo({p})) =
∑
�	p

� = P − {p} ∈ F
P
2

as the number q + 1 of lines through p is even and there is a unique line through p and
p′ for every p′ 
= p. By linearity, Po(Lo(S)) = ∑

p∈S(P − {p}) = S when |S| is even,
and so Po has rank at least N − 1. Also, Po(L) = ∅ as every point is in an even number
of lines. Hence the kernel of Po is {0,L}. Similarly the kernel of Lo is {0,P}. The result
now follows as Pe(R) = P \ Po(R) and Le(R) = L \ Lo(R). �

Journal of Combinatorial Designs DOI 10.1002/jcd



MINIMAL SYMMETRIC DIFFERENCES OF LINES 3

Lemma 2. For 0 ≤ r ≤ N , f (N − r) = f (r).

Proof. Replacing any set R = {�1, . . . , �r} by its complement L \ R and noting that∑
�/∈R � = ∑

�∈R �, we find that f (N − r) ≤ f (r). Reversing the roles of r and N − r

gives f (N − r) ≥ f (r). �

Lemma 3. Let R be any set of r lines in L. Then

r(q + 2 − r) ≤ |Po(R)| ≤ rq + 1

and

|Po(R)| ≡ r(q + 2 − r) mod 4.

In particular, f (r) ≥ r(q + 2 − r) and f (r) ≡ r(q + 2 − r) mod 4.

Proof. Each line of R contains at least q + 1 − (r − 1) = q + 2 − r points that do not
lie on any other line of R. Thus there are at least r(q + 2 − r) points lying on a single
line, and so in particular |Po(R)| ≥ r(q + 2 − r). On the other hand, one line contains
q + 1 points and the symmetric difference of two lines contains exactly 2q points. Thus
|Po(R)| ≤ rq + 1 for r ≤ 2. For r > 2 write R = R′ ∪ {�, �′}. Then by induction

|Po(R)| = |Po(R′) + Po({�, �′})|
≤ |Po(R′)| + |Po({�, �′})|
≤ ((r − 2)q + 1) + 2q = rq + 1.

Now let ti = |P i(R)| be the set of points of multiplicity i. Then
∑

iti = r(q + 1) is the
number of points in all the lines counted with multiplicity, and

∑
i(i − 1)ti = r(r − 1)

is the number of intersection points between ordered pairs of lines counted with multi-
plicity. Subtracting gives

∑
i(2 − i)ti = r(q + 2 − r). But i(2 − i) ≡ 0 mod 4 when i

is even and i(2 − i) ≡ 1 mod 4 when i is odd. Thus r(q + 2 − r) ≡ ∑
i odd ti = |Po(R)|

mod 4. �

The function f (r) is easily determined for 0 ≤ r ≤ q + 1 (and hence by Lemma 2 also
for N − q − 1 ≤ r ≤ N).

Theorem 4. For 0 ≤ r ≤ q + 1, f (r) = r(q + 2 − r).

Proof. Lemma 3 implies f (r) ≥ r(q + 2 − r), so it remains by (2) to construct a set
S of points with |S| = r and |Lo(S)| = r(q + 2 − r).

Let C = {[s2 :st : t2] : [s : t] ∈ PG(1, q)} be the conic XZ = Y 2. We note that all lines
� intersect C in at most 2 points, and |� ∩ C| = 1 if and only if � is one of the q + 1
tangent lines to C.

Let S be any subset of C of size r . No line intersects S in more than two points and
so for any p ∈ S exactly r − 1 lines through p meet C at another point of S, while
(q + 1) − (r − 1) = q + 2 − r lines through p fail to meet C at any other point of S.
Thus there are exactly r(q + 2 − r) lines that meet S in an odd number of points and so
|Lo(S)| = r(q + 2 − r) as required. �

The function f (r) cannot vary too rapidly; trivially we have |f (r + 1) − f (r)| ≤
q + 1. In fact, we can say slightly more.

Journal of Combinatorial Designs DOI 10.1002/jcd



4 BALISTER, BOLLOBÁS, FÜREDI, AND THOMPSON

Theorem 5. For 0 < r < N − 2, |f (r + 1) − f (r)| ≤ q − 1.

Note that f (0) = f (N) = 0 and f (1) = f (N − 1) = q + 1, so this result fails for
r = 0, N − 1. On the other hand, the inequality can be sharp. For example, f (2) − f (1) =
f (q + 1) − f (q) = q − 1 by Theorem 4. There are other examples, e.g. f (2q − 1) =
q + 1 and f (2q) = 2 (see Theorem 13 below).

Proof. Assume |R| = r andPo(R) = S with |S| = f (r). Note that S 
= ∅ as R 
= ∅,L.
Pick p ∈ S. Assume every line � through p intersects S in an odd number of points. Then
every line through p intersects S \ p is an even number of points. Since distinct lines
through p partition S \ p, we see that |S \ p| is even and hence |S| is odd, contradicting
Lemma 1. Thus there exists a line �e that meets S in an even (and positive) number of
points. If all � ∈ L met S in an even number of points then Lo(S) = ∅ and so S = ∅ or P ,
a contradiction. Thus there exists a line �o that meets S in an odd number of points. As
R = Lo(S) or Le(S), either �e or �o fails to lie in R. Adding such a line to R increases r

by one and increases S by at most q − 1, implying f (r + 1) − f (r) ≤ q − 1.
Replacing r by N − r − 1 and applying Lemma 2 gives f (r + 1) − f (r) = −(f (N −

r) − f (N − r − 1)) ≥ −(q − 1), completing the proof of Theorem 5. �

2 THE CASE OF q + 2 LINES

Our next aim is to prove that the jump f (q + 2) − f (q + 1) = f (q + 2) − (q + 1) is not
too small.

Theorem 6. f (q + 2) = 2q − 2 for q ≤ 13. More generally, for q ≥ 7 we have 3
2 (q +

1) ≤ f (q + 2) ≤ 2q − 2.

