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a b s t r a c t

Given a tree T on v vertices and an integer k ≥ 2 one can define
the k-expansion T (k) as a k-uniform linear hypergraph by enlarging
each edge with a new, distinct set of k − 2 vertices. T (k) has v +

(v − 1)(k − 2) vertices. The aim of this paper is to show that using
the delta-system method one can easily determine asymptotically
the size of the largest T (k)-free n-vertex hypergraph, i.e., the Turán
number of T (k).

© 2013 Elsevier Ltd. All rights reserved.

1. Definitions: kernel-degree, Turán number

A hypergraph H = (V , F ) consists of a set V of vertices and a set F = E(H) of edges, where
each edge is a subset of V . We call the edges of H members of F . We say that H is a k-uniform
hypergraph or F is a k-uniform set system if each member of F is a k-subset of V . To simplify notation
we frequently identify the hypergraph H to its edge set F . If |V | = n, it is often convenient to just
let V = [n] = {1, . . . , n}. We also write F ⊆


V
k


to indicate that F is a k-uniform hypergraph, or

k-graph for short, on vertex set V . So


V
k


denotes the complete k-graph on vertex set V . A set S ⊆ V

is a transversal (or vertex-cover) of the (hyper)graph H = (V , E) if S ∩ E ≠ ∅ for all E ∈ E . Let τ(H)
denote the minimum number of vertices to cover all edges of H , i.e., the transversal number of H . A
set of edges M ⊆ E(H) is called a matching if it consists of disjoint members of E(H). ν(H) denotes
thematching number of H , i.e., the maximum number of pairwise disjoint edges of H . A family of sets
{F1, . . . , Fs} is said to form a ∆-system of size swith kernel C if Fi ∩ Fj = C for all 1 ≤ i < j ≤ s.

Given a family F ⊆


[n]
k


and a subsetW ⊆ [n], we define the degree of W in F as

deg
F

(W ) = |{F : F ∈ F ,W ⊆ F}|.

The hypergraph {F : F ∈ F ,W ⊆ F} is denoted by F [W ], so degF (W ) = |F [W ]| and degF (∅) =

|F |.
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We define the kernel degree ofW , denoted by deg∗

F (W ), as

deg∗

F (W ) = max{s : ∃ a ∆-system of size with kernelW in F }.

In other words, deg∗

F (W ) is the matching number of {E \ W : W ⊂ E ∈ E}.
Given a family H = {H1,H2, . . .} of hypergraphs, the k-uniform hypergraph Turán number of H ,

denoted by ex(n, H), is the maximum number of edges in a k-uniform hypergraph F on n vertices
that does not contain a member of H as a subhypergraph. If we want to emphasize k, then we write
exk(n, H). An H-free family F ⊆


[n]
k


is called extremal if |F | = ex(n, H). If H consists of a

single hypergraph H , we write ex(n,H) for ex(n, {H}). Surveys on Turán problems of graphs and
hypergraphs can be found in [17,26].

It is easy to show (see, e.g., Bollobás [2, p. xvii, formula (0.5)]) that any graph G = (V , E) with
more than (δ − 1)|V | edges contains an induced subgraph G′ with minimum degree at least δ. Then
G′ contains every tree of δ + 1 vertices. We have

ex(n, T ) ≤ (v − 2)n, (1)

where T is any v-vertex forest, v ≥ 2.
For integers b ≥ a ≥ 0, b ≥ t ≥ 1 we havea

t


=

a
t


a − 1
t − 1


≤

a
t


b − 1
t − 1


=

a
b


b
t


.

This implies the following lemma.

Lemma 1.1. Suppose that z1 ≥ z2 ≥ · · · ≥ zm and t are non-negative integers, z1 ≥ t ≥ 1. Then
1≤i≤m

 zi
t


≤


zi

z1

 z1
t


. (2)

2. Preliminaries: matchings, paths, and stars

The Erdős–Ko–Rado [8] theorem says that for n ≥ 2k the maximum size of a k-uniform family on
n vertices in which every two members intersect is


n−1
k−1


, with equality achieved by taking all the

subsets of [n] containing a fixed element. If we let M(k)
ν denote the k-uniform hypergraph consisting

of ν disjoint k-sets, then the Erdős–Ko–Rado theorem says exk(n,M
(k)
2 ) =


n−1
k−1


for n ≥ 2k. More

generally, Erdős [5] showed for any positive integers k, ν there exists a number n(k, ν) such that the
following holds. For all n > n(k, ν), if F ⊆


[n]
k


contains no ν + 1 pairwise disjoint members then

|F | ≤

n
k


−


n − ν

k


. (3)

Furthermore, the only extremal family F consists of all the k-sets of [n] meeting some fixed set S of
ν elements of [n].

