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This paper is a survey on Extremal Graph Theory, primarily focusing on the
case when one of the excluded graphs is bipartite. On one hand we give an
introduction to this field and also describe many important results, methods,
problems, and constructions.
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1. Introduction

This survey describes the theory of Degenerate Extremal Graph Problems,
the main results of the field, and its connection to the surrounding areas.

∗Research supported in part by the Hungarian National Science Foundation OTKA
104343, and by the European Research Council Advanced Investigators Grant 267195
(ZF) and by the Hungarian National Science Foundation OTKA 101536, and by the
European Research Council Advanced Investigators Grant 321104. (MS).

L. Lovász et al. (eds.), Erdős Centennial
© János Bolyai Mathematical Society and Springer-Verlag 2013 
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Extremal graph problems we consider here are often called Turán type
extremal problems, because Turán’s theorem and his questions were the
most important roots of this huge area [242], [243].

Generally, we have a Universe of graphs, U, where this universe may
be the family of ordinary graphs, or digraphs, or hypergraphs, or ordered
graphs, or bipartite graphs, etc and a property P, saying, e.g., that G ∈ U
does not contain some subgraphs L ∈ L, or that it is Hamiltonian, or it
is at most 3-chromatic, and we have some parameters on U, say v(G) and
e(G), the number of vertices and edges. Our aim is to maximize the second
parameter under the condition that G has property P and its first parameter
is given.

We call such a problem Turán type extremal problem if we are
given a family L of graphs from our universe, Gn is a graph of
n vertices, e(Gn) denotes the number of edges of Gn and we
try to maximize e(Gn) under the condition that Gn contains no
L ∈ L, where “contains” means “not necessarily induced sub-
graph”. (Here graph may equally mean digraph, or multigraph,
or hypergraph).
The maximum will be denoted by ex(n,L) and the graphs at-
taining this maximum without containing subgraphs from L are
called extremal graphs. The family of extremal graphs is de-
noted by EX(n,L) and ex(n,L) is called the Turán number of
the family L.
Speaking of ex(n,L) we shall always assume that n ≥ |V (L)|,
otherwise the problem is trivial.

Definition 1.1. If the Universe U is the family of r-uniform hypergraphs1,
then we shall call the problem degenerate if the maximum,

ex(n,L) = o(nr).

Otherwise we shall call it non-degenerate

Below we shall mention several open problems. Yet to get more prob-
lems, we refer the reader to the

Erdős homepage: www.renyi.hu/˜p erdos

where the papers of Erdős can be found [59]. Also, many open problems
can be found in Chung-Graham [47].

1r = 2 included, moreover, mostly we think of r = 2.
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1.1. Some central theorems of the field

We start with some typical theorems of the field and two conjectures. The
aim of this “fast introduction” is to give a feeling for what are the crucial
types of results here.

Theorem 1.2 (Kővári–T. Sós–Turán, [164]). Let Ka,b denote the complete
bipartite graph with a and b vertices in its color-classes. Then

ex(n,Ka,b) ≤
1

2
a
√
b− 1 · n2−(1/a) +O(n).

We use this theorem with a ≤ b, since that way we get a better estimate.

Theorem 1.3 (Kollár–Alon–Rónyai–Szabó [159], [11]). If b > (a−1)!, then

ex(n,Ka,b) > can
2−(1/a).

Theorem 1.4 (Erdős, Bondy and Simonovits [32]).

ex(n,C2k) ≤ 100kn1+(1/k).

Theorem 1.5 (Erdős–Simonovits, Cube Theorem [90]). Let Q8 denote the
cube graph defined by the vertices and edges of a 3-dimensional cube. Then

ex(n,Q8) = O(n8/5).

Conjecture 1.6 (Erdős and Simonovits, Rational exponents). For any
finite family L of graphs, if there is a bipartite L ∈ L, then there exists a
rational α ∈ [0, 1) and a c > 0 such that

ex(n,L)
n1+α

→ c.

Theorem 1.7 (Füredi [111], [104]). If q �= 1,7, 9,11,13, and n = q2+ q+1,
then

ex(n,C4) ≤
1

2
q(q + 1)2.

Moreover, if q is a power of a prime, then

ex(n,C4) =
1

2
q(q + 1)2.

Conjecture 1.8 (Erdős). 2

ex(n, {C3, C4}) =
1

2
√
2
n3/2 + o(n3/2).

We close this part with a famous result of Ruzsa and Szemerédi:

2This conjecture is mentioned in [70] but it is definitely older, see e.g. Brown, [37].
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Theorem 1.9 (Solution of the (6,3) problem, [210]). If H(3)
n is a 3-uniform

hypergraph not containing 6 vertices determining (at least) 3 hyperedges,
then this hypergraph has o(n2) hyperedges.

The above theorems will be discussed in more details below.

1.2. The structure of this paper

The area is fairly involved. Figure 1 shows a complicated – but not com-

Fig. 1. Area Map

plete – map of the interactions of some subfields of the field discussed here.
We start with describing the Extremal problems in general, then move to
the Degenerate problems, also describing why they are important. Among
the most important degenerate extremal problems we mention are the ex-
tremal problem of Ka,b, and also C2k, where – to classify the extremal prob-
lems – we shall need the Random Graph Method to get a lower bound in
the problem of C2k. These results are enough to give a good classification
of degenerate extremal graph problems.

1. The two lowest boxes of Figure 1 show that this whole area has a
strong connection to Geometry and Number Theory. This will be
explained in Sections 13, 1.5, and 14.2.

2. The origins of this field are

(a) an early, singular result of Mantel,

(b) the multiplicative Sidon Problem (see Section 1.5)

(c) Turán’s theorem and his systematic approach to the field.
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So the origins come – in some sense – from Number Theory, are
strongly connected to Finite Geometry, and in this way also to or-
dinary geometry (Turán’s theorem comes from the Erdős–Szekeres
version of Ramsey Theorem, which they invented to solve the Esther
Klein problem from Geometry.)

3. To understand the field we start with a very short description of the
general theory, and then – skipping most of the hypergraph theory –
we move to the main area of this paper: to the questions where
we consider ordinary extremal graphs, and exclude some bipartite L:
therefore, by Theorem 1.2, we have ex(n,L) = O(n2−c).

