Minimal Symmetric Differences of Lines in Projective Planes # Paul Balister, ¹ Béla Bollobás, ^{1,3} Zoltán Füredi, ³ and John Thompson² ¹Department of Mathematical Sciences, University of Memphis, Memphis Tennessee 38152, USA ²Department of Pure Mathematics and Mathematical Statistics, Cambridge CB3 0WB, United Kingdom ³Alfréd Rényi Institute of Mathematics, 1053 Budapest, Hungary Received March 17, 2013; revised October 29, 2013 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jcd.21390 Abstract: Let q be an odd prime power and let f(r) be the minimum size of the symmetric difference of r lines in the Desarguesian projective plane PG(2,q). We prove some results about the function f(r), in particular showing that there exists a constant C > 0 such that f(r) = O(q) for $Cq^{3/2} < r < q^2 - Cq^{3/2}$. © 2014 Wiley Periodicals, Inc. J. Combin. Designs 00: 1–17, 2014 **Keywords:** Desarguesian projective planes; codes; blocking #### 1 INTRODUCTION Let q be an odd prime power and consider the Desarguesian projective plane PG(2,q). (For detailed definitions of lines, coordinates, conics, etc., see, e.g. the monograph Hirschfeld [11].) Write \mathcal{P} and \mathcal{L} for the set of points and lines of PG(2,q), respectively. We shall consider the subsets of \mathcal{P} or \mathcal{L} as elements of a vector space isomorphic to \mathbb{F}_2^N , $N:=q^2+q+1$, and will switch between the "subset" and "vector" interpretations without further comment. For example, for subsets A and B of \mathcal{P} or \mathcal{L} , A+B represents the symmetric difference of A and B. Contract grant sponsor: Hungarian National Science Foundation OTKA 104343 (Z.F.); contract grant sponsor: European Research Council Advanced Investigators; contract grant number: 267195. Define for $0 \le r \le N$, $$f(r) = \min \left\{ \left| \sum_{i=1}^{r} \ell_i \right| : \ell_1, \dots, \ell_r \in \mathcal{L} \text{ distinct} \right\},$$ (1) that is the minimal symmetric difference of r lines in PG(2, q). The problem of determining f(r) is motivated by the fact that it is an algebraic version of the Besicovitch-Kakeya [3] problem in a projective plane—determining the minimum size of a set that contains lines (or segments) in many directions. For more results on Kakeya's problem in the finite fields see [5], [10] and the references there. Given a set R of lines in PG(2, q), call a point *odd* if it is incident with an odd number of lines in R, and define the terms "even point," "single point," "double point," etc., analogously. Let $\mathcal{P}^o(R)$ be the set of odd points, and let $\mathcal{P}^e(R)$, $\mathcal{P}^k(R)$, $\mathcal{P}^{\geq k}(R)$ be defined analogously as the set of points that are even, multiplicity k, and multiplicity at least k, respectively. Dually, for $S \subseteq \mathcal{P}$, define $\mathcal{L}^o(S)$ to be the set of lines $\ell \in \mathcal{L}$ such that $|\ell \cap S|$ is odd. Define $\mathcal{L}^e(S)$, $\mathcal{L}^k(S)$, and $\mathcal{L}^{\geq k}(S)$ analogously. By duality of lines and points in the projective plane PG(2, q) we can rewrite (1) in the equivalent forms $$f(r) = \min_{R \subseteq \mathcal{L}, |R| = r} |\mathcal{P}^{o}(R)| = \min_{S \subseteq \mathcal{P}, |S| = r} |\mathcal{L}^{o}(S)|.$$ (2) We shall therefore often switch the viewpoint and consider sets of points that have odd intersections with few lines. The next observation, proved below, is that $\mathcal{P}^o(R)$ almost determines R, and $\mathcal{L}^o(S)$ almost determines S. Indeed, the N vectors specified by \mathcal{L} span an (N-1)-dimensional subspace of $\mathbb{F}_2^{\mathcal{P}}$ and their only linear dependency is $\sum_{\ell \in \mathcal{L}} \ell = 0$. This gives that $\mathcal{P}^o(R) = \mathcal{P}^o(R')$ iff either R = R' or $R' = \mathcal{L} \setminus R$. Indeed, it is well known that the $N \times N$ point line 0–1 incidency matrix A has rank N-1 (one can consider $AA^T = J + qI$ and this has rank N-1 over \mathbb{F}_2 , see, e.g. Ryser [14]). The following useful lemma is based on this observation. **Lemma 1.** If $R = \mathcal{L}^o(S)$ then |R| is even and either $S = \mathcal{P}^e(R)$ (if |S| is odd) or $S = \mathcal{P}^o(R)$ (if |S| is even). Dually, if $S = \mathcal{P}^o(R)$ then |S| is even and either $R = \mathcal{L}^e(S)$ (if |R| is odd) or $R = \mathcal{L}^o(S)$ (if |R| is even). *Proof.* The maps \mathcal{L}^o and \mathcal{P}^o can be thought of as \mathbb{F}_2 -linear maps between the set of subsets of \mathcal{P} and \mathcal{L} , each regarded as a vector space isomorphic to \mathbb{F}_2^N . For $p \in \mathcal{P}$, $|\mathcal{L}^o(\{p\})| = |\{\ell \in \mathcal{L} : p \in \ell\}| = q + 1$ is even, so $|\mathcal{L}^o(S)|$ is even for all $S \subseteq \mathcal{P}$. Moreover $$\mathcal{P}^{o}(\mathcal{L}^{o}(\{p\})) = \sum_{\ell \ni p} \ell = \mathcal{P} - \{p\} \in \mathbb{F}_{2}^{\mathcal{P}}$$ as the number q+1 of lines through p is even and there is a unique line through p and p' for every $p' \neq p$. By linearity, $\mathcal{P}^o(\mathcal{L}^o(S)) = \sum_{p \in S} (\mathcal{P} - \{p\}) = S$ when |S| is even, and so \mathcal{P}^o has rank at least N-1. Also, $\mathcal{P}^o(\mathcal{L}) = \emptyset$ as every point is in an even number of lines. Hence the kernel of \mathcal{P}^o is $\{0, \mathcal{L}\}$. Similarly the kernel of \mathcal{L}^o is $\{0, \mathcal{P}\}$. The result now follows as $\mathcal{P}^e(R) = \mathcal{P} \setminus \mathcal{P}^o(R)$ and $\mathcal{L}^e(R) = \mathcal{L} \setminus \mathcal{L}^o(R)$. **Lemma 2.** For $0 \le r \le N$, f(N - r) = f(r). *Proof.* Replacing any set $R = \{\ell_1, \dots, \ell_r\}$ by its complement $\mathcal{L} \setminus R$ and noting that $\sum_{\ell \notin R} \ell = \sum_{\ell \in R} \ell$, we find that $f(N-r) \leq f(r)$. Reversing the roles of r and N-r gives $f(N-r) \geq f(r)$. **Lemma 3.** Let R be any set of r lines in \mathcal{L} . Then $$r(q+2-r) \le |\mathcal{P}^{o}(R)| \le rq+1$$ and $$|\mathcal{P}^o(R)| \equiv r(q+2-r) \mod 4.$$ In particular, $f(r) \ge r(q+2-r)$ and $f(r) \equiv r(q+2-r) \mod 4$. *Proof.