To prove this we shall use several lemmas, some classical results of this topic. Most of
their proofs use either Rédei’s method (see e.g. [13]) or some version of Combinatorial
Nullstellensatz (see e.g. [1, Theorem 1.2]). Arrangements of q + 2 lines are the most
investigated part of finite geometries. In the following, a triple point with respect to a set
of lines R will refer to a point that lies on at least three lines.

Lemma 7 (Bichara and Korchmáros [2]). Let R be a set of q + 2 lines in PG(2, q).
Then there are at most two lines without triple points.

A blocking set in the affine plane AG(2, q) or in the projective plane PG(2, q) is a set
B of points such that each line is incident with at least one point of B.

Lemma 8 (Brouwer and Schrijver [6] and Jamison [12]). Let B be a blocking set in
AG(2, q). Then B consists of at least 2q − 1 points.

Lemma 9 (Szőnyi [15]). Let B be a minimal blocking set in PG(2, q) of size less
than 3(q + 1)/2 where q = ph for some prime p. Then all lines meet B in 1 mod p

points.

The following lemma is contained in [5] (top of page 211) as a part of a more complex
argument. For completeness we reproduce its proof here.

Lemma 10 (Blokhuis and Mazzocca [5]). Let R be a set of q + 2 lines with at least
one of the lines containing no triple points. Then the number of odd points is at least 2q

minus the number of lines in R without triple points.

Journal of Combinatorial Designs DOI 10.1002/jcd
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Proof. Without loss of generality, we may assume that R contains the line at infinity
and that this line has no triple point. Let L be the set of q + 1 lines in AG(2, q) obtained
by restricting the remaining lines of R to AG(2, q). As the line at infinity contains no
triple point, no two lines in L are parallel. Then as |L| = q + 1, every line � in AG(2, q)
is parallel to precisely one line of L.

Claim. In AG(2, q) the odd points block all lines in AG(2, q), except those in L that
have no triple points.

Indeed, assume first that � /∈ L. Then � intersects q of the lines in L; indeed it
intersects all but the unique line in L parallel to �. Since q is odd, � has an odd
point.

Now assume � ∈ L and has a triple point. As there are q points in L and only q other
lines in L, the fact that some point in � meets at least two of these lines implies that there
is a point of � that meets no other line of L. Such a point is a single (and hence odd)
point.

Adding one point from each line without a triple point (except the line at infinity) we
obtain a blocking set of the affine plane, which by Lemma 8 contains at least 2q − 1
points. The result follows. �

Proof of the lower bound in Theorem 6. Let R be a set of q + 2 lines with f (q + 2) =
|Po(R)|, S := Po(R), and let T3 be the set of triple points. We will show that |S| ≥
3(q + 1)/2.

First, suppose that R has a line without a triple point. Then by Lemmas 7 and 10 there
are at least 2q − 2 odd points.

Second, suppose all q + 2 lines in R have triple points and |S| < 2q − 2. Since
f (q + 2) ≡ 0 mod 4 by Lemma 3 we may suppose that |S| ≤ 2q − 6.

Claim. S is a minimal blocking set in PG(2, q).

Indeed, every line � in PG(2, q) is either in our set (in which case it contains a single
point), or intersects all q + 2 lines of R. As q + 2 is odd, � must contain an odd point.

That S is minimal can be seen as follows: Let v ∈ S and suppose on the contrary that
S \ {v} meets all lines. Since v is an odd point, there are 2m + 1 lines of R containing
it. Each of these lines contains at least 2m − 1 additional odd (single) points of S.
Moreover, every line � not in R has an odd number of odd points. Then if � /∈ R

is a line through v, we have |S ∩ �| ≥ 2 and hence |S ∩ �| ≥ 3. In total we find at
least (2m + 1)(2m − 1) + 2(q − 2m) ≥ 2q − 1 odd points beside v. This contradiction
completes the proof of the Claim.

We count multiplicities of intersections as in the proof of Lemma 3. If we let ti be
the number of points that occur in exactly i of our lines, then

∑
i iti = ∑

i i(i − 1)ti =
(q + 2)(q + 1). Thus

∑
i i(i − 2)ti = 0, rearranging

|S| =
∑
i odd

ti =
∑
i≥3

(i(i − 2) + (i mod 2)) ti = 4t3 + 8t4 + 16t5 + 24t6 + · · · (3)

Let R3 ⊆ R be the set of lines having a single triple point, and that point has degree
three, and let R4 ⊆ R be the set of lines having a single triple point, and that point
has degree at least four. Every line in R has at least one triple point, the members of
R \ (R3 ∪ R4) have at least two. So adding up the degrees of triple points we obtain

Journal of Combinatorial Designs DOI 10.1002/jcd



6 BALISTER, BOLLOBÁS, FÜREDI, AND THOMPSON

∑
i≥3 iti = ∑

�∈R |� ∩ T3| ≥ 2|R| − |R3| − |R4|. Consider
∑

i≥4 iti , it is an upper bound
for |R4|. Summarizing we obtain

3t3 +
∑
i≥4

2iti ≥ 2|R| − |R3|.