4. One important phenomenon is that many extremal graph problems
can be “reduced” to some degenerate extremal graph problems that
we also call sometimes bipartite extremal problems.

5. The upper bounds in the simpler cases are obtained by some double
counting, Jensen type inequalities, or applying some supersaturated
graph theorems.3

6. There are also much more complicated cases, where the above simple
approach is not enough, we need some finer arguments. Perhaps the
first such case was treated by Füredi: Section 7.3 and [107]. Also
such an approach is the application of the general Dependent Random
Choice Method, (see the survey of Fox and Sudakov [101]).

7. The lower bounds are sometimes provided by random graphs (see
Section 2.5) but these are often too weak. So we often use some finite
geometric constructions, (see Section 3.2) or their generalizations –
coming from commutative algebras (see Sections 3.6, 4.9, 8), etc., and
they occasionally provide matching upper and lower bounds. Again,
there is an important general method with many important results,
which we shall call the Lazebnik–Ustimenko method but will treat
only very superficially in Section 3.6.

1.3. Extremal problems

We shall almost entirely restrict ourselves to Turán type extremal problems
for ordinary simple graphs, i.e. loops, multiple edges are excluded.

To show the relation of the areas described here, we start with a list of
some related areas.

3Lovász and Szegedy had a beautiful conjecture, which we formulate here only in a
restricted form: Any (valid) extremal theorem can be proven by applying the Cauchy–
Schwarz inequality finitely many times. This conjecture was killed in this strong form –
by Hatami and Norine [142] – but proven in a weaker, “approximation-form”.
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1. Ramsey Theory

• Problems not connected to density problems; in some sense these
are the real Ramsey Problems

• Problems connected to density problems, i.e. cases, where we do
not really use the Ramsey Condition, only that some color class
is large.

2. Ordinary extremal graph theory

• Excluding bipartite graphs (degenerate problems)

• Excluding topological subgraphs (very degenerate extremal prob-
lems)

• Matrix problems, ordered and not ordered;

• Non-degenerate case, and its relation to degenerate problems

3. Theory of extremal digraph problems

4. Ramsey–Turán Problems

5. Connection to Random Graphs

6. Hypergraph extremal problems

7. Connection of Number Theoretical problems to Extremal Graph The-
ory

8. Continuous problems

9. Applications

There are several surveys on these fields, see e.g., T. Sós [232], Füredi
[108], [110], Simonovits [224], [228], [227], [222], Simonovits and Sós [230],
[155]. Perhaps the first survey on this topic was Vera Sós’ paper [232],
discussing connections between extremal graph problems, finite geometries,
block designs, etc. and, perhaps, the nearest to this survey is [225], Bol-
lobás [28], Sidorenko [217], [101], and also some books, e.g., Bollobás [26].
Of course, a lot of information is hidden in the papers of Erdős, among
others, in [70], [73], [76].

So, here we shall concentrate on Case 2, but to position this area we shall
start with some related fields, among others, with the general asymptotic
in Case 2.

Problem 1.10 (General Host-graphs). In a more general setting we have
a sequence (Hn) of “host” graphs and the question is, how many edges can
a subgraph Gn ⊂ Hn have under the condition that it does not contain any
forbidden subgraph L ∈ L. The maximum will be denoted by ex(Hn,L).

For Hn = Kn we get back the ordinary extremal graph problems. There
are several further important subcases of this question:
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(a) when Hn = Ka,b for a ≈ n/2;

(b) when the host-graph is the d-dimensional cube, n = 2d; see Sec-
tion 14.3.

(c) when Hn is a random graph on n vertices, see e.g. [209].

Notation. Given some graphs Gn, Tn,p, Tk, Hν , . . . the (first) subscript
will almost always denote the number of vertices.4 So Kp is the complete
graph on p vertices, Pk the path on k vertices, Ck is the cycle of k vertices,
while C≥k will denote the family of cycles of length at least k. δ(x) denotes
the degree of the vertex x.

The complete bipartite graph Ka,b with a vertices in its first class and
b in its 2nd class will be crucial in this paper. Often, we shall denote it by
K(a, b), and its p-partite generalization by Kp(a1, . . . , ap). If

∑
ai = n and

|ni − nj | ≤ 1, then Kp(a1, . . . , ap) is the Turán graph Tn,p on n vertices and
p classes.

Given two graphs U and W , their product graph is the one obtained
from vertex-disjoint copies of these two graphs by joining each vertex of U
to each vertex of W . This will be denoted by U ⊗W .5

Given a graph H, v(H) is its number of vertices, e(H) its number of
edges and χ(H) its chromatic number, dmin(G) and dmax(G) denote the
minimum and maximum degrees of G, respectively.

We shall write f(x) ≈ g(x) if f(x)/g(x) → 1. Occasionally [n] denote
the set of first n integers, [n] := {1, 2, . . . , n}.

The Overlap. Some twenty years ago Simonovits wrote a survey [227]
on the influence of Paul Erdős in the areas described above, Many-many
features of these areas changed drastically since that. Jarik Nešetřil and Ron
Graham were the editors of that survey-volume, and now they decided to
republish it. Fortunately, the authors had the option to slightly rewrite their
original papers. Simonovits has rewritten his original paper [228], basically
keeping everything he could but indicating many new developments, and
adding remarks and many new references to it.

To make this paper readable and self-contained, we shall touch on some
basic areas also treated there, or in other survey papers of ours, Here, how-
ever, we shall explain many-many results and phenomena just mentioned in
other survey papers.

4One important exception is the complete bipartite graph K(a, b) = Ka,b, see below.
Another exception is, when we list some excluded subgraphs, like L1, . . . , Lν .

5This product is often called also the joint of the two graphs.
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Remark 1.11. There is also a third new survey to be mentioned here:
Simonovits gave a lecture at the conference on Turán’s 100th anniversary,
in 2011. His lecture tried to cover the whole influence of Paul Turán in
Discrete Mathematics. In the volume of this conference Simonovits wrote a
survey [229] covering his lecture, except that

• the area called Statistical Group Theory is discussed in a survey of
Pálfy and Szalay [200] and

• some parts of the applications of Extremal Graph Theory, primarily
in Probability Theory are covered by Katona [153], in the same volume.