* Each line of R contains at least q+1-(r-1)=q+2-r points that do not lie on any other line of R. Thus there are at least r(q+2-r) points lying on a single line, and so in particular $|\mathcal{P}^o(R)| \ge r(q+2-r)$. On the other hand, one line contains q+1 points and the symmetric difference of two lines contains exactly 2q points. Thus $|\mathcal{P}^o(R)| < rq + 1$ for r < 2. For r > 2 write $R = R' \cup \{\ell, \ell'\}$. Then by induction $$\begin{aligned} |\mathcal{P}^{o}(R)| &= |\mathcal{P}^{o}(R') + \mathcal{P}^{o}(\{\ell, \ell'\})| \\ &\leq |\mathcal{P}^{o}(R')| + |\mathcal{P}^{o}(\{\ell, \ell'\})| \\ &\leq ((r-2)q+1) + 2q = rq + 1. \end{aligned}$$ Now let $t_i = |\mathcal{P}^i(R)|$ be the set of points of multiplicity i. Then $\sum it_i = r(q+1)$ is the number of points in all the lines counted with multiplicity, and $\sum i(i-1)t_i = r(r-1)$ is the number of intersection points between ordered pairs of lines counted with multiplicity. Subtracting gives $\sum i(2-i)t_i = r(q+2-r)$. But $i(2-i) \equiv 0 \mod 4$ when i is even and $i(2-i) \equiv 1 \mod 4$ when i is odd. Thus $r(q+2-r) \equiv \sum_{i \text{ odd}} t_i = |\mathcal{P}^o(R)| \mod 4$. The function f(r) is easily determined for $0 \le r \le q+1$ (and hence by Lemma 2 also for $N-q-1 \le r \le N$). **Theorem 4.** For 0 < r < q + 1, f(r) = r(q + 2 - r). *Proof.* Lemma 3 implies $f(r) \ge r(q+2-r)$, so it remains by (2) to construct a set S of points with |S| = r and $|\mathcal{L}^o(S)| = r(q+2-r)$. Let $C = \{[s^2:st:t^2]: [s:t] \in PG(1,q)\}$ be the conic $XZ = Y^2$. We note that all lines ℓ intersect C in at most 2 points, and $|\ell \cap C| = 1$ if and only if ℓ is one of the q+1 tangent lines to C. Let S be any subset of C of size r. No line intersects S in more than two points and so for any $p \in S$ exactly r-1 lines through p meet C at another point of S, while (q+1)-(r-1)=q+2-r lines through p fail to meet C at any other point of S. Thus there are exactly r(q+2-r) lines that meet S in an odd number of points and so $|\mathcal{L}^o(S)|=r(q+2-r)$ as required. The function f(r) cannot vary too rapidly; trivially we have $|f(r+1) - f(r)| \le q+1$. In fact, we can say slightly more. **Theorem 5.** For 0 < r < N - 2, $|f(r+1) - f(r)| \le q - 1$. Note that f(0) = f(N) = 0 and f(1) = f(N-1) = q+1, so this result fails for r = 0, N-1. On the other hand, the inequality can be sharp. For example, f(2) - f(1) = f(q+1) - f(q) = q-1 by Theorem 4. There are other examples, e.g. f(2q-1) = q+1 and f(2q) = 2 (see Theorem 13 below). *Proof.* Assume |R| = r and $\mathcal{P}^o(R) = S$ with |S| = f(r). Note that $S \neq \emptyset$ as $R \neq \emptyset$, \mathcal{L} . Pick $p \in S$. Assume every line ℓ through p intersects S in an odd number of points. Then every line through p intersects $S \setminus p$ is an even number of points. Since distinct lines through p partition $S \setminus p$, we see that $|S \setminus p|$ is even and hence |S| is odd, contradicting Lemma 1. Thus there exists a line ℓ_e that meets S in an even (and positive) number of points. If all $\ell \in \mathcal{L}$ met S in an even number of points then $\mathcal{L}^o(S) = \emptyset$ and so $S = \emptyset$ or \mathcal{P} , a contradiction. Thus there exists a line ℓ_o that meets S in an odd number of points. As $R = \mathcal{L}^o(S)$ or $\mathcal{L}^e(S)$, either ℓ_e or ℓ_o fails to lie in R. Adding such a line to R increases R by one and increases R by at most R implying Replacing r by N-r-1 and applying Lemma 2 gives $f(r+1)-f(r)=-(f(N-r)-f(N-r-1))\geq -(q-1)$, completing the proof of Theorem 5. #### 2 THE CASE OF q + 2 LINES Our next aim is to prove that the jump f(q+2) - f(q+1) = f(q+2) - (q+1) is not too small. **Theorem 6.** f(q+2) = 2q - 2 for $q \le 13$. More generally, for $q \ge 7$ we have
$\frac{3}{2}(q+1) \le f(q+2) \le 2q-2$. To prove this we shall use several lemmas, some classical results of this topic. Most of their proofs use either Rédei's method (see e.g. [13]) or some version of Combinatorial Nullstellensatz (see e.g. [1, Theorem 1.2]). Arrangements of q + 2 lines are the most investigated part of finite geometries. In the following, a *triple point* with respect to a set of lines R will refer to a point that lies on *at least* three lines. **Lemma 7** (Bichara and Korchmáros [2]). Let R be a set of q + 2 lines in PG(2, q). Then there are at most two lines without triple points. A *blocking set* in the affine plane AG(2, q) or in the projective plane PG(2, q) is a set B of points such that each line is incident with at least one point of B. **Lemma 8** (Brouwer and Schrijver [6] and Jamison [12]). Let B be a blocking set in AG(2, q). Then B consists of at least 2q - 1 points. **Lemma 9** (Szőnyi [15]). Let B be a minimal blocking set in PG(2, q) of size less than 3(q + 1)/2 where $q = p^h$ for some prime p. Then all lines meet B in 1 mod p points. The following lemma is contained in [5] (top of page 211) as a part of a more complex argument. For completeness we reproduce its proof here. **Lemma 10** (Blokhuis and Mazzocca [5]). Let R be a set of q + 2 lines with at least one of the lines containing no triple points. Then the number of odd points is at least 2q minus the number of lines in R without triple points. *Proof.* Without loss of generality, we may assume that R contains the line at infinity and that this line has no triple point. Let L be the set of q+1 lines in AG(2,q) obtained by restricting the remaining lines of R to AG(2,q). As the line at infinity contains no triple point, no two lines in L are parallel. Then as |L| = q+1, every line ℓ in AG(2,q) is parallel to precisely one line of L. **Claim.** In AG(2, q) the odd points block all lines in AG(2, q), except those in L that have no triple points. Indeed, assume first that $\ell \notin L$. Then ℓ intersects q of the lines in L; indeed it intersects all but the unique line in L parallel to ℓ . Since q is odd, ℓ has an odd point. Now assume $\ell \in L$ and has a triple point. As there are q points in L and only q other lines in L, the fact that some point in ℓ meets at least two of these lines implies that there is a point of ℓ that meets no other line of L. Such a point is a single (and hence odd) point. Adding one point from each line without a triple point (except the line at infinity) we obtain a blocking set of the affine plane, which by Lemma 8 contains at least 2q - 1 points. The result follows. Proof of the lower bound in Theorem 6. Let R be a set of q+2 lines with $f(q+2) = |\mathcal{P}^o(R)|$, $S := \mathcal{P}^o(R)$, and let T_3 be the set of triple points. We will show that $|S| \ge 3(q+1)/2$. First, suppose that R has a line without a triple point. Then by Lemmas 7 and 10 there are at least 2q - 2 odd points. Second, suppose all q+2 lines in R have triple points and |S| < 2q-2. Since $f(q+2) \equiv 0 \mod 4$ by Lemma 3 we may suppose that $|S| \leq 2q-6$. **Claim.