This and (3) yield |S| ≥ 2q + 4 − |R3|. Every R3 line meets S in two elements, so
actually R3 = ∅ by Lemma 9 for |S| < 3(q + 1)/2. This contradiction completes the
proof of |S| ≥ 3(q + 1)/2. For q ≤ 13 we note that 3(q + 1)/2 > 2q − 6, so f (q + 2) =
2q − 2. �

Finally, to show f (q + 2) ≤ 2q − 2 recall that f (q + 2) ≤ f (q + 1) + (q − 1) = 2q

by Theorems 5 and 4, while f (q + 2) ≡ 0 mod 4 by Lemma 3. Thus f (q + 2) ≤ 2q − 2.
This upper bound on f (q + 2) can also be seen in the following way. There is an

action of SL(2, q) on PG(2, q) in which the orbits are A, B, and C, where C is the
conic described above, A is the set of points that lie on no tangent of C and B is the
set of points that lie on two tangents of C. Now |Lo(C)| = q + 1, so if p ∈ A then
|Lo(C ∪ {p})| = (q + 1) + (q + 1) as all lines through p change from having an even
intersection with C to having an odd intersection with C ∪ {p}. On the other hand, if
p ∈ B then |Lo(C ∪ {p})| = (q + 1) + (q − 1) − 2 = 2q − 2 as there are q − 1 lines
thorough p with an even intersection with C and an odd intersection with C ∪ {p}, while
there are two lines through p that are tangent to C and so have odd intersection with C

and even intersection with C ∪ {p}. The result now follows from (2).
We conjecture that in fact the upper bound is correct in Theorem 6.

Conjecture 11. f (q + 2) = 2q − 2.

3 EXACT VALUES NEAR 2q

A few more values of f (r) are known when r is small. To derive these we shall make use
of the following result.

Lemma 12. For even s, f (s) is the minimum even r such that there exists a set R of
lines with |R| = r and |Po(R)| = s.

Proof. Assume R is a set of lines with |R| = r and
∑

�∈R � = S with |S| = s. Now
|Lo(S)| is even while |Le(S)| is odd. Hence R = Lo(S) as r is even. Thus, by (2),
f (s) ≤ r . Conversely, if f (s) = r and |S| = s with |Lo(S)| = r , then r is even and,
setting R = Lo(S), we have |R| = r and |Po(R)| = |S| = s as s is even. �

Theorem 13. f (2q − 1) = q + 1, f (2q) = 2, f (2q + 1) = q − 1.

Proof. If |R| = 2 then |Po(R)| = 2q, so f (2q) ≤ 2 by Lemma 12. However f (r) > 0
and f (r) is even for 0 < r < N , so f (2q) = 2. Thus f (2q − 1), f (2q + 1) ≤ q + 1
by Theorem 5. Also f (2q + 1) ≡ (2q + 1)(−q + 1) ≡ q − 1 mod 4 and f (2q − 1) ≡
(2q − 1)(−q + 3) ≡ q + 1 mod 4 by Lemma 3. Thus it is sufficient to show that f (2q ±
1) > q − 3. As 2q ± 1 is odd, there exists a R with |R| = f (2q ± 1) and |Po(R)| =
N − (2q ± 1) ≥ q2 − q. But |Po(R)| ≤ q|R| + 1 by Lemma 3, so |R| > q − 3. �

Journal of Combinatorial Designs DOI 10.1002/jcd
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4 A GRAPH CLIQUE DECOMPOSITION LEMMA

The values of f (r) for q + 2 < r < 2q − 1 remain to be determined, and indeed f (r) is
unknown for many values of r < Cq3/2, although some non-trivial bounds are given by
Lemmas 19 and 20 below. For larger r , between Cq3/2 and N − Cq3/2, we shall show
much more. Indeed it seems that f (r) can be determined for most values of r in this
range, although an explicit description of these values seems difficult.

Suppose that s is even (the case when s is odd follows by considering f (N − s)).
By Lemma 12 and duality it is enough to determine for each even r in turn whether or
not there exists a set S of points such that |Lo(S)| = s. Any set of points S induces an
edge-decomposition of the complete graph KS with vertex set S into cliques on the sets
� ∩ S, � ∈ L. Indeed, every pair of points of S lie in a unique line � ∈ L so each edge
KS lies in a unique clique K�∩S . We show that s = |Lo(S)| can be determined in terms
of the sizes of these cliques.

Lemma 14. Suppose r = |S| is even and |Lo(S)| = rq − 4t . For � ∈ L write r� =
|S ∩ �|. Then

∑
�∈L

⌊
r�

2

⌋ = r
2 + 2t .

Proof. As there are q + 1 lines through each point of S,
∑

�∈L r� = r(q + 1). Thus

rq − 4t = |Lo(S)| =
∑
r� odd

1 =
∑

�

(
r� − 2

⌊ r�

2

⌋)
= rq + r − 2

∑
�

⌊ r�

2

⌋
.

Hence
∑⌊

r�

2

⌋ = r
2 + 2t . �

Note that by Lemma 3 s = |Lo(S)| must be of the form rq − 4t with 0 ≤ t ≤ (
r
2

)
. Since

we are interested in the smallest r for which a suitable set S exists, typically we expect t to
be relatively small and r not much bigger that s/q. We can therefore reduce the problem
to the question of (a) whether there is any clique decomposition of Kr into cliques of
size r1, . . . , rn with a given value of

∑⌊
ri

2

⌋
, and (b) whether such a decomposition can

be realized by a set of points inside PG(2, q).
We call an edge-decomposition � of Kr into cliques of orders r1, . . . , rn a simple

decomposition if there is at most one value of i with ri > 3. In other words, Kr is
decomposed as single edges, triangles, and at most one larger clique. We write M(�) for
the sum

∑n
i=1

⌊
ri

2

⌋
.

Lemma 15. Suppose we are given an edge-decomposition � of Kr with M(�) <
1
4 r(

√
4r − 3 − 1). Then there exists a simple edge-decomposition �′ of Kr with M(�′) =

M(�).