1.4. Other types of extremal graph problems

Above we still tried to maximize the number of edges, hyperedges, etc. More
generally, instead of maximizing e(Gn), we may maximize something else:

1. Min-degree problems (or Dirac type problems): How large min-degree
can Gn have without containing subgraphs from L.

2. Median problems which will be called here Loebl–Komlós–Sós type
problems: Given a graph Gn, which m and d ensure that if Gn has at
least m vertices of degree ≥ d, then Gn contains some L ∈ L.

3. Eigenvalue-extremal problems6: maximize the maximum eigenvalue
λ(Gn) under the condition that Gn does not contain any L ∈ L.
(These are sharper forms of some extremal results, since the maxi-
mum eigenvalue

λ(Gn) ≥
2e(Gn)

n
,

see Section 8.)

4. Subgraph count inequalities, which assert that if Gn contains many
copies of some subgraphs L1, . . . , Lλ, then we have at least one (or
maybe “many”) subgraphs L.

5. Diameter-extremal problems. Here we mention just a subcase: if

diam(Gn) ≤ d and dmax(Gn) < M,

at least how many edges must Gn have. The Erdős–Rényi paper
[85] is of importance here and also some related papers, like Füredi
[105], [109].

6. Combined extremal problems: There are many–many further types
of extremal problems. Here we mention, as an example, the results

6As usual, given a graph Gn, an n× n matrix is associated to it, having n eigenvalues.
The largest and the second largest is what we are mostly interested in.
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of Balister, Bollobás, Riordan and Schelp [17], where an odd cycle is
excluded, and at the same time an upper bound is fixed on the degrees
and the number of edges are to be maximized.

The approach 4 is very popular in the theory of Graph Limits [177]. We
mention a breakthrough in this area in connection with Erdős’ combinatorial
problems, of type 4. A famous conjecture of Erdős was

Conjecture 1.12 (Erdős [74]). A K3-free Gn contains at most (n5 )
5
copies

of C5’s.

The motivation of this is that the blownup7 C5, i.e. C5[n/5] has no

triangles and has (n5 )
5
copies of C5. Erdős conjectured that no triangle-free

Gn can have more C5’s than this. The first “approximation” was due to
Ervin Győri:

Theorem 1.13 (Győri [133]). A K3-free Gn contains at most 1.03(n5 )
5

C5’s.

Next Füredi improved the constant to 1.001 (unpublished) [114], and
finally independently Grzesik [124], and Hatami, Hladký, Král, Norine, and
Razborov [141] proved the conjecture.

1.5. Historical remarks

Erdős in 1938 [60] considered the following “multiplicative Sidon Problem”8.

Problem 1.14. How many integers, a1, . . . , am ∈ [1, n] can we find so that
aiaj = aka� does not hold for any i, j, k, 
, unless {i, j} = {k, 
}.

To get an upper bound in Problem 1.14, Erdős proved

Theorem 1.15. Let G[n, n] be a bipartite graph with n vertices in both
classes. If it does not contain C4, then e(G[n, n]) < 3n

√
n,

Much later this problem was asked in a more general setting: find an
upper bound on e(G[n, n]) if Ka,b �⊂ G[n, n]. Zarankiewicz [254] posed the
following question:

7Given a graph H, its blownup version H[t] is defined as follows: we replace each
vertex x of H by t independent new vertices and we join two new vertices coming from
distinct vertices x, y iff xy was an edge of H.

8For a longer description of the number theoretical parts see [228]. Erdős also refers
to his “blindness” overlooking the general problem in [70].
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Problem 1.16 (Zarankiewicz problem). Determine the largest integer
Z(m,n, a, b) for which there is an m× n 0-1 matrix containing Z(m,n, a, b)
1’s without an a× b submatrix consisting entirely of 1’s.

Hartman, Mycielski and Ryll-Nardzevski [139] gave upper and lower
bounds for the case a = b = 2, weaker than the Erdős–Klein9 result, and
Kővári, T. Sós and Turán (see Theorem 1.2) provided a more general upper
bound. We shall discuss these problems and results in details in Sections
2.4 and 3.2.

While exact values of Z(m,n, a, b) are known for infinitely many param-
eter values, mostly only asymptotic bounds are known in the general case.
Even Z(m,n, 2, 2) is not sufficiently well known.

2. The General Theory, Classification

In many ordinary extremal problems the minimum chromatic number plays
a decisive role. The subchromatic number p(L) of L is defined by

(2.1) p(L) = min{χ(L) : L ∈ L} − 1.

Recall that the Turán graph Tn,p is the largest graph on n vertices and p
classes.

Claim 2.1.

(2.2) ex(n,L) ≥ e(Tn,p) =

(
1− 1

p

)(
n

2

)
+ o(n2).

Indeed, Tn,p does not contain any L ∈ L. An easy consequence of the
Erdős–Stone theorem [95] provides the asymptotic value of ex(n,L), at least
if p(L) > 1.

Theorem 2.2 (Erdős–Simonovits [89]). If L is a family of graphs with
subchromatic number p > 0, then

ex(n,L) =
(
1− 1

p

)(
n

2

)
+ o(n2).

9In [70] Erdős (again) attributes the finite geometric construction to Eszter (Esther)
Klein.
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This means that ex(n,L) depends only very
loosely on L; up to an error term of order o(n2);
it is already determined by p(L).10 The question
is whether the structure of the extremal graphs is
also almost determined by p(L), and (therefore) it
must be very similar to that of Tn,p

11. The answer
is YES. This is expressed by the following results of Erdős and Simonovits
[66], [67], [218]:

Theorem 2.3 (The Asymptotic Structure Theorem). Let L be a family of
forbidden graphs with subchromatic number p. If Sn ∈ EX(n,L), (i.e., Sn

is extremal for L), then it can be obtained from Tn,p by deleting and adding
o(n2) edges. Furthermore, if L is finite, then the minimum degree

dmin(Sn) =

(
1− 1

p

)
n+ o(n).