** S is a minimal blocking set in PG(2, q). Indeed, every line ℓ in PG(2, q) is either in our set (in which case it contains a single point), or intersects all q + 2 lines of R. As q + 2 is odd, ℓ must contain an odd point. That S is minimal can be seen as follows: Let $v \in S$ and suppose on the contrary that $S \setminus \{v\}$ meets all lines. Since v is an odd point, there are 2m+1 lines of R containing it. Each of these lines contains at least 2m-1 additional odd (single) points of S. Moreover, every line ℓ not in R has an odd number of odd points. Then if $\ell \notin R$ is a line through v, we have $|S \cap \ell| \ge 2$ and hence $|S \cap \ell| \ge 3$. In total we find at least $(2m+1)(2m-1)+2(q-2m) \ge 2q-1$ odd points beside v. This contradiction completes the proof of the Claim. We count multiplicities of intersections as in the proof of Lemma 3. If we let t_i be the number of points that occur in exactly i of our lines, then $\sum_i it_i = \sum_i i(i-1)t_i = (q+2)(q+1)$. Thus $\sum_i i(i-2)t_i = 0$, rearranging $$|S| = \sum_{i \text{ odd}} t_i = \sum_{i \ge 3} (i(i-2) + (i \text{ mod } 2)) t_i = 4t_3 + 8t_4 + 16t_5 + 24t_6 + \cdots$$ (3) Let $R_3 \subseteq R$ be the set of lines having a single triple point, and that point has degree three, and let $R_4 \subseteq R$ be the set of lines having a single triple point, and that point has degree at least four. Every line in R has at least one triple point, the members of $R \setminus (R_3 \cup R_4)$ have at least two. So adding up the degrees of triple points we obtain $\sum_{i\geq 3} it_i = \sum_{\ell\in R} |\ell\cap T_3| \geq 2|R| - |R_3| - |R_4|$. Consider $\sum_{i\geq 4} it_i$, it is an upper bound for $|R_4|$. Summarizing we obtain $$3t_3 + \sum_{i>4} 2it_i \ge 2|R| - |R_3|.$$ This and (3) yield $|S| \ge 2q + 4 - |R_3|$. Every R_3 line meets S in two elements, so actually $R_3 = \emptyset$ by Lemma 9 for |S| < 3(q+1)/2. This contradiction completes the proof of $|S| \ge 3(q+1)/2$. For $q \le 13$ we note that 3(q+1)/2 > 2q - 6, so f(q+2) = 2q - 2. Finally, to show $f(q+2) \le 2q-2$ recall that $f(q+2) \le f(q+1) + (q-1) = 2q$ by Theorems 5 and 4, while $f(q+2) \equiv 0 \mod 4$ by Lemma 3. Thus $f(q+2) \le 2q-2$. This upper bound on f(q+2) can also be seen in the following way. There is an action of SL(2,q) on PG(2,q) in which the orbits are A, B, and C, where C is the conic described above, A is the set of points that lie on no tangent of C and B is the set of points that lie on two tangents of C. Now $|\mathcal{L}^o(C)| = q+1$, so if $p \in A$ then $|\mathcal{L}^o(C \cup \{p\})| = (q+1) + (q+1)$ as all lines through p change from having an even intersection with C to having an odd intersection with $C \cup \{p\}$. On the other hand, if $p \in B$ then $|\mathcal{L}^o(C \cup \{p\})| = (q+1) + (q-1) - 2 = 2q-2$ as there are q-1 lines thorough p with an even intersection with C and an odd intersection with $C \cup \{p\}$, while there are two lines through p that are tangent to C and so have odd intersection with C and even intersection with $C \cup \{p\}$. The result now follows from (2). We conjecture that in fact the upper bound is correct in Theorem 6. **Conjecture 11.** $$f(q + 2) = 2q - 2$$. #### 3 EXACT VALUES NEAR 2q A few more values of f(r) are known when r is small. To derive these we shall make use of the following result. **Lemma 12.** For even s, f(s) is the minimum even r such that there exists a set R of lines with |R| = r and $|\mathcal{P}^{\circ}(R)| = s$. *Proof.* Assume R is a set of lines with |R| = r and $\sum_{\ell \in R} \ell = S$ with |S| = s. Now $|\mathcal{L}^o(S)|$ is even while $|\mathcal{L}^e(S)|$ is odd. Hence $R = \mathcal{L}^o(S)$ as r is even. Thus, by (2), $f(s) \le r$. Conversely, if f(s) = r and |S| = s with $|\mathcal{L}^o(S)| = r$, then r is even and, setting $R = \mathcal{L}^o(S)$, we have |R| = r and $|\mathcal{P}^o(R)| = |S| = s$ as s is even. **Theorem 13.** $$f(2q-1) = q+1$$, $f(2q) = 2$, $f(2q+1) = q-1$. *Proof.* If |R| = 2 then $|\mathcal{P}^o(R)| = 2q$, so $f(2q) \le 2$ by Lemma 12. However f(r) > 0 and f(r) is even for 0 < r < N, so f(2q) = 2. Thus f(2q - 1), $f(2q + 1) \le q + 1$ by Theorem 5. Also $f(2q + 1) \equiv (2q + 1)(-q + 1) \equiv q - 1 \mod 4$ and $f(2q - 1) \equiv (2q - 1)(-q + 3) \equiv q + 1 \mod 4$ by Lemma 3. Thus it is sufficient to show that $f(2q \pm 1) > q - 3$. As $2q \pm 1$ is odd, there exists a R with $|R| = f(2q \pm 1)$ and $|\mathcal{P}^o(R)| = N - (2q \pm 1) \ge q^2 - q$. But $|\mathcal{P}^o(R)| \le q|R| + 1$ by Lemma 3, so |R| > q - 3. □ #### 4 A GRAPH CLIQUE DECOMPOSITION LEMMA The values of f(r) for q+2 < r < 2q-1 remain to be determined, and indeed f(r) is unknown for many values of $r < Cq^{3/2}$, although some non-trivial bounds are given by Lemmas 19 and 20 below. For larger r, between $Cq^{3/2}$ and $N-Cq^{3/2}$, we shall show much more. Indeed it seems that f(r) can be determined for most values of r in this range, although an explicit description of these values seems difficult. Suppose that s is even (the case when s is odd follows by considering f(N-s)). By Lemma 12 and duality it is enough to determine for each even r in turn whether or not there exists a set S of points such that $|\mathcal{L}^o(S)| = s$. Any set of points S induces an edge-decomposition of the complete graph K_S with vertex set S into cliques on the sets $\ell \cap S$, $\ell \in \mathcal{L}$. Indeed, every pair of points of S lie in a unique line $\ell \in \mathcal{L}$ so each edge K_S lies in a unique clique $K_{\ell \cap S}$. We show that $s = |\mathcal{L}^o(S)|$ can be determined in terms of the sizes of these cliques. **Lemma 14.** Suppose r = |S| is even and $|\mathcal{L}^o(S)| = rq - 4t$. For $\ell \in \mathcal{L}$ write $r_\ell = |S \cap \ell|$. Then $\sum_{\ell \in \mathcal{L}} \left\lfloor \frac{r_\ell}{2} \right\rfloor = \frac{r}{2} + 2t$. *Proof.* As there are q+1 lines through each point of S, $\sum_{\ell \in \mathcal{L}} r_{\ell} = r(q+1)$. Thus $$|rq - 4t| = |\mathcal{L}^o(S)| = \sum_{r_\ell \text{ odd}} 1 = \sum_\ell \left(r_\ell - 2 \left\lfloor \frac{r_\ell}{2} \right\rfloor \right) = rq + r - 2 \sum_\ell \left\lfloor \frac{r_\ell}{2} \right\rfloor.$$ Hence $$\sum \left| \frac{r_\ell}{2} \right| = \frac{r}{2} + 2t$$. Note that by Lemma $3 s = |\mathcal{L}^o(S)|$ must be of the form rq - 4t with $0 \le t \le {r \choose 2}$. Since we are interested in the smallest r for which a suitable set S exists, typically we expect t to be relatively small and r not much bigger that s/q. We can therefore reduce the problem to the question of (a) whether there is *any* clique decomposition of K_r into cliques of size r_1, \ldots, r_n with a given value of $\sum \left\lfloor \frac{r_1}{2} \right\rfloor$, and (b) whether such a