The value of n(2, ν)was determined by Erdős andGallai [7]. Frankl, Rödl, and Rucinśki [15] showed
n(3, ν) ≤ 4ν. Finally, n(3, ν) was determined by Łuczak and Mieczkowska [30] for large ν (for
ν > 105), and by Frankl [10] for all ν. In general, Huang, Loh, and Sudakov [24] showed n(k, ν) < 3νk2,
which was slightly improved in [14] and greatly improved to n(k, ν) ≤ (2ν + 1)k − ν by Frankl [11].
Summarizing, for fixed k and ν as n → ∞ we have that

exk(n,M(k)
ν ) = (ν + o(1))


n − 1
k − 1


. (4)

A linear path of length ℓ is a family of sets {F1, . . . , Fℓ} such that |Fi ∩ Fi+1| = 1 for each i and
Fi ∩ Fj = ∅ whenever |i − j| > 1. Let P

(k)
ℓ denote the k-uniform linear path of length ℓ. It is
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unique up to isomorphisms. Note that this notation is different from what is usually used, where
Pv denotes a v-vertex path. Concerning the graph case (k = 2) Erdős and Gallai [7] proved that
ex2(n, P

(2)
ℓ ) ≤

1
2 (ℓ − 1)n. Here equality holds if G is the disjoint union of complete graphs on ℓ

vertices. The value of ex2(n, P
(2)
ℓ ) was determined for all n by Woodall [36] and Kopylov [28].

Concerning linear paths of two edges Erdős and Sós [6] proved for triple systems (k = 3) that
ex3(n, P

(3)
2 ) = n or n − 1 (according to n is divisible by 4 or not and n ≥ 4). They conjectured that

exk(n, P
(k)
2 ) =


n − 2
k − 2


(5)

for k ≥ 4 and sufficiently large n with respect to k, and this was proved by Frankl [9]. The case k = 4
was finished for all n by Keevash, Mubayi, and Wilson [27].

The case ℓ < kwas asymptotically determined in [13].
Since the paper of G.Y. Katona and Kierstead [25] (1999), there is a renewed interest concerning

paths and (Hamilton) cycles in uniform hypergraphs. Most of these are Dirac type results (large
minimum degree implies the existence of the desired substructure) like in Kühn and Osthus [29],
Rödl, Ruciński, and Szemerédi [35].

The present author, Tao Jiang, and Robert Seiver [22] determined exk(n, P
(k)
ℓ ) exactly, for all fixed

k, ℓ, where k ≥ 4, and sufficiently large n proving

exk(n, P
(k)
2t+1) =


n − 1
k − 1


+


n − 2
k − 1


+ · · · +


n − t
k − 1


, (6)

where the only extremal family consists of all the k-sets in [n] thatmeet some fixed set S of t elements,
and

ex(n, P
(k)
2t+2) =


n − 1
k − 1


+


n − 2
k − 1


+ · · · +


n − t
k − 1


+


n − t − 2
k − 2


, (7)

where the only extremal family consists of all the k-sets in [n] thatmeet some fixed set S of t elements
plus all the k-sets in [n] \ S that contain some two fixed elements. ‘Sufficiently large’ nmeans that (6)
and (7) hold when kt = O(log log n). It is conjectured that they hold for all (or at least almost all) n’s.
The method in [22] does not quite work for the k = 3 case (cf. the remark after Lemma 6.2) but it is
conjectured that still a similar result holds for k = 3.