Further, the almost-extremal graphs are similar to Tn,p.

Theorem 2.4 (The First Stability Theorem). Let L be a family of for-
bidden graphs with subchromatic number p. For every ε > 0, there exist a
δ > 0 and an nε such that, if Gn contains no L ∈ L, and if, for n > nε,

(2.3) e(Gn) > ex(n,L)− δn2,

then Gn can be obtained from Tn,p by changing12 at most εn2 edges.

Remark 2.5. For ordinary graphs (r = 2) we often call the degenerate
extremal graph problems bipartite extremal problems. This is the case when
L contains some bipartite graphs. There is a slight problem here: we shall
also consider the case when not only some L ∈ L is bipartite but χ(Gn) = 2
is as well.

2.1. The importance of the Degenerate Case

There are several results showing that if we know sufficiently well the
extremal graphs for the degenerate cases, then we can also reduce the non-
degenerate cases to these problems.

11Actually, this was the original question; Theorem 2.2 was a partial answer to it.
12deleting and adding
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Exact Turán numbers, product conjecture. We start with an illustra-
tion. Let O6 = K(2, 2, 2) be the octahedron graph. Erdős and Simonovits
proved that

Theorem 2.6 (Octahedron Theorem [91]). If Sn is an extremal graph for
the octahedron O6 for n sufficiently large, then there exist extremal graphs
G1 and G2 for the circuit C4 and the path P3 such that Sn = G1 ⊗G2 and
|V (Gi)| = 1

2n+ o(n), i = 1, 2.

If G1 does not contain C4 and G2 does not contain P3, then G1 ⊗G2

does not contain O6. Thus, if we replace G1 by any H1 in EX(v(G1), C4)
and G2 by any H2 in EX(v(G2), P3), then H1 ⊗H2 is also extremal for O6.

More generally,

Theorem 2.7 (Erdős–Simonovits [91]). Let L be a complete (p+1)-partite
graph, L := K(a, b, r3, r4, . . . , rp+1), where rp+1 ≥ rp ≥ · · · ≥ r3 ≥ b ≥ a and
a = 2, 3. There exists an n0 = n0(a, b, . . . , rp+1) such that if n > n0 and
Sn ∈ EX(n, L), then Sn = U1 ⊗ U2 ⊗ · · · ⊗ Up, where

1. v(Ui) = n/p+ o(n), for i = 1, . . . , p.

2. U1 is extremal for Ka,b

3. U2, U3, . . . , Up ∈ EX(n,K(1, r3)).

It follows that this theorem is indeed a reduction theorem.

Conjecture 2.8 (The Product Conjecture, Simonovits). Assume that
p(L) = minL∈L χ(L)− 1 > 1. If for some constants c > 0 and ε ∈ (0, 1)

(2.4) ex(n,L) > e(Tn,p) + cn1+ε,

then there exist p forbidden families Mi, with

p(Mi) = 1 and max
M∈Mi

v(M) ≤ max
L∈L

v(L),

such that for any Sn ∈ EX(n,L), Sn = G1⊗· · ·⊗Gp, where Gi are extremal
for Mi.

This means that the extremal graphs Sn are products of extremal graphs
for some degenerate extremal problems (for Mi), and therefore we may
reduce the general case to degenerate extremal problems.

Remarks 2.9. (a) If we allow infinite families L, then one can easily find
counterexamples to this conjecture.
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(b) If we allow linear error-terms, i.e. do not assume (2.4), then one
can also find counterexamples, using a general theorem of Simonovits [221];
however, this is not trivial at all, see [223].

(c) A weakening of the above conjecture would be the following: for
arbitrary large n, in Conjecture 2.8 there are several extremal graphs, and
for each n > nL, some of them are of product form, (but maybe not all of
them) and the families Mi also may depend on n a little.

Further sources to read: Griggs, Simonovits, and Thomas [127], Si-
monovits, [226].

2.2. The asymmetric case of Excluded Bipartite graphs

The degenerate extremal graph problems have three different forms:

Problem 2.10 (Three versions). (a) Ordinary extremal graph problems,
where some bipartite or non-bipartite sample graphs are excluded, and we
try to maximize e(Gn) under this conditions.

(b) The bipartite case, where the host graph isK(m,n) and we maximize
e(Gn+m) under the conditions that Gn+m ⊆ K(m,n) and Gn+m contains no
L ∈ L. (Here we may assume that all L ∈ L are bipartite.) In this case we
often use the notation ex(m,n,L). If m ≤ n but m > cn for some constant
c > 0, then the answer to this problems and to the problem of ex(n,L) are
the same, up to a constant. If, however, we assume that n is much larger
than m, then some surprising new phenomena occur, see Section 14.2.

(c) The asymmetric case. Color the vertices of the sample graphs L in
RED-BLUE and exclude only those Gn ⊆ K(m,n) where the RED vertices
of some L ∈ L are in the FIRST class of K(m,n): maximize e(Gn+m) over
the remaining graphs Gn+m ⊆ K(m,n).

Denote the maximum number of edges in this third case by ex∗(m,n,L).

Remark 2.11. We have seen Zarankiewicz’ problem (i.e. Problem 1.16).
That corresponds to an asymmetric graph problem, (c). If we exclude in
an m× n matrix both a a× b and an b× a submatrices of 1’s, that will
correspond to a bipartite graph problem, (b).

Conjecture 2.12 (Erdős, Simonovits [225]).

ex∗(n, n,L) = O(ex(n,L)).

The simplest case when we cannot prove this is L = K(4, 5).
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Remark 2.13 (Matrix problems). Case (c) has also a popular matrix form
where we consider 0-1 matrices and consider an m×n matrix not containing
a submatrix A. The question is: how many 1-s can be in such a matrix.
This problem has (at least) two forms: the unordered and ordered one. We
return to the Ordered Case in Subsection 12.4.

2.3. Reductions: Host graphs

The following simple but important observation shows that there is not
much difference between considering any graph as a “host” graph or only
bipartite graphs.

Lemma 2.14 (Erdős’ bipartite subgraph lemma). Every graph Gn contains
a bipartite subgraph Hn with e(Hn) ≥ 1

2e(Gn).