decomposition can be realized by a set of points inside PG(2, q). We call an edge-decomposition Π of K_r into cliques of orders r_1, \ldots, r_n a *simple decomposition* if there is at most one value of i with $r_i > 3$. In other words, K_r is decomposed as single edges, triangles, and at most one larger clique. We write $M(\Pi)$ for the sum $\sum_{i=1}^{n} \left| \frac{r_i}{2} \right|$. **Lemma 15.** Suppose we are given an edge-decomposition Π of K_r with $M(\Pi) < \frac{1}{4}r(\sqrt{4r-3}-1)$. Then there exists a simple edge-decomposition Π' of K_r with $M(\Pi') = M(\Pi)$. *Proof.* Assume Π decomposes K_r into cliques of orders r_1, \ldots, r_n with $r_1 \geq r_2 \geq \cdots \geq r_n$. Let C_i be the i'th clique. Then there are $r_1(r-r_1)$ edges from $V(C_1)$ to $V(K_r) \setminus V(C_1)$. Moreover, each clique C_i , i > 1, can meet C_1 in at most one vertex and hence covers at most $r_i - 1$ of these edges. Thus $\sum_{i>1} (r_i - 1) \geq r_1(r-r_1)$ and hence $$M(\Pi) \ge \sum_{i=1}^{n} \frac{r_i - 1}{2} \ge \frac{r_1 - 1}{2} + \frac{r_1(r - r_1)}{2}.$$ (4) On the other hand there are $\binom{r}{2}$ edges to be covered in total, so $$M(\Pi) \ge \sum_{i=1}^{n} \frac{r_i - 1}{2} = \sum_{i=1}^{n} \frac{1}{r_i} {r_i \choose 2} \ge \frac{1}{r_1} {r \choose 2}.$$ (5) For $r_1 < r/2$, the bound in (4) is increasing and the bound in (5) is decreasing as r_1 increases, so the smallest bound on $M(\Pi)$ occurs when the two bounds are equal. It can be checked that this occurs when $r = r_1^2 - r_1 + 1$ with a common bound $M(\Pi) \ge \frac{1}{2}r(r_1 - 1) = \frac{1}{4}r(\sqrt{4r - 3} - 1)$. This contradicts the assumption on $M(\Pi)$, so we may assume $r_1 \ge r/2$. Let E_1 be the set of $r_1(r-r_1)$ edges joining C_1 to the rest of K_r and E_2 be the set of $\binom{r-r_1}{2}$ edges of K_r not meeting C_1 . For each clique C_i , i > 1, we note that for all $r_i \ge 2$, $$|E_1 \cap E(C_i)| - |E_2 \cap E(C_i)| \le \left| \frac{r_i}{2} \right| \le |E_1 \cap E(C_i)| + |E_2 \cap E(C_i)|.$$ Indeed, the right hand side is just $\binom{r_i}{2}$, while the left hand side is either $(r_i - 1) - \binom{r_i - 1}{2}$ or $-\binom{r_i}{2}$ depending on whether or not C_i meets some vertex of C_1 . Note that the lower bound is achieved if $r_i \in \{2, 3\}$ and C_i meets C_1 . Summing over all cliques gives $$\left\lfloor \frac{r_1}{2} \right\rfloor + |E_1| - |E_2| \le M(\Pi) \le \left\lfloor \frac{r_1}{2} \right\rfloor + |E_1| + |E_2|.$$ (6) Also note that $\lfloor \frac{r_1}{2} \rfloor \equiv \binom{r_1}{2} \mod 2$, so that $M(\Pi)$ is equivalent to either bound modulo 2. As $r_1 \geq r/2$, the graph on $E_1 \cup E_2$ can be packed with $|E_2|$ triangles each meeting C_1 . Indeed, it is enough to decompose K_{r-r_1} completely into at most r_1 partial matchings M_1, \ldots, M_{r_1} and then join each matching to a distinct vertex of C_1 to obtain sets of edge-disjoint triangles. For even $r-r_1$, it is well-known that K_{r-r_1} can be decomposed into $r-r_1-1 < r_1$ perfect matchings. For odd $r-r_1$ decompose K_{r-r_1+1} into $r-r_1 \leq r_1$ perfect matchings and remove a single vertex to give a decomposition of K_{r-r_1} into $r-r_1$ partial matchings. Completing the packing of $E_1 \cup E_2$ by including K_2 s covering the remaining edges of E_1 gives a decomposition Π'' of K_r that achieves the lower bound $M_0 = \lfloor r_1/2 \rfloor + |E_1| - |E_2|$ in (6). Now replacing $(M(\Pi) - M_0)/2 \leq |E_2|$ of the triangles of this packing with three K_2 s, allows us to increase $M(\Pi'')$ in steps of 2 until we get to a packing Π' of C_1 , edges, and triangles, with $M(\Pi') = M(\Pi)$. **Lemma 16.** Let $m = \lceil \sqrt{r-3} \rceil - 1$. Then for any integer s with $s \leq {r \choose 2}$, $s \equiv {r \choose 2} \mod 2$, and $s \geq \lfloor \frac{r-m}{2} \rfloor + \frac{m}{2}(2r-3m+1)$ there exists a simple decomposition Π of K_r with $M(\Pi) = s$. *Proof.* From the proof of Lemma 15 we know that we can construct a simple a decomposition for any $s \equiv \binom{r}{2}$ and $$\left\lfloor \frac{r_1}{2} \right\rfloor + r_1(r - r_1) - \binom{r - r_1}{2} \le s \le \left\lfloor \frac{r_1}{2} \right\rfloor + r_1(r - r_1) + \binom{r - r_1}{2}$$ with $r_1 \ge \frac{r}{2}$. It is a simple but tedious exercise to show that the intervals for $r_1 = \lceil \frac{r}{2} \rceil, \ldots, r - m$ cover every $s = \binom{r}{2}$ in the range from $\lfloor \frac{r-m}{2} \rfloor + \frac{m}{2}(2r - 3m + 1)$ to $\frac{3}{4}\binom{r}{2}$. For $s>\frac{3}{4}\binom{r}{2}$ it is enough to show that one can pack $\binom{r}{2}-s/2 \leq \binom{\lfloor r/2 \rfloor}{2}$ triangles into K_r . This also follows from the proof of Lemma 15 where it was shown that one can pack $\binom{\lfloor r/2 \rfloor}{2}$ triangles into $K_r \setminus E(K_{\lceil r/2 \rceil})$. Lemmas 15 and 16 show that if there exists a decomposition with $M(\Pi) = s$ then there exists a simple decomposition with $M(\Pi) = s$ except possibly in the range between about $\frac{1}{2}r^{3/2}$ and about $r^{3/2}$. There can exist non-simple decompositions in this range for which there is no simple decomposition. For example, the lines of a projective plane of order q', q' odd, give rise to a decomposition Π of K_r when $r = q'^2 + q' + 1$ with $M(\Pi) = (q'^2 + q' + 1)(q' + 1)/2$ (exactly the bound in Lemma 15). One can check that for a simple decomposition to have the same value of $M(\Pi)$ would require $\frac{q'-1}{2} < r_1 < \frac{q'+1}{2}$ for large q', an impossibility, so no corresponding simple decomposition exists. #### 5 REALIZING CLIQUE DECOMPOSITIONS OF THE PROJECTIVE PLANE We now turn to the question of whether a simple decomposition can be realized by a set of points in PG(2, q). One needs a set S formed by taking a large number r_1 of points in one line, and the remaining points only on lines intersecting S in at most three points. The proof of the following lemma provides a construction that realizes this in most relevant cases. **Lemma 17.