Proof. Assume � decomposes Kr into cliques of orders r1, . . . , rn with r1 ≥ r2

≥ · · · ≥ rn. Let Ci be the i’th clique. Then there are r1(r − r1) edges from V (C1) to
V (Kr ) \ V (C1). Moreover, each clique Ci , i > 1, can meet C1 in at most one vertex and
hence covers at most ri − 1 of these edges. Thus

∑
i>1(ri − 1) ≥ r1(r − r1) and hence

M(�) ≥
n∑

i=1

ri − 1

2
≥ r1 − 1

2
+ r1(r − r1)

2
. (4)

Journal of Combinatorial Designs DOI 10.1002/jcd
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On the other hand there are
(
r
2

)
edges to be covered in total, so

M(�) ≥
n∑

i=1

ri − 1

2
=

n∑
i=1

1

ri

(
ri

2

)
≥ 1

r1

(
r

2

)
. (5)

For r1 < r/2, the bound in (4) is increasing and the bound in (5) is decreasing as r1

increases, so the smallest bound on M(�) occurs when the two bounds are equal. It
can be checked that this occurs when r = r2

1 − r1 + 1 with a common bound M(�) ≥
1
2 r(r1 − 1) = 1

4 r(
√

4r − 3 − 1). This contradicts the assumption on M(�), so we may
assume r1 ≥ r/2.

Let E1 be the set of r1(r − r1) edges joining C1 to the rest of Kr and E2 be the set of(
r−r1

2

)
edges of Kr not meeting C1. For each clique Ci , i > 1, we note that for all ri ≥ 2,

|E1 ∩ E(Ci)| − |E2 ∩ E(Ci)| ≤
⌊ ri

2

⌋
≤ |E1 ∩ E(Ci)| + |E2 ∩ E(Ci)|.

Indeed, the right hand side is just
(
ri

2

)
, while the left hand side is either (ri − 1) − (

ri−1
2

)
or −(

ri

2

)
depending on whether or not Ci meets some vertex of C1. Note that the lower

bound is achieved if ri ∈ {2, 3} and Ci meets C1. Summing over all cliques gives⌊ r1

2

⌋
+ |E1| − |E2| ≤ M(�) ≤

⌊ r1

2

⌋
+ |E1| + |E2|. (6)

Also note that � ri

2 � ≡ (
ri

2

)
mod 2, so that M(�) is equivalent to either bound modulo 2.

As r1 ≥ r/2, the graph on E1 ∪ E2 can be packed with |E2| triangles each meeting C1.
Indeed, it is enough to decompose Kr−r1 completely into at most r1 partial matchings
M1, . . . , Mr1 and then join each matching to a distinct vertex of C1 to obtain sets of edge-
disjoint triangles. For even r − r1, it is well-known that Kr−r1 can be decomposed into
r − r1 − 1 < r1 perfect matchings. For odd r − r1 decompose Kr−r1+1 into r − r1 ≤ r1

perfect matchings and remove a single vertex to give a decomposition of Kr−r1 into
r − r1 partial matchings. Completing the packing of E1 ∪ E2 by including K2s covering
the remaining edges of E1 gives a decomposition �′′ of Kr that achieves the lower
bound M0 = �r1/2� + |E1| − |E2| in (6). Now replacing (M(�) − M0)/2 ≤ |E2| of the
triangles of this packing with three K2s, allows us to increase M(�′′) in steps of 2 until
we get to a packing �′ of C1, edges, and triangles, with M(�′) = M(�). �

Lemma 16. Let m = �√r − 3� − 1. Then for any integer s with s ≤ (
r
2

)
, s ≡ (

r
2

)
mod

2, and s ≥ � r−m
2 � + m

2 (2r − 3m + 1) there exists a simple decomposition � of Kr with
M(�) = s.

Proof. From the proof of Lemma 15 we know that we can construct a simple a
decomposition for any s ≡ (

r
2

)
and

⌊ r1

2

⌋
+ r1(r − r1) −

(
r − r1

2

)
≤ s ≤

⌊ r1

2

⌋
+ r1(r − r1) +

(
r − r1

2

)

with r1 ≥ r
2 . It is a simple but tedious exercise to show that the intervals for r1 =

� r
2�, . . . , r − m cover every s ≡ (

r
2

)
in the range from � r−m

2 � + m
2 (2r − 3m + 1) to 3

4

(
r
2

)
.

Journal of Combinatorial Designs DOI 10.1002/jcd
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For s > 3
4

(
r
2

)
it is enough to show that one can pack (

(
r
2

) − s)/2 ≤ (�r/2�
2

)
triangles into

Kr . This also follows from the proof of Lemma 15 where it was shown that one can pack(�r/2�
2

)
triangles into Kr \ E(K�r/2�). �

Lemmas 15 and 16 show that if there exists a decomposition with M(�) = s then there
exists a simple decomposition with M(�) = s except possibly in the range between about
1
2 r3/2 and about r3/2. There can exist non-simple decompositions in this range for which
there is no simple decomposition. For example, the lines of a projective plane of order
q ′, q ′ odd, give rise to a decomposition � of Kr when r = q ′2 + q ′ + 1 with M(�) =
(q ′2 + q ′ + 1)(q ′ + 1)/2 (exactly the bound in Lemma 15). One can check that for a
simple decomposition to have the same value of M(�) would require q ′−1

2 < r1 < q ′+1
2

for large q ′, an impossibility, so no corresponding simple decomposition exists.

5 REALIZING CLIQUE DECOMPOSITIONS OF THE PROJECTIVE PLANE

We now turn to the question of whether a simple decomposition can be realized by a set
of points in PG(2, q). One needs a set S formed by taking a large number r1 of points in
one line, and the remaining points only on lines intersecting S in at most three points. The
proof of the following lemma provides a construction that realizes this in most relevant
cases.

Lemma 17. Fix r , 0 ≤ r ≤ q + 1 and assume r1 ≥ max{ 1
3 (2r − 3), (2r − 3) − (q +

1)}. Then any simple decomposition � of Kr with maximal clique of order r1 can be
realized by a set of points in PG(2, q).