This lemma shows that there is not much difference between considering
K2n or Kn,n as a host graph.

Corollary 2.15. If exB(n,L) denotes the maximum number of edges in
an L-free bipartite graph, then

exB(n,L) ≤ ex(n,L) ≤ 2 exB(n,L).

Assume now that we wish to have an upper bound on ex(m,n,L), where
n � m. One way to get such an upper bound is to partition the n vertices
into subsets of size ≈ m. If, e.g., we know that ex(m,m,L) ≤ cm1+γ , then
we obtain that

(2.5) ex(m,n,L) ≤ n

m
· ex(m,m,L) ≤ cnmγ .

This often helps, however, occasionally it is too weak. Erdős formulated

Conjecture 2.16. If n > m2 then ex(m,n,C6) = O(n).

Later this conjecture was made more precise, by Erdős, A. Sárközy and
T. Sós, and proved by Győri, see Section 14.2 and [134].

We start with a trivial lemma.

Lemma 2.17. Let d be the average degree in Gn, i.e. d := 2e(Gn)/n. Then
Gn contains a Gm with dmin(Gm) ≥ d/2.

To solve the cube-problem, Erdős and Simonovits used two reductions.
The first one was a reduction to bipartite graphs, see Section 2.14. The
other one eliminates the degrees are much higher than the average.
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Definition 2.18 (Δ-almost-regularity). G is Δ-almost-regular if dmax(G) <
Δ · dmin(G).

Theorem 2.19 (Δ-almost-regularization [90]). Let e(Gn) > n1+α, and

Δ = 20 · 2(1/α)2 . Then there is a Δ-almost-regular Gm ⊂ Gn for which

e(Gm) >
2

5
m1+α, where m > nα 1−α

1+α ,

unless n is too small.

This means that whenever we wish to prove that ex(n,L) = O(n1+α),
we may restrict ourselves to bipartite Δ-almost-regular graphs.

It would be interesting to understand the limitations of this lemma
better. The next remark and problem are in this direction.

Remark 2.20. By the method of random graphs one can show [90] that

for every Δ and n and ε > 0, there is Gn with e(Gn) = �n3/2� which does
not have a Δ-almost-regular subgraph Gm with e(Gm) > ε

√
nm.

Problem 2.21 (Erdős–Simnovits [90]). Is it true that for every Δ there
exists an ε > 0 such that every Gn, with e(Gn) = �n log n�, contains a Δ-
almost-regular subgraph Gm, with e(Gm) > εm logm where m → ∞ when
n → ∞?

2.4. Excluding complete bipartite graphs

Certain questions from topology (actually, Kuratowski theorem on planar
graphs) led to Zarankiewicz problem [254]. After some weaker results
Kővári, T. Sós and Turán proved the following theorem, already mentioned
in Section 1.1.

Theorem 2.22 (Kővári–T. Sós–Turán, [164]). Let Ka,b denote the com-
plete bipartite graph with a and b vertices in its color-classes. Then

(2.6) ex(n,Ka,b) ≤
1

2
a
√
b− 1 · n2−(1/a) +

a− 1

2
n.

Remarks 2.23. (a) If a �= b then (2.6) is better if we apply it with a < b.

(b) We know from Theorem 2.2 that ex(n,L) = o(n2) if and only if L
contains a bipartite L. Actually Claim 2.1 and Theorem 2.22 show that if
ex(n,L) = o(n2) then ex(n,L) = O(n2−c), for some constant c > 0.
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Conjecture 2.24 ([164], see also e.g. [70]). The upper bound in Theorem
1.2 is sharp:

ex(n,Ka,b) > ca,bn
2−(1/a).

Sketch of proof of Theorem 2.22. The number of a-stars Ka,1 in a graph

Gn is
∑(

di
a

)
where d1, . . . , dn are the degrees in Gn. If Gn contains no Ka,b

then at most b− 1 of these a-stars can share the same set of endpoints. We
obtain

(2.7)
∑(

di
a

)
= the number of a−stars ≤ (b− 1)

(
n

a

)
.

Extending
(
n
a

)
to all x > 0 by

(
x

a

)
:=

⎧⎪⎨⎪⎩
x(x− 1) . . . (x− a+ 1)

a!
for x ≥ a− 1,

0 otherwise

we have a convex function. Then Jensen’s Inequality implies that, the left

hand side in (2.7) is at least n
(
2e(G)/n

a

)
, and the result follows by an easy

calculation.

Remark 2.25. Slightly changing the above proof we get analogous upper
bounds on e(Gn) in all three cases of Problem 2.10.

We shall return to these questions in Sections 3.1, 3.4 where we shall
discuss some improvements of the upper bound and also some lower bounds.

Further sources to read: Guy [128], Znám: [257], [256], Guy–Znám [129].

2.5. Probabilistic lower bound

The theory of random graphs is an interesting, important, and rapidly
developing subject. The reader wishing to learn more about it should either
read the original papers of Erdős, e.g., [61], [62], Erdős and Rényi, e.g., [84],
or some books, e.g., Bollobás, [27], Janson, �Luczak and Ruciński, [149],
Molloy and Reed [192].

Theorem 2.26 (Erdős–Rényi First Moment method). Let L = {L1, . . . ,Lt}
be a family of graphs, and let

(2.8) c = max
j

min
H⊆Lj

v(H)

e(H)
, γ = max

j
min
H⊆Lj

v(H)− 2

e(H)− 1
,
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where the minimum is taken only for subgraphs H where the denominator
is positive.

(a) Let Gn be a graph of order n chosen uniformly, at random, from
graphs with En edges. For every ε > 0 there exists a δ > 0 such that if
En < δn2−c, then the probability that Gn contains at least one L ∈ L is at
most ε.

(b) If we know only En < εn2−γ , then the probability that Gn contains
at least 1

2En copies of L ∈ L is at most ε.

This implies that

(2.9) ex(n,L) > cLn2−γ ≥ cLn2−c

with c ≥ γ > 0 defined above.

Remarks 2.27. (a) A graph L is called balanced if the minimum in (2.8), for
c, is achieved forH = L. Erdős and Rényi formulated their result containing
Theorem 2.26(a) only for balanced graphs L. The part we use is trivial from
their proof.