** Fix r, $0 \le r \le q + 1$ and assume $r_1 \ge \max\{\frac{1}{3}(2r - 3), (2r - 3) - (q + 1)\}$. Then any simple decomposition Π of K_r with maximal clique of order r_1 can be realized by a set of points in PG(2, q). Consider sets of points that are subsets of $C \cup L$, where $C = \{XZ = Y^2\}$ is the conic used in the proof of Theorem 4 and $L = \{X = dZ\}$ is a line that does not intersect C (so d is chosen to be a quadratic nonresidue in the field \mathbb{F}_q). A simple calculation shows that the secant line joining $[s^2:st:t^2]$ and $[s'^2:s't':t'^2]$ on C meets L at the point [d(st' + s't):dtt' + ss':st' + s't] on L. This mapping of pairs of points on C to L is more easily described by introducing the norm group $G = \mathbb{F}_{a^2}^{\times}/\mathbb{F}_q^{\times}$. The points $p=[s^2\!:\!st\!:\!t^2]\in C$ correspond to the coset $\phi(p)=(s+t\sqrt{d})\mathbb{F}_q^{\times}$ and the coset $\alpha=0$ $(a+b\sqrt{d})\mathbb{F}_q^{\times}$ corresponds to the point $\psi(\alpha)=[db:a:b]\in L$. The secant line through $p, p' \in C$ then meets L at $\psi(\phi(p)\phi(p'))$. The key point is that G is cyclic of order q+1. Hence by taking a subset $P=\{p_1,p_2,\ldots,p_s\}$ of C with $2s-3\leq q+1$ such that $\phi(p_i)$ form a suitable geometric progression, the secants through these points meet L in only 2s-3 points (assuming $s \ge 2$). Indeed, we can take $\phi(p_i) = \alpha^i$ where α is a generator of G so that the secants meet L at the points $\psi(\alpha^3)$, $\psi(\alpha^4)$, ..., $\psi(\alpha^{2s-1})$. Moreover there are 4 points $(\psi(\alpha^3), \psi(\alpha^4), \psi(\alpha^{2s-2}), \psi(\alpha^{2s-1}))$ on L that meet just one secant, four which meet exactly two secants, etc., with one or three points meeting $\lfloor s/2 \rfloor$ secants (depending on the parity of s). Now let $P' = \{p'_1, \dots, p'_t\}$ be a set of t points on the line L and suppose there are k secants through two points of P meeting P', then $P \cup P'$ induces a simple edge decomposition of $K_{P \cup P'}$ with one clique of order |P'| and k triangles, the remaining cliques being single edges. We now consider the conditions on the parameter that allow us to vary k between the minimum of zero and the maximum of $\binom{s}{2}$, where $s \ge 2$. To achieve k = 0 requires $t \le (q+1) - (2s-3)$ as P' must avoid all the secant lines through P. To achieve $k = \binom{s}{2}$ requires $t \ge 2s - 3$ as P' must meet all secants through P. All values of k between the minimum and maximum can be achieved one step at a time by moving some point of P' so that it meets one more secant line. Now $s = r - r_1$ and $t = r_1$ so these conditions become $$r_1 \le q + 1 - (2r - 2r_1 - 3)$$ and $r_1 \ge 2r - 2r_1 - 3$, or equivalently $r_1 \ge (2r-3) - (q+1)$ and $r_1 \ge \frac{1}{3}(2r-3)$. For s < 2 there are no secant lines and the only restriction is $t = r_1 \le q+1$ that follows from $r_1 \le r \le q+1$. **Corollary 18.** There exists an absolute constant C > 0 such that $w/q \le f(w) \le w/q + C(w^{3/2}/q^{5/2} + 1)$ for all even w with $Cq^{3/2} \le w \le N - Cq^{3/2}$. Note that for odd w, N - w is even and so $(N - w)/q \le f(w) = f(N - w) \le (N - w)/q + C((N - w)^{3/2}/q^{5/2} + 1)$. *Proof.* By choosing C sufficiently large we may assume that q is also large. The lower bound follows from Lemmas 12 and 3. For the upper bound choose r minimal such that $r > w/q + 2w^{3/2}/q^{5/2}$ and $r \equiv qw \mod 4$. Write w = rq - 4t, so that $r^{3/2} \le 4t \ll r^2$ and $r > \sqrt{q}$. By Lemma 16 there exists a simple decomposition of K_r with $M(\Pi) = r/2 + 2t$ and indeed, this decomposition must have maximal clique size $r_1 = r - O(\sqrt{r})$. Then by Lemma 17 this decomposition can be realized by a subset S of PG(2,q). Now $|\mathcal{L}^o(S)| = qr - 4t = w$ by Lemma 14 and so $f(w) \le r \le w/q +
C(w^{3/2}/q^{5/2} + 1)$. # 6 FURTHER CONSTRUCTIONS FROM BLOCKING SETS AND THE MAXIMUM OF f(r) We shall now provide some constructions that give at least some reasonable bounds on f(r) for $r < Cq^{3/2}$ or $r > N - Cq^{3/2}$. Let $Q^+ \subseteq \mathbb{F}_q$ be the set of nonzero quadratic residues and $Q^- \subseteq \mathbb{F}_q$ be the set of quadratic nonresidues. Both sets have (q-1)/2 elements. Define $Q_i \subseteq \mathcal{P}$, i=0,1 by $$Q_0 = \{[x:0:1]: x \in Q^+\} \cup \{[1:x:0]: x \in Q^+\} \cup \{[0:1:x]: x \in Q^-\},\$$ and $$Q_1 = \{[x:0:1] : x \in Q^+\} \cup \{[1:x:0] : x \in Q^+\} \cup \{[0:1:x] : x \in Q^+\}.$$ Given any line $\ell: \alpha X + \beta Y + \gamma Z = 0$ that does not go through the points $O_x := [1:0:0], O_y := [0:1:0], O_z := [0:0:1]$, we have $|\ell \cap Q_i| \equiv i \mod 2$. Indeed, ℓ intersects $\{[x:0:1]: x \in Q^+\}$ iff $\alpha/\gamma \in Q^+$ and similarly for the others. But for any $\alpha, \beta, \gamma \neq 0$ an odd number of the conditions $\alpha/\gamma \in Q^+, \beta/\gamma \in Q^+$, and $\gamma/\alpha \in Q^+$ hold. The example Q_0 is due to J. di Paola. By a famous result of Blokhuis [4] the set $Q_0 \cup \{O_x, O_y, O_z\}$ is the smallest nontrivial blocking set on PG(2, q) when q is prime. #### Lemma 19. $$f\left(\frac{3}{2}(q-1) + kq + j\right) \le 3q + j(q+2-j)$$ for $$0 \le k \le (q-1)/2$$ and $0 \le j \le q+1$. *Proof.* Let V be the set of kq points that lie in one of k "vertical" lines of the form $X = \alpha Z$, $\alpha \in Q^-$, not including the point O_y at infinity. Let C be any set of j points on the conic $XZ = Y^2$. Note that V, Q_i , and C are pairwise disjoint for i = 0, 1. Let $S = V \cup Q_{k \mod 2} \cup C$ so that $|S| = \frac{3}{2}(q-1) + kq + j$. Consider a line ℓ that does not meet $\{O_x, O_y, O_z\}$. Then $|\ell \cap V| = k$ and $|\ell \cap Q_{k \mod 2}| \equiv k \mod 2$. Thus $|\ell \cap S| \equiv |\ell \cap C| \mod 2$. From the proof of Theorem 4 there are j(q+2-j) lines that meet C in an odd number of points, and there are only 3q lines that meet $\{O_x, O_y, O_z\}$, so $f(|S|) \leq |\mathcal{L}^o(S)| \leq 3q + j(q+2-j)$ as required. #### Lemma 20. $$f(kq+j) \le k + j(q+2-j)$$ for $0 \le k \le (q-1)/2$, k even, and $0 \le j \le q+1$. *Proof.