Proof. Consider sets of points that are subsets of C ∪ L, where C = {XZ = Y 2} is
the conic used in the proof of Theorem 4 and L = {X = dZ} is a line that does not
intersect C (so d is chosen to be a quadratic nonresidue in the field Fq). A simple
calculation shows that the secant line joining [s2 :st : t2] and [s ′2 :s ′t ′ : t ′2] on C meets L

at the point [d(st ′ + s ′t):dtt ′ + ss ′ :st ′ + s ′t] on L. This mapping of pairs of points on
C to L is more easily described by introducing the norm group G = F

×
q2/F

×
q . The points

p = [s2 :st : t2] ∈ C correspond to the coset φ(p) = (s + t
√

d)F×
q and the coset α =

(a + b
√

d)F×
q corresponds to the point ψ(α) = [db:a :b] ∈ L. The secant line through

p, p′ ∈ C then meets L at ψ(φ(p)φ(p′)). The key point is that G is cyclic of order
q + 1. Hence by taking a subset P = {p1, p2, . . . , ps} of C with 2s − 3 ≤ q + 1 such
that φ(pi) form a suitable geometric progression, the secants through these points meet
L in only 2s − 3 points (assuming s ≥ 2). Indeed, we can take φ(pi) = αi where α is
a generator of G so that the secants meet L at the points ψ(α3), ψ(α4), . . . , ψ(α2s−1).
Moreover there are 4 points (ψ(α3), ψ(α4), ψ(α2s−2), ψ(α2s−1)) on L that meet just one
secant, four which meet exactly two secants, etc., with one or three points meeting �s/2�
secants (depending on the parity of s). Now let P ′ = {p′

1, . . . , p
′
t } be a set of t points

on the line L and suppose there are k secants through two points of P meeting P ′. then
P ∪ P ′ induces a simple edge decomposition of KP∪P ′ with one clique of order |P ′| and
k triangles, the remaining cliques being single edges.

We now consider the conditions on the parameter that allow us to vary k between
the minimum of zero and the maximum of

(
s
2

)
, where s ≥ 2. To achieve k = 0 requires

t ≤ (q + 1) − (2s − 3) as P ′ must avoid all the secant lines through P . To achieve k = (
s
2

)
Journal of Combinatorial Designs DOI 10.1002/jcd
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requires t ≥ 2s − 3 as P ′ must meet all secants through P . All values of k between the
minimum and maximum can be achieved one step at a time by moving some point of
P ′ so that it meets one more secant line. Now s = r − r1 and t = r1 so these conditions
become

r1 ≤ q + 1 − (2r − 2r1 − 3) and r1 ≥ 2r − 2r1 − 3,

or equivalently r1 ≥ (2r − 3) − (q + 1) and r1 ≥ 1
3 (2r − 3). For s < 2 there are no secant

lines and the only restriction is t = r1 ≤ q + 1 that follows from r1 ≤ r ≤ q + 1. �

Corollary 18. There exists an absolute constant C > 0 such that w/q ≤ f (w) ≤
w/q + C(w3/2/q5/2 + 1) for all even w with Cq3/2 ≤ w ≤ N − Cq3/2.

Note that for odd w, N − w is even and so (N − w)/q ≤ f (w) = f (N − w) ≤ (N −
w)/q + C((N − w)3/2/q5/2 + 1).

Proof. By choosing C sufficiently large we may assume that q is also large. The
lower bound follows from Lemmas 12 and 3. For the upper bound choose r minimal
such that r > w/q + 2w3/2/q5/2 and r ≡ qw mod 4. Write w = rq − 4t , so that r3/2 ≤
4t � r2 and r >

√
q. By Lemma 16 there exists a simple decomposition of Kr with

M(�) = r/2 + 2t and indeed, this decomposition must have maximal clique size r1 =
r − O(

√
r). Then by Lemma 17 this decomposition can be realized by a subset S

of PG(2, q). Now |Lo(S)| = qr − 4t = w by Lemma 14 and so f (w) ≤ r ≤ w/q +
C(w3/2/q5/2 + 1). �

6 FURTHER CONSTRUCTIONS FROM BLOCKING SETS AND THE MAXIMUM
OF f (r)

We shall now provide some constructions that give at least some reasonable bounds on
f (r) for r < Cq3/2 or r > N − Cq3/2.

Let Q+ ⊆ Fq be the set of nonzero quadratic residues and Q− ⊆ Fq be the set of
quadratic nonresidues. Both sets have (q − 1)/2 elements. Define Qi ⊆ P , i = 0, 1 by

Q0 = {[x :0:1] : x ∈ Q+} ∪ {[1:x :0] : x ∈ Q+} ∪ {[0:1:x] : x ∈ Q−},
and

Q1 = {[x :0:1] : x ∈ Q+} ∪ {[1:x :0] : x ∈ Q+} ∪ {[0:1:x] : x ∈ Q+}.
Given any line � : αX + βY + γZ = 0 that does not go through the points Ox :=
[1:0:0], Oy := [0:1:0], Oz := [0:0:1], we have |� ∩ Qi | ≡ i mod 2. Indeed, � intersects
{[x :0:1] : x ∈ Q+} iff α/γ ∈ Q+ and similarly for the others. But for any α, β, γ 
= 0
an odd number of the conditions α/γ ∈ Q+, β/γ ∈ Q+, and γ /α ∈ Q+ hold.

The example Q0 is due to J. di Paola. By a famous result of Blokhuis [4] the set
Q0 ∪ {Ox, Oy,Oz} is the smallest nontrivial blocking set on PG(2, q) when q is prime.

Lemma 19.

f

(
3

2
(q − 1) + kq + j

)
≤ 3q + j (q + 2 − j )

for 0 ≤ k ≤ (q − 1)/2 and 0 ≤ j ≤ q + 1.
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Proof. Let V be the set of kq points that lie in one of k “vertical” lines of the
form X = αZ, α ∈ Q−, not including the point Oy at infinity. Let C be any set of
j points on the conic XZ = Y 2. Note that V , Qi , and C are pairwise disjoint for
i = 0, 1. Let S = V ∪ Qk mod 2 ∪ C so that |S| = 3

2 (q − 1) + kq + j . Consider a line �

that does not meet {Ox, Oy,Oz}. Then |� ∩ V | = k and |� ∩ Qk mod 2| ≡ k mod 2. Thus
|� ∩ S| ≡ |� ∩ C| mod 2. From the proof of Theorem 4 there are j (q + 2 − j ) lines that
meet C in an odd number of points, and there are only 3q lines that meet {Ox,Oy, Oz},
so f (|S|) ≤ |Lo(S)| ≤ 3q + j (q + 2 − j ) as required. �

Lemma 20.

f (kq + j ) ≤ k + j (q + 2 − j )

for 0 ≤ k ≤ (q − 1)/2, k even, and 0 ≤ j ≤ q + 1.