(b) Later Bollobás extended the Erdős–Rényi theorem to arbitrary L.
(c) Győri, Rothschild and Ruciński achieved the generality by embedding

any graph into a balanced graph [136].

Corollary 2.28. If a finite L contains no trees,13 then for some cL > 0,
ex(n,L) ≥ cLn1+c.

Mostly the weaker Theorem 2.26(a) implies Corollary 2.28: it does,
whenever L is finite and each L ∈ L contains at least two cycles in the same
component. However, for cycles we need the stronger Theorem 2.26(b).

For example, for L = Ka,b we have c = a−1 + b−1. Then, for c0 suffi-
ciently small, the probability that a graph Gn with c0n

2−c edges does not
contain Ka,b is positive. Hence

ex(n,Ka,b) ≥ c0n
2−(1/a)−(1/b).

Comparing this with the Kővári–T. Sós–Turán theorem (Theorem 2.22),
we see that the exponent is sharp there, in some sense, if a is fixed while
b → ∞.

13neither forests
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Proof of Theorem 2.26. Consider the random graph Gn with n labeled
vertices, in which each edge occurs independently, with the same probabil-
ity p. For each Lj , choose a subgraph Hj which attains the inner minimum
for γ, in (2.8). Let hj := v(Hj), ej := e(Hj), and let αj denote the number
of copies of Hj in Khj

, and βj denote the expected number of copies of Hj

in Gn.

Clearly, Kn contains αj

(
n
hj

)
copies ofHj . For each copyH ofHj , define a

random “indicator” variable kH = kH(Gn) = 1 if H ⊆ Gn, and 0 otherwise.
Since the number of copies of Hj in Gn is just

∑
H⊆Kn

kH , therefore, if E
denote the expected value, then

βj =
∑

H⊆Kn

E(kH) = αj

(
n

hj

)
pej .

Summing over j and taking p = c1n
−c, (for some c1 ∈ (0, 1)) we get

∑
j

βj ≤ tmaxαj

(
n

hj

)
pej ≤ tmax c1n

hj−cej = tc1n
2−c.

Now let η(Gn) = e(Gn)−
∑

j βj . Then, for c1 sufficiently small, the expected
value is

E(η(Gn)) >
1

2

(
n

2

)
p >

1

5
c1n

2−c.

Hence there exists a Gn with η(Gn) >
1
5c1n

2−c. Delete an edge from each
Hj in this Gn. The resulting graph contains no Lj , and has at least
1
5

(
n
2

)
p ≥ 1

11c1n
2−c edges, completing the proof.

Remarks 2.29 (How did the probabilistic methods start?). Mostly we
write that applications of the Random Graphs (probabilistic method)
started when Erdős (disproving a conjecture of Turán on the Ramsey Num-
bers) proved the existence of graphs Gn without complete subgraphs of
order 2 log n and without independent sets of size 2 log n.

1. Erdős himself remarks (e.g., in [64]) that perhaps Szele was the first
who applied this method in Graph Theory. (Erdős – in his birthday
volume [76] – also mentions an even earlier application of J. Erőd but
we did not succeed in locating that source.)

2. Perhaps the earliest case of applying probabilistic methods was that of
Paul Turán’s proof of the Hardy-Ramanujan Theorem [241], where –
reading the paper – it is obvious that Turán gave a probabilistic proof
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of a beautiful and important theorem, using the Chebishev inequality.
However, either Turán did not realize that this is an application of
the probabilistic method or he did not wish to burden the reader with
that.

3. An important application of the probabilistic methods was that of
Claude Shannon, when he constructed random codes.

Applying Theorem 2.26 to some families of cycles we obtain

Corollary 2.30. For some constant cm > 0,

ex(n, {C3, . . . , Cm}) ≥ cmn1+ 1
m−1 .

Erdős’ even cycles theorem asserts that ex(n,C2t) = O(n1+(1/t)), and
this upper bound is probably sharp.14 The random method (that is, The-

orem 2.26) yields a lower bound of cn1+ 1
2t−1 , a weaker result. Simonovits

thinks that it is unlikely that Theorem 2.26 ever yields a sharp bound for a
finite family.15

Corollary 2.30 is used in the next section to prove that ex(n,L) = O(n)
if and only if contains a tree or forest.

2.6. Classification of extremal problems

The extremal graph problems can be classified in several ways. Here we
shall speak of (a) non-degenerate, (b) degenerate and (c) linear extremal
problems.

For Case (a) Theorem 2.3 provides an appropriately good description
of the situation. In Case (b) p(L) = 1. Here the “main term” disappears,

(1− 1
p) = 0; therefore “the error terms dominate”. Case (c) will be discussed

here shortly and in Sections 6 and 9 in more details.

The classification immediately follows from the following theorems:

Theorem 2.31. ex(n,L) = o(n2) if and only if L contains a bipartite graph.
Actually, if L contains a bipartite graph then ex(n,L) = O(n2−c) for, e.g.,
c = 2/v(L) for any bipartite L ∈ L. If L does not contain bipartite graphs,

then ex(n,L) ≥
[
n2

4

]
.

14The reference is missing here, since Erdős did formulate this theorem but never have
published a proof of it, as far as we know.

15Some related results of G. Margulis, and A. Lubotzky, R. Phillips and P. Sarnak will
be discussed in Section 4.9.
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Theorem 2.32. For finite L, ex(n,L) = O(n) if and only if L contains a
tree, or a forest. If L ∈ L is a tree or a forest, then, for v(L) ≥ 3,

(2.10) ex(n,L) < (v(L)− 2)n.

Theorem 2.33 (Erdős [61, 62]). If L is finite and no L ∈ L is a tree, then
ex(n,L) > n1+cL for some cL > 0.

Theorem 2.34 (Erdős [62], Bondy and Simonovits [32]). Given an integer
k, for some constants ck, c̃k > 0,

(2.11) ckn
1+ 1

2k−1 < ex(n, {C3, . . . , C2k}) ≤ ex(n,C2k) ≤ c̃kn
1+ 1

k .