A (linear) star of size ℓ with center x is a family of sets {F1, . . . , Fℓ} such that x ∈ Fi for all i but
the sets Fi \ {x} are pairwise disjoint. Let S

(k)
ℓ denote the k-uniform star of size ℓ. It is obvious that

ex2(n, S
(2)
ℓ ) = ⌊(ℓ − 1)n/2⌋ (for n ≥ ℓ). Chung and Frankl [3] gave an exact formula for ex3(n, S

(3)
ℓ )

for n > 3ℓ3. The following asymptotic was proved for any fixed ℓ ≥ 2, k ≥ 5 in [13].

exk(n, S
(k)
ℓ ) = (ϕ(ℓ) + o(1))


n − 2
k − 2


, (8)

where ϕ(ℓ) = ℓ2
− ℓ for ℓ is odd and it is ℓ2

−
3
2ℓ when ℓ is even. According to the above mentioned

result of Chung and Frankl (8) holds for k = 3 too. The order of magnitude ex4(n, S
(4)
ℓ ) = Ω(ℓ2n2)

was also proven in [13], and it is conjectured that (8) holds for k = 4 too.

3. Generalized k-forests, an upper bound

Let us define a generalized k-forest in the following inductive way. Every k-graph consisting of a
single edge is a k-forest. Suppose that T = {E1, E2, . . . , Eu} ⊆


V
k


is a k-forest and suppose that

A := Au+1 ⊂ Ei for some 1 ≤ i ≤ u, and B ∩ V = ∅, |A| + |B| = k, then {E1, E2, . . . , Eu, Eu+1} is a
k-forest with Eu+1 := A ∪ B. If it is connected then it is called a generalized k-tree. In that case all
defining sets A2, . . . , Au+1 are nonempty. For graphs (k = 2) the above process leads to the usual
notions of forests and trees. If each defining set Ai is a singleton or empty then we obtain a linear
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forest, if each defining set is either empty or has k− 1 elements, then we get a tight forest. A forest T
of q edges has at least q + k − 1 vertices and here equality holds if and only if T is a tight k-tree.

Consider a k-forest T = {E1, E2, . . . , Eq}. If a defining set Au+1 ⊂ Ei for some 1 ≤ i ≤ u < q
is smaller than k − 1, then take an element x ∈ (Ei \ Au+1) and another one y ∈ (Eu+1 \ Au+1) and
place the new k-set E := Ei \ {x} ∪ {y} between Eu and Eu+1. The new sequence of k-sets {E1, . . . ,
Eu, E, Eu+1, . . . , Eq} is again a k-forest with the same defining sets except we add Ei \ {x} = E \ {y} to
the list for E and replace Au+1 by (Au+1 ∪{y}) and use the relation (Au+1 ∪{y}) ⊂ E for Eu+1. Repeating
this process we obtain the following statement.

Proposition 3.1. Suppose that T is a generalized k-forest of v vertices. Then there is a tight k-tree T +

on the same vertex set such that T is a subfamily of T +.

We are going to prove the following upper bound for the Turán number of k-forests.

Theorem 3.2. Suppose that T is a generalized k-forest of v vertices. Then

exk(n, T ) ≤ (v − k)


n
k − 1


. (9)

Proof. By the previous proposition, it is enough to prove the case when T is a tight k-forest.
Suppose that H ⊆


[n]
k


avoids the tight k-forest T = {E1, . . . , Eq}, we have q = v − k + 1. Set

Ai := Ei ∩ (E1 ∪ · · · ∪ Ei−1), 2 ≤ i ≤ q. We have that Ai ⊂ Eα(i) for some 1 ≤ α(i) < i, |Ai| = k − 1.
Define a list of hypergraphs H0 := H ⊃ H1 ⊃ · · · ⊃ Hm and sets X1, . . . , Xm, as follows.

If Hm = ∅ we stop. If one can find a set X ⊂ [n] such that |X | = k − 1 and degHm(X) ≤ (v − k)
then let Xm+1 := X and Hm+1 := Hm \ Hm[X]. If there is no such set X then we stop.

We claim that Hm should be the empty family. Otherwise, we can embed T into Hm as follows.
Start with any edge E1 ∈ Hm. We define the other edges E2, . . . , Eq one by one. Observe that for any
(k − 1)-element subset X, X ( E ∈ Hm we have degHm(X) ≥ v − k + 1. Suppose that E1, . . . , Eu
had already been defined together with A2, . . . , Au, and u < q. Locate Au+1 in E1 ∪ · · · ∪ Eu. Since
degHm(Au+1) ≥ (v − k + 1) > |E1 ∪ · · · ∪ Eu| − |Au+1| there is an E := Eu+1 ∈ Hm[Au+1] such that
E \ Au+1 is disjoint to E1 ∪ · · · ∪ Eu.