* Let *V* and *C* be as in the proof of Lemma 19. Then the number of lines meeting *C* in an odd number of points is j(q+2-j) while the number of lines meeting *V* in an odd number of points is just *k* (the lines of *V*). As $|V \cup C| = kq + j$, $f(kq + j) \le k + j(q+2-j)$. #### Lemma 21. $$f(q+1+kq+j) \le q+1+k+j(q+2-j)$$ for $0 \le k \le (q-1)/2$, k even, and $0 \le j \le q-1$, *Proof.* Let V and C be as in the proof of Lemma 19 except that we shall now insist that O_x , $O_z \notin C$. Let C' be the conic $XZ = 4Y^2$. Note that C' could only meet C at the points O_x , O_z , which we have assumed do not lie in C. Also $C' \cap V = \emptyset$. There are q+1 lines that meet C' in an odd number of points, j(q+2-j) lines that meet C in an odd number of points, and k lines that meet V in an odd number of points. The result follows since $|V \cup C \cup C'| = q+1+kq+j$. **Corollary 22.** For large q, the maximum value of f(r) is $(q^2 + 4q + 3)/4$ and occurs only at r = (q + 1)/2, r = (q + 3)/2, r = N - (q + 1)/2, and r = N - (q + 3)/2. *Proof.* The result follows when r is restricted to the range $0 \le r \le q+1$ and $N-(q+1) \le r \le N$ by Theorem 4 and Lemma 2, so it is enough by Lemma 2 to bound f(r) in the range $r \in [q+2,N/2]$. For $r \in [q+2,(\frac{3}{2}-\varepsilon)q]$ we can apply Lemma 21 with k=0 to obtain $f(r) \le (\frac{1}{4}-\varepsilon^2)q^2+O(q)$. For $r \in [(\frac{3}{2}-\varepsilon)q,\frac{3}{2}(q-1)]$ we can apply Lemma 19 with k=j=0 and Theorem 5 to obtain $f(r) \le 3q+(q-1)\varepsilon q$. Thus we may assume $r \ge \frac{3}{2}(q-1)$. If $|r/q - t| \ge \frac{1}{4}$ for every integer t, then we write $r = \frac{3}{2}(q - 1) + kq + j$, where either $0 \le j \le \frac{3}{2} + \frac{q}{4}$ or $\frac{3}{2} + \frac{3q}{4} \le j < q$. In either case Lemma 19 implies $$f(r) \le 3q + \frac{q+5}{4} \cdot \frac{3q+3}{4} = \frac{1}{16}(3q^2 + 66q + 15).$$ If $|r/q - t| < \frac{1}{4}$ and $\lfloor (r - 1)/q \rfloor$ is even, we write r = kq + j with $1 \le j < \frac{q}{4}$ or $\frac{3q}{4} < j \le q$. In either case Lemma 20 gives $$f(r) \le k + \frac{3q+1}{4} \cdot \frac{q+7}{4} \le \frac{1}{16}(3q^2 + 30q - 1).$$ Finally, if $|r/q - t| < \frac{1}{4}$ and $\lfloor (r - 1)/q \rfloor$ is odd, we write r = q + 1 + kq + j with $0 \le j < \frac{q}{4} - 1$ or $\frac{3q}{4} - 1 < j \le q$. In either case Lemma 21 gives $$f(r) \le q + 1 + k + \frac{3q - 3}{4} \cdot \frac{q + 11}{4} \le \frac{1}{16} (3q^2 + 38q + 24).$$ Thus in all cases $$f(r) \le \frac{1}{16}(3q^2 + 66q + 15) < \frac{1}{4}(q^2 + 4q + 3).$$ for q sufficiently large. #### 7 EXACT VALUES FROM THE BAER SUBPLANE A subset of points $S \subseteq \mathcal{P}$ is a *subplane of order* k if $|S| = k^2 + k + 1$ and the sets $\{\ell \cap S : \ell \in \mathcal{L}, |\ell \cap S| > 1\}$ form the line system of a finite projective plane of order k. In the case when $k = \sqrt{q}$, we call S a *Baer subplane*. It is well known that such Baer subplanes exists whenever q is a perfect square (see Bruck [7]). Even more (see, e.g. Yff [16]) \mathcal{P} can be partitioned into $q - \sqrt{q} + 1$ Baer subplanes. Consider a Baer sublane B and let $R_B \subseteq \mathcal{L}$ be the set of lines meeting it in exactly $\sqrt{q} + 1$ points. Then $|R_B| = q + \sqrt{q} + 1$. The lines of R_B cover every point of B exactly $\sqrt{q} + 1$ times, and every other point exactly once. Thus $\mathcal{P}^o(R_B) = \mathcal{P} \setminus B$, which is very large. However, consider an arbitrary point $p \notin B$ and let R be the symmetric difference of R_B and $\mathcal{L}(\{p\})$ (these two families contain only one common line $\ell_p \in R_B$ through p). Then $\mathcal{P}^o(R) = B \cup \{p\}$. We obtain $$f(2q + \sqrt{q}) \le q + \sqrt{q} + 2. \tag{7}$$ Considering $p \in B$ and the set of even lines of $B \setminus \{p\}$ (it is again the symmetric difference of R_B and $\mathcal{L}(\{p\})$, now they have $\sqrt{q} + 1$ common lines) we obtain $$f(2q - \sqrt{q}) \le q + \sqrt{q}. \tag{8}$$ Considering two disjoint Baer subplanes we get $$f(2q + 2\sqrt{q} + 2) \le 2q + 2\sqrt{q} + 2. \tag{9}$$ **Theorem 23.** *Equality holds in (7) and (8) for* $q \ge 81$ *.* We also **conjecture** that equality holds in (9), too (at least for large enough q). For the proof of Theorem 23 we need the following classical results and a few lemmata. **Lemma 24** (Bruen [8], sharpening by Bruen and Thas [9]). Suppose that $S \subseteq \mathcal{P}$ is a nontrivial blocking set (i.e. it meets every line but does not contain any) then $|S| \ge q + \sqrt{q} + 1$. Moreover, if $|S| = q + \sqrt{q} + 2$, and $q \ge 9$ is of square order, then there exists a point $x \in S$ such that $S \setminus \{x\}$ is the point set of a Baer subplane. Let $\mathcal{U} \subseteq \mathcal{L}$ be a set of lines. A set $C \subseteq \mathcal{P}$ is called a *near-blocker of* \mathcal{U} if it meets exactly all but one member of \mathcal{U} . #### **Lemma 25.** Let \mathcal{U} be a set of lines in PG(2, q). - (a) Suppose that $\cap_{\ell \in \mathcal{U}} \ell = \emptyset$. Then there exists a near-blocker of size at most $|\mathcal{U}|/2$. - (b) Suppose that $q \ge 5$ is odd and \mathcal{U} cannot be blocked by a 2-element set. Then there exists a near-blocker of size at most $|\mathcal{U}|/3 + (q+1)/6$. - *Proof.