Proof. Let V and C be as in the proof of Lemma 19. Then the number of lines meeting
C in an odd number of points is j (q + 2 − j ) while the number of lines meeting V in
an odd number of points is just k (the lines of V ). As |V ∪ C| = kq + j , f (kq + j ) ≤
k + j (q + 2 − j ). �

Lemma 21.

f (q + 1 + kq + j ) ≤ q + 1 + k + j (q + 2 − j )

for 0 ≤ k ≤ (q − 1)/2, k even, and 0 ≤ j ≤ q − 1,

Proof. Let V and C be as in the proof of Lemma 19 except that we shall now insist
that Ox,Oz /∈ C. Let C ′ be the conic XZ = 4Y 2. Note that C ′ could only meet C at
the points Ox, Oz, which we have assumed do not lie in C. Also C ′ ∩ V = ∅. There are
q + 1 lines that meet C ′ in an odd number of points, j (q + 2 − j ) lines that meet C in
an odd number of points, and k lines that meet V in an odd number of points. The result
follows since |V ∪ C ∪ C ′| = q + 1 + kq + j . �

Corollary 22. For large q, the maximum value of f (r) is (q2 + 4q + 3)/4 and occurs
only at r = (q + 1)/2, r = (q + 3)/2, r = N − (q + 1)/2, and r = N − (q + 3)/2.

Proof. The result follows when r is restricted to the range 0 ≤ r ≤ q + 1 and N −
(q + 1) ≤ r ≤ N by Theorem 4 and Lemma 2, so it is enough by Lemma 2 to bound f (r)
in the range r ∈ [q + 2, N/2]. For r ∈ [q + 2, ( 3

2 − ε)q] we can apply Lemma 21 with
k = 0 to obtain f (r) ≤ ( 1

4 − ε2)q2 + O(q). For r ∈ [( 3
2 − ε)q, 3

2 (q − 1)] we can apply
Lemma 19 with k = j = 0 and Theorem 5 to obtain f (r) ≤ 3q + (q − 1)εq. Thus we
may assume r ≥ 3

2 (q − 1).
If |r/q − t | ≥ 1

4 for every integer t , then we write r = 3
2 (q − 1) + kq + j , where either

0 ≤ j ≤ 3
2 + q

4 or 3
2 + 3q

4 ≤ j < q. In either case Lemma 19 implies

f (r) ≤ 3q + q + 5

4
· 3q + 3

4
= 1

16
(3q2 + 66q + 15).
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If |r/q − t | < 1
4 and �(r − 1)/q� is even, we write r = kq + j with 1 ≤ j < q

4 or 3q
4 <

j ≤ q. In either case Lemma 20 gives

f (r) ≤ k + 3q + 1

4
· q + 7

4
≤ 1

16
(3q2 + 30q − 1).

Finally, if |r/q − t | < 1
4 and �(r − 1)/q� is odd, we write r = q + 1 + kq + j with

0 ≤ j < q
4 − 1 or 3q

4 − 1 < j ≤ q. In either case Lemma 21 gives

f (r) ≤ q + 1 + k + 3q − 3

4
· q + 11

4
≤ 1

16
(3q2 + 38q + 24).

Thus in all cases

f (r) ≤ 1

16
(3q2 + 66q + 15) <

1

4
(q2 + 4q + 3).

for q sufficiently large. �

7 EXACT VALUES FROM THE BAER SUBPLANE

A subset of points S ⊆ P is a subplane of order k if |S| = k2 + k + 1 and the sets
{� ∩ S : � ∈ L, |� ∩ S| > 1} form the line system of a finite projective plane of order k.
In the case when k = √

q, we call S a Baer subplane. It is well known that such Baer
subplanes exists whenever q is a perfect square (see Bruck [7]). Even more (see, e.g.
Yff [16]) P can be partitioned into q − √

q + 1 Baer subplanes.
Consider a Baer sublane B and let RB ⊆ L be the set of lines meeting it in exactly√
q + 1 points. Then |RB | = q + √

q + 1. The lines of RB cover every point of B exactly√
q + 1 times, and every other point exactly once. Thus Po(RB) = P \ B, which is very

large. However, consider an arbitrary point p /∈ B and let R be the symmetric difference
of RB and L({p}) (these two families contain only one common line �p ∈ RB through p).
Then Po(R) = B ∪ {p}. We obtain

f (2q + √
q) ≤ q + √

q + 2. (7)

Considering p ∈ B and the set of even lines of B \ {p} (it is again the symmetric
difference of RB and L({p}), now they have

√
q + 1 common lines) we obtain

f (2q − √
q) ≤ q + √

q. (8)

Considering two disjoint Baer subplanes we get

f (2q + 2
√

q + 2) ≤ 2q + 2
√

q + 2. (9)

Theorem 23. Equality holds in (7) and (8) for q ≥ 81.

We also conjecture that equality holds in (9), too (at least for large enough q). For the
proof of Theorem 23 we need the following classical results and a few lemmata.
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Lemma 24 (Bruen [8], sharpening by Bruen and Thas [9]). Suppose that S ⊆ P
is a nontrivial blocking set (i.e. it meets every line but does not contain any) then
|S| ≥ q + √

q + 1. Moreover, if |S| = q + √
q + 2, and q ≥ 9 is of square order, then

there exists a point x ∈ S such that S \ {x} is the point set of a Baer subplane.