In the sequence X1, . . . , Xm there is no repetition, so we get

|H | =


i

deg
Hi

(Xi) ≤ (v − k)


n
k − 1


. �

Note that Theorem 3.2 gives the correct order of magnitude if∩T = ∅, since then


n−1
k−1


is a lower

bound. However, the determination of the best coefficient of the binomial term seems to be extremely
difficult. Erdős and Sós conjectured for graphs (i.e., k = 2) and Kalai 1984 for all k, see in [13], that for
a v-vertex tight tree T

exk(n, T ) ≤
v − k

k


n

k − 1


.

For any given tight tree T amatching lower bound, i.e., (1−o(1)) times the conjectured upper bound,
can be given for n → ∞ as follows. Consider a P(n, v − 1, k − 1) packing P1, . . . , Pm on the vertex
set [n] (i.e., |Pi| = v − 1 and |Pi ∩ Pj| < k − 1 for 1 ≤ i < j ≤ m) and replace each Pi by a complete
k-graph. We obtain a T -free hypergraph. Then Rödl’s [34] theorem on almost optimal packings gives

exk(n, T ) ≥ (1 − o(1))

 n
k−1


v−1
k−1

 ×


v − 1

k


= (1 + o(1))

v − k
k


n

k − 1


.

The Erdős–Sós conjecture has been recently proved by a monumental work of Ajtai, Komlós,
Simonovits, and Szemerédi [1], for v ≥ v0.
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The Kalai conjecture has been proved for star-shaped k-trees in [13], i.e., whenever T contains a
central edge which intersects all other edges in k − 1 vertices. For k = 2 these are the diameter 3
trees, ‘double stars’.

There is only onemore class of k-trees where the exact asymptotic is known, namelywhat is called
an intersection condensed family. For such a T we denote | ∩ T | by p∞, and the number of vertices of
degree at least two by p2 and suppose that 2p∞ + p2 + 2 ≤ k (Theorem 5.3 in [13]).

There aremany different definitions of a ‘path’ in a hypergraph. Győri, G.Y. Katona, and Lemons [23]
determined the exact value of the Turán number of the so-called Berge-paths for infinitely many n’s.
Mubayi and Verstraëte [32] gave good bounds for the Turán number of k-uniform loose paths of length
ℓ.

The aim of this paper is to present the best coefficient for a wide class of linear trees, thus
generalizing the results in the previous section about matchings (4), paths (5)–(7) and stars (8).

4. The main result, finding expanded forests in k-graphs

Given a graph H , the k-blowup (or k-expansion), denoted by [H]
(k) (or H(k) for short), is the k-

uniform hypergraph obtained from H by replacing each edge xy in H with a k-set Exy that consists of
x, y and k− 2 new vertices such that for distinct edges xy, x′y′, (Exy − {x, y}) ∩ (Ex′y′ − {x′, y′

}) = ∅. If
H has p vertices and q edges, then H(k) has p + q(k − 2) vertices and q hyperedges. The resulting H(k)

is a k-uniform hypergraph whose vertex set contains the vertex set of H .
Given a forest T , define the following

σ(T ) := min{|X | + e(T \ X) : X ⊂ V (T ) is independent in T }. (10)

Here T \X is the forest left from T after deleting the vertices of X and the edges incident to them, e(G)
stands for the number of edges of the graph G. Since the edges avoiding X can be covered one by one
we have that τ(T ) ≤ σ(T ) but here equality should not hold. For example, if T consists of a path of
four vertices a1b1b2a2 with 2d + 2c pendant edges such that d > c ≥ 1 and each ai has d degree-one
neighbors and each bi has c of those, then one can easily see that τ(T ) = 4 but σ(T ) = 2c + 3.

Theorem 4.1. Given a forest T with at least one edge and an integer k ≥ 4. Then we have as n → ∞,
that

ex(n, T (k)) = (σ (T ) − 1 + o(1))


n
k − 1


. (11)

Our result, naturally, gives the same asymptotic as Theorem 5.3 in [13] whenever both can be
applied to T (k). We conjecture that (11) holds for k = 3, too.

According to (8) (and the remark after that) the above asymptotic holds for stars, since the answer
in this case is o(nk−1). For every other forest σ ≥ τ ≥ 2.