* (a) Let us apply induction on the size of $|\mathcal{U}|$. The cases $|\mathcal{U}| = 1, 2, 3$ are trivial. If \mathcal{U} cannot be covered by two points then select any point $p \in \mathcal{P}$ covered at least twice by the lines of \mathcal{U} and use induction from $\mathcal{U} \setminus \mathcal{L}(\{p\})$. Otherwise, some two points x_1, x_2 cover all lines. Assuming that $\deg_{\mathcal{U}}(x_1) \ge \deg_{\mathcal{U}}(x_2)$, select x_1 and one element from all but one of the lines of \mathcal{U} going through x_2 and avoiding x_1 . - (b) For $|\mathcal{U}| \leq q+2$ we have $\lfloor |\mathcal{U}|/2 \rfloor \leq |\mathcal{U}|/3+(q+1)/6$ and we can apply case (a). (If $|\mathcal{U}|=q+2$ we make use of the fact that q is odd.) We may now suppose $|\mathcal{U}|\geq q+3$, so $\max_p \deg_{\mathcal{U}}(p) \geq 3$. Consider first the case when \mathcal{U} cannot be covered by three vertices. Chose a maximum degree vertex p and apply the induction hypothesis to $\mathcal{U}\setminus\mathcal{L}(\{p\})$. Finally, if some set $\{x_1,x_2,x_3\}$ meets every member of \mathcal{U} we choose the two highest degree vertices among them and one element from all but one of the lines of \mathcal{U} going through the third, avoiding the other two. In this way we obtain a near-cover of size at most $2+(|\mathcal{U}|/3-1)$. The following lemma will be useful when $|\mathcal{L}^e(A)|$, t_1 , and t_2 are all small. #### Lemma 26. - (a) Let $A = (\ell \setminus T_1) \cup T_2$ where ℓ is a line, $T_1 \subseteq \ell$, $T_2 \cap \ell = \emptyset$, and $t_i = |T_i|$. Then $|\mathcal{L}^e(A)| \ge (t_1 + t_2)q t_2(2t_1 + t_2 2)$. - (b) Let $A = (B \setminus T_1) \cup T_2$ where B is a Baer subplane, $T_1 \subseteq B$, $T_2 \cap B = \emptyset$, and $t_i = |T_i|$. Then $|\mathcal{L}^e(A)| \ge (t_1 + t_2)q t_2(2t_1 + t_2 1) t_1\sqrt{q}$. - *Proof.* (a) Consider the lines through a point $x \in T_2$. Exactly $q + 1 t_1$ of them meet $\ell \setminus T_1$. At most $t_2 1$ of these lines contain a further point of A (namely a point from T_2). Thus we have obtained at least $t_2(q + 1 t_1 (t_2 1))$ 2-point lines. Next consider the q lines through a point $y \in T_1$ other than ℓ . All but t_2 avoids T_2 , too, thus giving at least $t_1(q t_2)$ zero-point lines. The total number of these
lines gives the desired lower bound. - (b) Every point $x \in T_2$ is incident to at least $(q t_1) (t_2 1)$ 2-point lines, and every point $y \in T_1$ is incident to at least $q \sqrt{q} t_2$ zero-point lines. *Proof of equality in (7).* Suppose, on the contrary, that we have a set of lines R, $|R| = 2q + \sqrt{q}$, such that for $S = \sum_{\ell \in R} \ell$ we have $|S| < q + \sqrt{q} + 2$. Since |S| is even, we have $|S| \le q + \sqrt{q}$. Since R is odd we have $R = \mathcal{L}^e(S)$. Thus S meets every line from $\mathcal{L} \setminus R$. Let \mathcal{U} be the set of lines avoiding S, we have $\mathcal{U} \subseteq R$. First consider the case when there is a set V, $|V| \le 2$, meeting all points of \mathcal{U} . (This includes the case $\mathcal{U} = \emptyset$.) Then $S \cup V$ meets all lines, so is a blocking set. We claim that $S \cup V$ does not contain a line, so is a non-trivial blocking set. Suppose, on the contrary, that there is a line $\ell \subseteq S \cup V$. Apply Lemma 26 (a) with $A = S = (\ell \setminus T_1) \cup T_2$ where $T_1 = \ell \cap V$, $|T_1| \le 2$ and $T_2 = S \setminus \ell$, $|T_2| \le |S \cup V| - |\ell| \le \sqrt{q} + 1$. We obtain that $$|\mathcal{L}^{e}(S)| \ge t_1 q + t_2 (q + 2 - 2t_1 - t_2) \ge t_1 q + t_2 (q - \sqrt{q} - 3).$$ Since $|\mathcal{L}^e(S)| = 2q + \sqrt{q}$ we obtain that $|T_1| + |T_2| \le 2$ for $q \ge 49$. We finish the proof of our claim by observing that for $|T_1| + |T_2| \le 2$, $T_1 \subseteq \ell$, the number of even lines $|\mathcal{L}^e((\ell \setminus T_1) \cup T_2)|$ cannot be $2q + \sqrt{q}$. Indeed, in the case $T_1 = \emptyset$ we have $|\mathcal{L}^e(S)| \le t_2q + 2 < 2q + \sqrt{q}$. In the case $t_2 = 0$ we have $|\mathcal{L}^e(S)| \le 1 + t_1q < 2q + \sqrt{q}$. Finally, in the case $t_1 = t_2 = 1$ we have $|\mathcal{L}^e(S)| = 2q - 1 < 2q + \sqrt{q}$. Consider $S \cup V$, which is a nontrivial blocking set of size at most $q + \sqrt{q} + 2$. By the Bruen-Thas theorem (Lemma 24) there is a Baer subplain $B \subseteq S \cup V$. Thus we know a lot about the structure of S, we can write $S = (B \setminus T_1) \cup T_2$ where $T_1 = B \setminus S$ (it is a subset of V, so $t_1 \le 2$) and $t_2 = S \setminus B \subseteq (S \cup V) \setminus B$ so $t_2 \le 1$. We finish the proof of the case $|V| \le 2$ by checking all possible values of t_1 and t_2 . In case of $t_1 = 2$, $t_2 = 1$, Lemma 26 (b) applied to A = S gives $|\mathcal{L}^e(S)| \ge 3q - 4 - 2\sqrt{q}$. This exceeds $2q + \sqrt{q}$ for $q \ge 25$. We obtain that $t_1 + t_2 \le 2$. Since |S| is even and |B| is odd their symmetric difference (i.e. $T_1 \cup T_2$) is odd, we get $t_1 + t_2 = 1$. So S should be one of the examples discussed in the beginning of this section and we are done. From now on suppose that there is no set V, $|V| \le 2$, meeting all points of \mathcal{U} . Apply Lemma 25 (b) to \mathcal{U} to obtain a near-blocker C of \mathcal{U} of size at most $|\mathcal{U}|/3 + (q+1)/6$ and a line $\ell_C \in \mathcal{U}$ missed by C. We proceed as in the proof of Theorem 6. The set $S \cup C$ meets all lines except ℓ_C , so it is a blocking set of the *affine* plane $PG(2, q) \setminus \ell_C$. Then Lemma 8 yields $|S \cup C| \ge 2q - 1$. We obtain $$2q - 1 \le |S| + |C| \le (q + \sqrt{q}) + |\mathcal{U}|/3 + (q + 1)/6.$$ Here $|\mathcal{U}| \le |R| = 2q + \sqrt{q}$ so the right hand side is at most $(11q + 8\sqrt{q} + 1)/6$. This cannot hold for $q \ge 81$. This final contradiction implies that $|S| \le q + \sqrt{q}$ is not possible for $q \ge 81$ and we are done. *Proof of equality in (8).* This proof is similar to the previous proof, but simpler. Suppose, on the contrary, that we have a set of lines R, $|R| = 2q - \sqrt{q}$ such that for $S = \sum_{\ell \in R} \ell$ we have $|S| < q + \sqrt{q}$. As |S| is even, we have $|S| \le q + \sqrt{q} - 2$. Since R is odd we have $R = \mathcal{L}^e(S)$. Thus S meets every line from $\mathcal{L} \setminus R$. Let \mathcal{U} be the set of lines avoiding S, so that $\mathcal{U} \subseteq R$. If there is a set V, $|V| \leq 2$, meeting all points of $\mathcal U$ (including the case $\mathcal U = \emptyset$) then $S \cup V$ meets all lines, it is a blocking set of size at most $q + \sqrt{q}$. By the Bruen theorem (Lemma 24) it must contain a line ℓ . Apply Lemma 26 (a) with $A = S = (\ell \setminus T_1) \cup T_2$ where $T_1 = \ell \cap V$, $|T_1| \leq 2$ and $T_2 = S \setminus \ell$, $|T_2| \leq |S \cup V| - |\ell| \leq \sqrt{q} - 1$. We obtain that $$|\mathcal{L}^e(S)| \ge t_1 q + t_2 (q + 2 - 2t_1 - t_2) \ge t_1 q + t_2 (q - \sqrt{q} - 1).