Let U ⊆ L be a set of lines. A set C ⊆ P is called a near-blocker of U if it meets
exactly all but one member of U .

Lemma 25. Let U be a set of lines in PG(2, q).

(a) Suppose that ∩�∈U� = ∅. Then there exists a near-blocker of size at most |U |/2.
(b) Suppose that q ≥ 5 is odd and U cannot be blocked by a 2-element set. Then there

exists a near-blocker of size at most |U |/3 + (q + 1)/6.

Proof. (a) Let us apply induction on the size of |U |. The cases |U | = 1, 2, 3 are trivial.
If U cannot be covered by two points then select any point p ∈ P covered at least twice
by the lines of U and use induction from U \ L({p}). Otherwise, some two points x1, x2

cover all lines. Assuming that degU (x1) ≥ degU (x2), select x1 and one element from all
but one of the lines of U going through x2 and avoiding x1.

(b) For |U | ≤ q + 2 we have �|U |/2� ≤ |U |/3 + (q + 1)/6 and we can apply case (a).
(If |U | = q + 2 we make use of the fact that q is odd.) We may now suppose |U | ≥ q + 3,
so maxp degU (p) ≥ 3. Consider first the case whenU cannot be covered by three vertices.
Chose a maximum degree vertex p and apply the induction hypothesis to U \ L({p}).
Finally, if some set {x1, x2, x3} meets every member of U we choose the two highest
degree vertices among them and one element from all but one of the lines of U going
through the third, avoiding the other two. In this way we obtain a near-cover of size at
most 2 + (|U |/3 − 1). �

The following lemma will be useful when |Le(A)|, t1, and t2 are all small.

Lemma 26.

(a) Let A = (� \ T1) ∪ T2 where � is a line, T1 ⊆ �, T2 ∩ � = ∅, and ti = |Ti |. Then
|Le(A)| ≥ (t1 + t2)q − t2(2t1 + t2 − 2).

(b) Let A = (B \ T1) ∪ T2 where B is a Baer subplane, T1 ⊆ B, T2 ∩ B = ∅, and
ti = |Ti |. Then |Le(A)| ≥ (t1 + t2)q − t2(2t1 + t2 − 1) − t1

√
q.

Proof. (a) Consider the lines through a point x ∈ T2. Exactly q + 1 − t1 of them meet
� \ T1. At most t2 − 1 of these lines contain a further point of A (namely a point from T2).
Thus we have obtained at least t2(q + 1 − t1 − (t2 − 1)) 2-point lines. Next consider the
q lines through a point y ∈ T1 other than �. All but t2 avoids T2, too, thus giving at least
t1(q − t2) zero-point lines. The total number of these lines gives the desired lower bound.

(b) Every point x ∈ T2 is incident to at least (q − t1) − (t2 − 1) 2-point lines, and every
point y ∈ T1 is incident to at least q − √

q − t2 zero-point lines. �

Proof of equality in (7). Suppose, on the contrary, that we have a set of lines R,
|R| = 2q + √

q, such that for S = ∑
�∈R � we have |S| < q + √

q + 2. Since |S| is even,
we have |S| ≤ q + √

q. Since R is odd we have R = Le(S). Thus S meets every line
from L \ R. Let U be the set of lines avoiding S, we have U ⊆ R.

First consider the case when there is a set V , |V | ≤ 2, meeting all points of U . (This
includes the case U = ∅.) Then S ∪ V meets all lines, so is a blocking set.
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We claim that S ∪ V does not contain a line, so is a non-trivial blocking set. Suppose,
on the contrary, that there is a line � ⊆ S ∪ V . Apply Lemma 26 (a) with A = S = (� \
T1) ∪ T2 where T1 = � ∩ V , |T1| ≤ 2 and T2 = S \ �, |T2| ≤ |S ∪ V | − |�| ≤ √

q + 1.
We obtain that

|Le(S)| ≥ t1q + t2(q + 2 − 2t1 − t2) ≥ t1q + t2(q − √
q − 3).

Since |Le(S)| = 2q + √
q we obtain that |T1| + |T2| ≤ 2 for q ≥ 49.

We finish the proof of our claim by observing that for |T1| + |T2| ≤ 2, T1 ⊆ �, the
number of even lines |Le((� \ T1) ∪ T2)| cannot be 2q + √

q. Indeed, in the case T1 = ∅
we have |Le(S)| ≤ t2q + 2 < 2q + √

q. In the case t2 = 0 we have |Le(S)| ≤ 1 + t1q <

2q + √
q. Finally, in the case t1 = t2 = 1 we have |Le(S)| = 2q − 1 < 2q + √

q.
Consider S ∪ V , which is a nontrivial blocking set of size at most q + √

q + 2. By the
Bruen-Thas theorem (Lemma 24) there is a Baer subplain B ⊆ S ∪ V . Thus we know
a lot about the structure of S, we can write S = (B \ T1) ∪ T2 where T1 = B \ S (it is a
subset of V , so t1 ≤ 2) and T2 = S \ B ⊆ (S ∪ V ) \ B so t2 ≤ 1.

We finish the proof of the case |V | ≤ 2 by checking all possible values of t1 and t2. In
case of t1 = 2, t2 = 1, Lemma 26 (b) applied to A = S gives |Le(S)| ≥ 3q − 4 − 2

√
q.

This exceeds 2q + √
q for q ≥ 25. We obtain that t1 + t2 ≤ 2. Since |S| is even and |B|

is odd their symmetric difference (i.e. T1 ∪ T2) is odd, we get t1 + t2 = 1. So S should
be one of the examples discussed in the beginning of this section and we are done.

From now on suppose that there is no set V , |V | ≤ 2, meeting all points of U . Apply
Lemma 25 (b) to U to obtain a near-blocker C of U of size at most |U |/3 + (q + 1)/6
and a line �C ∈ U missed by C. We proceed as in the proof of Theorem 6.