Let us note thatMubayi [31] and Pikhurko [33] determined precisely (for large n) the Turán number
of the k-expansion of some other graphs, namely for the complete graph Kℓ for ℓ > k ≥ 3. For smaller
values of ℓ we know that exk(n, K

(k)
3 ) =


n−1
k−1


for n > n0(k), k ≥ 3, a former conjecture of Chvátal

and Erdős, established in [13]. A few more related exact results can be found in [19].

5. The product construction

Given two set systems (or hypergraphs) A and B their join is the family {A ∪ B : A ∈ A, B ∈ B}.
We denote this new hypergraph by A on B.

Call a set Y 1-cross-cut of a family C if |Y ∩ E| = 1 holds for each E ∈ C. Define τ1(C) as the
minimum size of a 1-cross-cut of C (if such cross-cut exists, otherwise τ1 := ∞). We claim that for
every forest T and k ≥ 3 the following holds.

σ(T ) = τ1(T (k)). (12)
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Indeed, suppose that X ⊂ V (T ) yields the minimum in (10). Then X is an independent set of T (k)

avoiding e(T \ X) edges of it. Taking an element x(E) ∈ (E \ V (T )) from each such edge and joining
them to X one gets a 1-cross-cut of size σ(T ). We obtain τ1 ≤ σ . On the other hand, if S is a 1-cross-cut
of T (k) and |S| = τ1, then X := S∩V (T ) is an independent set in T and it avoids exactly |S|−|X | edges,
so σ ≤ |S| = τ1.

Thus σ(T ) is theminimum size of a set Y such that T (k) can be embedded into


Y
1


on


Z

k−1


where

Y and Z are disjoint sets. This means that in case of Y := [σ − 1], Z := [n] \ Y the hypergraph
Y
1


on


Z

k−1


does not contain any copy of T (k). We obtain the lower bound

ex(n, T (k)) ≥

Y
1


on


Z

k − 1

 =

E : E ∈


[n]
k


, |E ∩ [σ − 1]| = 1


= (σ − 1)


n − σ + 1

k − 1


. (13)

6. The graph of 2-kernels, starting the proof with the delta-systemmethod

Given a family F ⊆


[n]
k


, the kernel-graph with threshold s is a graph G := G2,s(F ) on [n] such

that ∀x, y ∈ [n], xy ∈ E(G) if and only if deg∗

F ({x, y}) ≥ s. The following (easy) lemma shows the
importance of this definition.

Lemma 6.1 (See [22]). Let H be a graph with q edges, s = kq, and let F ⊆


[n]
k


. Let G2 be the kernel

graph of F with threshold s. If H ⊆ G2, then F contains a copy of H(k). �

The delta-system method, started by Deza, Erdős and Frankl [4], is a powerful tool for solving
set system problems. Using a structural lemma from [16] and the method developed in [12,13] the
following theorem was obtained in [22] (see Theorem 3.8 and the proof of Lemma 4.3 there).

Lemma 6.2 (See [22]). Let F ⊆


[n]
k


, T a forest of v vertices, s = kv,G2 := G2,s(F ), and suppose that

F does not contain T (k). Then there is a constant c := c(k, v) and a partition F = F1 ∪ F2 with the
following properties.

– |F1| ≤ c


n−2
k−2


.

– Every edge F ∈ F2 has a center (not necessarily unique) x(F) ∈ F such that G2|F contains a star of size
k − 1 with center x(F). In other words, {x(F), y} ∈ E(G2) for all y ∈ F \ {x(F)}. �

Actually, the delta-systemmethoddescribes the intersection structure ofF in amore detailedway,
but for our purpose this lemmawill be sufficient. The above lemma (and in fact the main result of this
paper, Theorem 4.1) preceded (6)–(7), see [18], but since the proof of Lemma 6.2 is now available
in [22] we omit the details here.

Note that this is the only point where k ≥ 4 is used. Lemma 6.2 is not true for k = 3. The 3-
graph F 3 obtained by joining a matching of size t and t one-element sets has n = 3t vertices,
t2 = n2/9 = Ω(nk−1) edges, it does not contain any linear tree except stars but G2,s(F

3) forms a
matching for every s ≥ 2.