$$ Since $|\mathcal{L}^e(S)| = 2q - \sqrt{q}$ we obtain that $|T_1| + |T_2| \le 2$ for $q \ge 25$. We finish the investigation of this case by observing that for $|T_1| + |T_2| \le 2$, $T_1 \subseteq \ell$, the number of even lines $|\mathcal{L}^e((\ell \setminus T_1) \cup T_2)|$ cannot be $2q - \sqrt{q}$. Since both S and ℓ are even sets, their symmetric difference (i.e. $T_1 \cup T_2$) is even. We have four cases to check according to the value of $(t_1, t_2) \in \{(2, 0), (1, 1), (0, 2), (0, 0)\}$. The sizes of $|\mathcal{L}^e(S)|$ are 2q + 1, again 2q + 1, and 1, respectively. None of these is equal to $2q - \sqrt{q}$. From now on suppose that $\mathcal{U} \neq \emptyset$ and there is no set V, $|V| \leq 2$, meeting all points of \mathcal{U} . Apply Lemma 25 (b) to \mathcal{U} to obtain a near-blocker C of \mathcal{U} of size at most $|\mathcal{U}|/3 + (q+1)/6$ and a line $\ell_C \in \mathcal{U}$ missed by C. We proceed as in the proof of Theorem 6. The set $S \cup C$ meets all lines except ℓ_C , so it can be considered as a blocking set of the affine plane $PG(2, q) \setminus \ell_C$. Then Lemma 8 yields $|S \cup C| \ge 2q - 1$. We obtain $$2q - 1 \le |S| + |C| \le (q + \sqrt{q} - 2) + |\mathcal{U}|/3 + (q + 1)/6.$$ Here $|\mathcal{U}| \le |R| = 2q - \sqrt{q}$ so the right-hand-side is at most $(11q + 4\sqrt{q} - 11)/6$. This cannot hold for $q \ge 49$ implying that $|S| \le q + \sqrt{q}$ is not possible for $q \ge 49$ and we are done. With some more work we can see that only the examples from the Baer subplane give equalities in (7) and (8) (for $q > q_0$). Many questions remain open. What is f(q+2), and f(q+3)? The least we should be able to do is to prove better bounds on these. Also, any information about f(r) for $r \le 2q^{3/2}$ would be great. #### **ACKNOWLEDGMENTS** The authors are indebted to the referees for their helpful comments and suggestions. ### **REFERENCES** - [1] N. Alon, Combinatorial Nullstellensatz, Combin Prob Comput 8 (1999), 7–29. - [2] A. Bichara and G. Korchmáros, Note on (q + 2)-sets in a Galois plane of order q, Combinatorial and geometric structures and their applications (Trento, 1980), pp. 117–121, Ann. Discrete Math. 14, North-Holland, Amsterdam-New York, 1982. - [3] S. Besicovitch, The Kakeya problem, Amer Math Monthly 70 (1963), 697–706. - [4] A. Blokhuis, On the size of a blocking set in PG(2, p), Combinatorica 14 (1994), 111–114. - [5] A. Blokhuis and F. Mazzocca, The finite field Kakeya problem, Building bridges 205–218, Bolyai Soc Math Stud 19, Springer, Berlin, 2008. - [6] A. E. Brouwer and A. Schrijver, The blocking number of an affine space, J Combin Theory Ser A 24 (1978), 251–253. - [7] R. H. Bruck, Quadratic extensions of cyclic planes, Proc Sympos Appl Math, Vol. 10, pp. 15–44. American Mathematical Society, Providence, RI, 1960. - [8] A. Bruen, Blocking sets in finite projective planes, SIAM J Appl Math 21 (1971), 380–392. - [9] A. A. Bruen and J. A. Thas, Blocking sets, Geometriae Dedicata 6 (1977), 193–203. - [10] X. W. C. Faber, On the finite field Kakeya problem in two dimensions, J Number Theory 124 (2007), 248–257. - [11] J. W. P. Hirschfeld, Projective geometries over finite fields, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1998. - [12] R. Jamison, Covering finite fields with cosets of subspaces, J Combin Theory Ser A 22 (1977), 253–266. - [13] L. Lovász and A. Schrijver, Remarks on a theorem of Rédei, Studia Scient Math Hungar 16 (1981), 449–454. - [14] H. J. Ryser, Geometries and incidence matrices, Amer Math Monthly 62 (1955), 25–31. - [15] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes, Finite Fields Appl 3 (1997), 187–202. - [16] P. Yff, On subplane partitions of a finite projective plane, J Combinatorial Theory Ser A 22 (1977), 118–122. ## APPENDIX: VALUES OF f(r) FOR SMALL q: | TABLE A1. $q = 3$ | | | | | | | |-------------------|------|---|------|--|--|--| | r | f(r) | r | f(r) | | | | | 1 | 4 | 4 | 4 | | | | | 2 | 6 | 5 | 4 | | | | | 3 | 6 | 6 | 2 | | | | | TABLE A2. $q = 5$ | | | | | | | | | |-------------------|------|----|------|----|------|--|--|--| | r | f(r) | r | f(r) | r | f(r) | | | | | 1 | 6 | 6 | 6 | 11 | 4 | | | | | 2 | 10 | 7 | 8 | 12 | 4 | | | | | 3 | 12 | 8 | 8 | 13 | 6 | | | | | 4 | 12 | 9 | 6 | 14 | 6 | | | | | 5 | 10 | 10 | 2 | 15 | 4 | | | | | TABLE A3. $q = 7$ | | | | | | | | | |-------------------|------|----|------|----|------|----|------|--| | r | f(r) | r | f(r) | r | f(r) | r | f(r) | | | 1 | 8 | 8 | 8 | 15 | 6 | 22 | 6 | | | 2 | 14 | 9 | 12 | 16 | 8 | 23 | 6 | | | 3 | 18 | 10 | 10 | 17 | 8 | 24 | 4 | | | 4 | 20 | 11 | 10 | 18 | 6 | 25 | 8 | | | 5 | 20 | 12 | 12 | 19 | 10 | 26 | 6 | | | 6 | 18 | 13 | 8 | 20 | 4 | 27 | 6 | | | 7 | 14 | 14 | 2 | 21 | 8 | 28 | 4 | | | TAE | BLE A4. q | r = 9 | | | | | | | | |-----|-----------|-------|------|----|------|----|------|----|----| | r | f(r) | r | f(r) | r | f(r) | r | f(r) | | | | 1 | 10 | 10 | 10 | 19 | 8 | 28 | 4 | 37 | 6 | | 2 | 18 | 11 | 16 | 20 | 12 | 29 | 10 | 38 | 6 | | 3 | 24 | 12 | 12 | 21 | 10 | 30 | 6 | 39 | 8 | | 4 | 28 | 13 | 14 | 22 | 10 | 31 | 8 | 40 | 8 | | 5 | 30 | 14 | 14 | 23 | 12 | 32 | 4 | 41 | 10 | | 6 | 30 | 15 | 12 | 24 | 8 | 33 | 10 | 42 | 6 | | 7 | 28 | 16 | 16
 25 | 10 | 34 | 6 | 43 | 8 | | 8 | 24 | 17 | 10 | 26 | 10 | 35 | 8 | 44 | 8 | | 9 | 18 | 18 | 2 | 27 | 12 | 36 | 4 | 45 | 6 | | TAE | TABLE A5. $q = 11$ | | | | | | | | | | | |-----|--------------------|----|-------|----|-------|----|------|----|------|----|------| | r | f(r) | | 1 | 12 | 12 | 12 | 23 | 10 | 34 | 10 | 45 | 8 | 56 | 8 | | 2 | 22 | 13 | 20 | 24 | 16 | 35 | 14 | 46 | 6 | 57 | 8 | | 3 | 30 | 14 | 14-26 | 25 | 16 | 36 | 4 | 47 | 10 | 58 | 6 | | 4 | 36 | 15 | 14-18 | 26 | 14 | 37 | 12 | 48 | 8 | 59 | 10 | | 5 | 40 | 16 | 16 | 27 | 14 | 38 | 10 | 49 | 12 | 60 | 8 | | 6 | 42 | 17 | 16 | 28 | 12 | 39 | 10 | 50 | 6 | 61 | 8 | | 7 | 42 | 18 | 14-18 | 29 | 16 | 40 | 4 | 51 | 10 | 62 | 10 | | 8 | 40 | 19 | 14-26 | 30 | 10 | 41 | 12 | 52 | 8 | 63 | 10 | | 9 | 36 | 20 | 16-20 | 31 | 14-18 | 42 | 6 | 53 | 12 | 64 | 8 | | 10 | 30 | 21 | 12 | 32 | 12 | 43 | 14 | 54 | 6 | 65 | 8 | | 11 | 22 | 22 | 2 | 33 | 16 | 44 | 4 | 55 | 10 | 66 | 6 | **FIGURE A1.** Graph of f(r) for q=11. Dots represent known values, and stars represent possible values for the values of r for which f(r) is unknown.