The set S ∪ C meets all lines except �C , so it is a blocking set of the affine plane
PG(2, q) \ �C . Then Lemma 8 yields |S ∪ C| ≥ 2q − 1. We obtain

2q − 1 ≤ |S| + |C| ≤ (q + √
q) + |U |/3 + (q + 1)/6.

Here |U | ≤ |R| = 2q + √
q so the right hand side is at most (11q + 8

√
q + 1)/6. This

cannot hold for q ≥ 81. This final contradiction implies that |S| ≤ q + √
q is not possible

for q ≥ 81 and we are done. �

Proof of equality in (8). This proof is similar to the previous proof, but simpler.
Suppose, on the contrary, that we have a set of lines R, |R| = 2q − √

q such that for
S = ∑

�∈R � we have |S| < q + √
q. As |S| is even, we have |S| ≤ q + √

q − 2. Since
R is odd we have R = Le(S). Thus S meets every line from L \ R. Let U be the set of
lines avoiding S, so that U ⊆ R.

If there is a set V , |V | ≤ 2, meeting all points of U (including the case U = ∅) then
S ∪ V meets all lines, it is a blocking set of size at most q + √

q. By the Bruen theorem
(Lemma 24) it must contain a line �. Apply Lemma 26 (a) with A = S = (� \ T1) ∪ T2

where T1 = � ∩ V , |T1| ≤ 2 and T2 = S \ �, |T2| ≤ |S ∪ V | − |�| ≤ √
q − 1. We obtain

that

|Le(S)| ≥ t1q + t2(q + 2 − 2t1 − t2) ≥ t1q + t2(q − √
q − 1).

Since |Le(S)| = 2q − √
q we obtain that |T1| + |T2| ≤ 2 for q ≥ 25.

We finish the investigation of this case by observing that for |T1| + |T2| ≤ 2, T1 ⊆ �,
the number of even lines |Le((� \ T1) ∪ T2)| cannot be 2q − √

q. Since both S and � are
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even sets, their symmetric difference (i.e. T1 ∪ T2) is even. We have four cases to check
according to the value of (t1, t2) ∈ {(2, 0), (1, 1), (0, 2), (0, 0)}. The sizes of |Le(S)| are
2q + 1, 2q − 1, again 2q + 1, and 1, respectively. None of these is equal to 2q − √

q.
From now on suppose that U 
= ∅ and there is no set V , |V | ≤ 2, meeting all points

of U . Apply Lemma 25 (b) to U to obtain a near-blocker C of U of size at most
|U |/3 + (q + 1)/6 and a line �C ∈ U missed by C. We proceed as in the proof of
Theorem 6.

The set S ∪ C meets all lines except �C , so it can be considered as a blocking set of
the affine plane PG(2, q) \ �C . Then Lemma 8 yields |S ∪ C| ≥ 2q − 1. We obtain

2q − 1 ≤ |S| + |C| ≤ (q + √
q − 2) + |U |/3 + (q + 1)/6.

Here |U | ≤ |R| = 2q − √
q so the right-hand-side is at most (11q + 4

√
q − 11)/6. This

cannot hold for q ≥ 49 implying that |S| ≤ q + √
q is not possible for q ≥ 49 and we

are done. �

With some more work we can see that only the examples from the Baer subplane give
equalities in (7) and (8) (for q > q0).

Many questions remain open. What is f (q + 2), and f (q + 3)? The least we should
be able to do is to prove better bounds on these. Also, any information about f (r) for
r ≤ 2q3/2 would be great.

ACKNOWLEDGMENTS

The authors are indebted to the referees for their helpful comments and suggestions.

REFERENCES

[1] N. Alon, Combinatorial Nullstellensatz, Combin Prob Comput 8 (1999), 7–29.
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APPENDIX: VALUES OF f (r) FOR SMALL q:

TABLE A1. q = 3

r f(r) r f(r)

1 4 4 4
2 6 5 4
3 6 6 2

TABLE A2. q = 5

r f(r) r f(r) r f(r)

1 6 6 6 11 4
2 10 7 8 12 4
3 12 8 8 13 6
4 12 9 6 14 6
5 10 10 2 15 4

TABLE A3. q = 7

r f(r) r f(r) r f(r) r f(r)

1 8 8 8 15 6 22 6
2 14 9 12 16 8 23 6
3 18 10 10 17 8 24 4
4 20 11 10 18 6 25 8
5 20 12 12 19 10 26 6
6 18 13 8 20 4 27 6
7 14 14 2 21 8 28 4
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TABLE A4. q = 9

r f(r) r f(r) r f(r) r f(r)

1 10 10 10 19 8 28 4 37 6
2 18 11 16 20 12 29 10 38 6
3 24 12 12 21 10 30 6 39 8
4 28 13 14 22 10 31 8 40 8
5 30 14 14 23 12 32 4 41 10
6 30 15 12 24 8 33 10 42 6
7 28 16 16 25 10 34 6 43 8
8 24 17 10 26 10 35 8 44 8
9 18 18 2 27 12 36 4 45 6

TABLE A5. q = 11

r f(r) r f(r) r f(r) r f(r) r f(r) r f(r)

1 12 12 12 23 10 34 10 45 8 56 8
2 22 13 20 24 16 35 14 46 6 57 8
3 30 14 14–26 25 16 36 4 47 10 58 6
4 36 15 14–18 26 14 37 12 48 8 59 10
5 40 16 16 27 14 38 10 49 12 60 8
6 42 17 16 28 12 39 10 50 6 61 8
7 42 18 14–18 29 16 40 4 51 10 62 10
8 40 19 14–26 30 10 41 12 52 8 63 10
9 36 20 16–20 31 14–18 42 6 53 12 64 8
10 30 21 12 32 12 43 14 54 6 65 8
11 22 22 2 33 16 44 4 55 10 66 6
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FIGURE A1. Graph of f (r) for q = 11. Dots represent known values, and stars represent
possible values for the values of r for which f (r) is unknown.
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