Proof of Theorems 2.31, 2.32, and 2.33. If there is a bipartite L ∈ L,
then Theorem 2.22 implies the sharper upper bound of Theorem 2.31.
Indeed, for v = v(L), by L ⊆ K([v/2], v), we have,

ex(n,L) ≤ ex(n,L) ≤ ex(n,K([v/2], v)) <
1

2
v
√
2v · n2−(2/v(L)) = O(n2−c).

If the minimum chromatic number p = p(L) ≥ 3, then Tn,p contains no
forbidden L ∈ L. Therefore

ex(n,L) > e(Tn,2) ≥ e(Tn,p) =

(
1− 1

p

)(
n

2

)
+O(n).

Actually, e(Tn,2) =
[
n2

4

]
. This completes the proof of Theorem 2.31.

It is easy to show that if Gn has minimum degree at least r − 1, then
it contains every tree Tr (by induction on r). An induction on n yields
(2.10), implying half of Theorem 2.32, when L contains a tree (or a forest).
If L is finite and contains no trees, i.e., all the forbidden graphs contain
some cycles, then we use Theorem 2.34, or simply Corollary 2.28, proved by
probabilistic methods.16

Remark 2.35 (Infinite families). For infinite families the situation is
different: if e.g. C is the family of all cycles, then ex(n, C) = n−1: all graphs
but the forests are excluded. There are many further families without trees
where the extremal number is linear, see Section 9.

16There are also deterministic proofs of Corollary 2.28, e.g., via the Margulis–Lubotzky–
Phillips–Sarnak construction of Ramanujan graphs, see Construction 4.43.
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Proof of Theorem 2.34. The lower bound comes from a random graph
argument of Erdős. Concentrate on the upper bound. If we are not inter-
ested in the value of the constant, then we can basically use the following
argument: Take a graph Gn with cn1+α edges. Delete its minimum degree
vertex, then the minimum degree vertex in the remaining graph, etc. At the
end we get a Gm with minimum degree at least c1m

α. In the obtained graph
Gm fix a vertex x and denote by Sj the set of vertices at distance j from x.
If girth(Gn) > 2k, – as we assumed – then basically |Sj | > dmin(Gm) · |Sj−1|.
Hence m > |Sk| > ck1m

αk. So α ≤ 1/k.

Assume for a second that Gn itself is asymptotically regular:

dmin(Gn)

dmax(Gn)
→ 1.

Then the previous argument asserts that d := dmin(Gn) < n1/k. Therefore

e(Gn) ≤
(
1

2
+ o(1)

)
nd ≈ 1

2
n1+ 1

k .

We shall return to the case of excluded trees, namely, to the Erdős–Sós
conjecture on the extremal number of trees, and to the related Komlós–
Sós conjecture in Section 6. One final question could be if ex(n,L) can be
sublinear. This is answered by the following trivial result.

Theorem 2.36. If L is finite and ex(n,L) < [n/2], then ex(n,L) = O(1).

Proof. Consider n/2 independent edges: this must contain an L1 ∈ L.
Hence, there is an L1 ∈ L contained in the union of t independent edges, for
some t. Also, there exists an L2 ⊆ K(1, n− 1). Hence an extremal graph
Sn has bounded degrees and bounded number of independent edges. This
proves 2.36.

Theorem 2.36 easily extends to hypergraphs.

2.7. General conjectures on bipartite graphs

We have already formulated Conjecture 1.6 on the rational exponents. We
have to remark that for hypergraphs this does not hold: the Behrend con-
struction [21] is used to get lower bounds in the Ruzsa–Szemerédi Theorem,
(Thm 1.9), showing that there is no rational exponent in that case. Yet,
Erdős and Simonovits conjectured that for ordinary graphs there is. One
could also conjecture the inverse extremal problem:



190 Z. Füredi and M. Simonovits

Conjecture 2.37. For every rational α ∈ (0, 1) there is a finite L for which
c1n

1+α < ex(n,L) < c2n
1+α, for some constants c1, c2 > 0.

The third conjecture to be mentioned here is on “compactness” [93]:

Conjecture 2.38. For every finite L there is an L ∈ L for which ex(n,L) >
c · ex(n,L), for some constants cL > 0.

3. Excluding Complete Bipartite Graphs

3.1. Bipartite C4-free graphs and the Zarankiewicz problem

Turán type extremal results (and Ramsey results as well) can often be
applied in Mathematics, even outside of Combinatorics. Turán himself
explained this applicability by the fact that – in his opinion – the extremal
graph results were generalizations of the Pigeon Hole Principle.

Recall that Z(m,n, a, b) denotes the maximum number of 1’s in an
m× n matrix not containing an a× b minor consisting exclusively of 1’s. In
1951 Zarankiewicz [254] posed the problem of determining Z(n, n, 3, 3) for
n ≤ 6, and the general problem has also become known as the problem of
Zarankiewicz.17 Obviously, Z(m,n,1, b) = m(b−1) (for n ≥ b−1). Observe
that Z(m,n, a, b) = ex∗(m,n,Ka,b) (where ex

∗(m,n,L) was defined follow-
ing Remark 2.10.) Considering the adjacency matrix of a Ka,b-free graph on
n vertices we get 2ex(n,Ka,b) ≤ Z(n, n, a, b). We will use this upper bound
many times.

We will see that the easy upper bound in Theorem 2.22 is pretty close
to the truth for a ≤ 2. Actually, Kővári, T. Sós and Turán [164] proved an
upper bound for the Zarankiewicz function

(3.1) Z(m,n, a, b) ≤ a
√
b− 1 ·mn1−(1/a) + (a− 1)n

which was slightly improved by Znám [257], [256], (he halved the last term
to (a− 1)n/2 in the case of m = n) and Guy [128].

A bipartite graph G[M,N ] where |M | = m, |N | = n is C4-free if its
“bipartite” m× n adjacency matrix contains no 2× 2 full 1 submatrix.18

17In Graph Theory two problems are connected to Zarankiewicz’ name: the extremal
problem for matrices that we shall discuss here and the Crossing Number conjecture which
is not our topic. Actually, the crossing number problem comes from Paul Turán, see [244].