7. Proof of the main theorem

Suppose that F ⊆


[n]
k


avoids the k-expansion of the v-vertex forest T , k ≥ 4. We are going to

give an upper bound for |F |. As noted above we may suppose that T is not a star, σ(T ) ≥ τ(T ) ≥ 2.
Define s = vk and let G2 be the kernel graph with threshold s with respect to family F as defined

in the previous section. This graph avoids T by Lemma 6.1, so (1) implies

e(G2) ≤ (v − 2)n. (14)
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Consider the degree sequence of G2 and suppose that
deg(x1) ≥ deg(x2) ≥ · · · ≥ deg(xn−1) ≥ deg(xn).

Let L := {x1, . . . , xℓ} be the set of highest degrees. We will define ℓ later as nε so keep in mind that it
is relatively large. Using (14) we obtain

z := deg
G2

(xℓ+1) ≤
deg(x1) + · · · + deg(xℓ+1)

ℓ + 1
≤

2e(G2)

ℓ + 1
<

2(v − 2)n
ℓ

. (15)

Consider the partition F = F1 ∪ F2 given by Lemma 6.2. Let F3 be the edges of F2 with center
outside L. Using Lemma 6.2 and (2) then (14), a triviality and (15) we get

|F3| ≤


ℓ+1≤i≤n


deg(xi)
k − 1


≤


i
deg(xi)

z


z

k − 1



≤
2(v − 2)n

z


z

k − 1


<

2(v − 2)n
(k − 1)!

zk−2
≤

2k−1(v − 2)k−1

(k − 1)!
nk−1

ℓk−2
. (16)

Every edge of F \ (F1 ∪ F3) meets L. Let F4 be the set of members of F meeting L in at least two
vertices. Obviously

|F4| ≤


ℓ

2

 
n − 2
k − 2


≤

1
2 × (k − 2)!

ℓ2nk−2. (17)

The edges of F \ (F1 ∪ F3 ∪ F4) meet L in exactly one element. Let F5 be the family of edges of F
satisfying |F ∩ L| = 1 and degF (F \ L) ≤ σ − 1. Obviously,

|F5| ≤ (σ − 1)

n − ℓ

k − 1


. (18)

The rest of the edges, i.e., those from F6 := F \ (F1 ∪ F3 ∪ F4 ∪ F5) are of the form F = {a} ∪ B
where a ∈ L, B ∩ L = ∅ and degF (F \ L) ≥ σ . For every set A ∈


L
σ


define BA as the k − 1 uniform

family
BA := {B : {a} ∪ B ∈ F for all a ∈ A}.

Also set
FA := {F ∈ F : a ∈ A, B ∈ BA, and {a} ∪ B = F}.

We have F6 ⊆ ∪A FA where |A| = σ , A ⊆ L.
Consider T (k). As noted in Section 5, there is a 1-cross-cut, a set Y of size σ meeting each k-edge

of T (k) in a singleton. Let C be the (k − 1)-uniform hypergraph obtained by deleting the elements of
Y from the edges of T (k), C := {E \ Y : E ∈ E(T (k))}. Since FA does not contain T (k) we have that
BA cannot contain C as a subhypergraph. Also, C is a generalized forest of at most v − 1 edges so
Theorem 3.2 gives |BA| ≤ (v − 2)(k − 1)

 n
k−2


. We obtain

|F6| ≤


A∈


L
σ

 |FA| = σ


A∈


L
σ

 |BA| ≤ σ


ℓ

σ


(v − 2)(k − 1)


n

k − 2


. (19)

Finally, since F2 ⊆ F3 ∪ F4 ∪ F5 ∪ F6 we have
|F | ≤ |F1| + |F3| + |F4| + |F5| + |F6|.

Using the first part of Lemma 6.2, (16)–(19) we obtain

|F | ≤ O(nk−2) + O

nk−1

ℓk−2


+ O(ℓ2nk−2) + (σ − 1)


n − ℓ

k − 1


+ O(ℓσnk−2). (20)

Defining ℓ ∼ n1/(σ+1) we obtain that the sum of the O() terms in (20) is O(n(k−1)−1/(σ+1)) = o(nk−1)
and we are done.
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8. Further problems

With a refined version of the above proof one can see that

ex(n, T (k)) = (σ − 1)


n
k − 1


+ O(nk−2).

It seems to be a solvable problem to determine the exact value of this Turán number (for n > n0(T , k))
as it was done for linear paths (for k ≥ 4) in [22], and for linear cycles (for k ≥ 5 only) in [20]. The
forthcoming manuscript [21] generalizes these to a class of expanded forests, but most of the cases
remain unsolved.
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