18Here the “bipartite adjacency matrix” A = (aij)m×n is defined for a bipartite graph
G[U, V ] and aij = 1 if uj ∈ U is joined to vj ∈ V , otherwise aij = 0.
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In other terminology, the hypergraph defined by the rows of this matrix is
linear, and their hyperedges pairwise meet in at most one element. There
is an important class of such hypergraphs, the Steiner k-systems S(n, k, 2).
A family S of k-subsets of an n-set N is a Steiner k-system if every pair of
elements is covered exactly once. For such an S, clearly, |S| = m =

(n
2

)
/
(
k
2

)
.

Such families are known to exists for (m,n, k) = (q2+ q+1, q2+ q+1, q+1)
(called finite projective planes of order q), and (m,n, k) = (q2 + q, q2, q)
(affine planes) whenever q is a power of a prime. Also for any given k there
exists an n0(k) such that S(n, k, 2) exists for all admissible n > n0(k), i.e.,
when (n− 1)/(k− 1) and n(n− 1)/k(k− 1) are integers (Wilson’s existence
theorem [248]).

Kővári, T. Sós and Turán [164] proved that

Theorem 3.1. Z(n, n, 2, 2) = (1 + o(1))n3/2, and

(3.2) Z(n, n, 2, 2) < [n3/2] + 2n.

Further, if p is a prime, then

Z(p2 + p, p2, 2, 2) = p3 + p2.

Reiman [206] returned to this topic, (see also [207]), slightly improv-
ing (3.2)

Theorem 3.2 (Reiman [206]).

(3.3) Z(m,n, 2, 2) ≤ 1

2

(
m+

√
m2 + 4mn(n− 1)

)
.

For large m,n → ∞, and m = o(n2), this yields

Z(m,n, 2, 2) ≤
(
1

2
+ o(1)

)
n
√
m.

Further, for m = n, we get

(3.4) Z(n, n, 2, 2) ≤ 1

2
n
(
1 +

√
4n− 3

)
≈ n

√
n.

Reiman also provides infinitely many graphs, using Finite Geometries,
showing the sharpness of (3.3) and (3.4). We have equality when m =
n(n− 1)/k(k − 1) and a Steiner system S(n, k, 2) exists. Thus he deter-
mined the case

(3.5) Z(n, n, 2, 2) =
1

2
n
(
1 +

√
4n− 3

)
= (q2 + q + 1)(q + 1)
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for m = n = q2 + q + 1 when a projective plane of order q exists. Actually,
in [207], Reiman also speaks about Zarankiewicz-extremal graphs connected
to incidence-graphs of higher dimensional finite geometries.

Since Reiman’s theorem the theory of finite geometries developed
tremendously. We cite here a recent result whose proof used the most mod-
ern tools and stability results.

Theorem 1 (Damásdi, Héger, and Szőnyi [57]). Let q ≥ 15, and c ≤ q/2.
Then

Z(q2 + q + 1− c, q2 + q + 1, 2, 2) ≤ (q2 + q + 1− c)(q + 1).

Equality holds if and only if a projective plane of order q exists. Moreover,
graphs giving equality are subgraphs of the bipartite incidence graph of
a projective plane of order q obtained by omitting c rows of its incidence
matrix.

They proved many more exact results when a projective plane of order q
exists. The extremal configurations are submatrices of the incidence matrix
of a projective plane.

Z(q2 + c, q2 + q, 2, 2) = q2(q + 1) + cq (0 ≤ c ≤ q + 1),

Z(q2 − q + c, q2 + q − 1, 2, 2) = (q2 − q)(q + 1) + cq (0 ≤ c ≤ 2q),

Z(q2 − 2q + 1 + c, q2 + q − 2, 2, 2) = (q2 − 2q + 1)(q + 1) + cq

(0 ≤ c ≤ 3(q − 1)).

These refer to bipartite host graphs. As we will see later, such exact
results are rare for the general (non-bipartite) case. To estimate ex(n,C4)
seems to be harder, because the corresponding 0-1 matrices, the incidence
matrix of a graph, should be symmetric.

3.2. Finite Geometries and the C4-free graphs

The method of finite geometric constructions is very important and powerful
in combinatorics. In particular, it is often the best way to obtain lower
bounds. It is for this reason that we include this section.

We give several constructions: the first two show that the Kővári–
T. Sós–Turán theorem (Theorem 2.22) is sharp for both K2,2 and K3,3.
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Remark 3.3. When we write that an upper bound is sharp, mostly we
mean that it is sharp up to a multiplicative constant: it yields the correct
exponent. There are a few exceptions, where sharpness means that the ratio
of the upper and lower bounds tends to 1. This is the case for C4 = K2,2

and we have this also for K3,3. Here, however, the matching upper bound
for Construction 3.20 below is given not by Theorem 2.22 but by the Füredi
improvement [112].

Perhaps the application of finite geometries in Extremal Graph Theory
started in the Erdős paper, with the construction of Eszter Klein [60], to
prove the sharpness of Theorem 1.15. The expression “Finite Geometry”
was not mentioned there. We skip the description of this whole story, since
it was described in several places, e.g., [227], [228].

Much later, Erdős and Rényi [85] used finite geometry for a diameter-
extremal problem. This is a very large area, connected to our problems, yet
we have to skip it. The interested reader is referred to [85], (translated into
English in [208]).

Sharp extremal graph results were obtained by Reiman [206] and a
Polarity Graph was used in [86] and [36] to give asymptotically sharp lower
bound on ex(n,C4). This lower bound can also be found in [85], implicitly:
Erdős and Rényi considered the diameter-extremal problem, and do mention
the properties of this graph.

The real breakthrough came by the Erdős–Rényi–T. Sós paper [86],
(sharp lower bound for C4) and by the Brown paper [36], providing asymp-
totically sharp lower bounds for ex(n,C4) and for ex(n,K3,3). (See Re-
mark 3.3.)

We know from Theorem 2.22 that ex(n,C4) ≤ 1
2n

3/2+o(n3/2), but is this
result sharp? In analyzing the proof, we realize that if it is sharp (that is, if
there are infinitely many graphs Gn not containing C4 and having ≈ 1

2n
√
n

edges), then almost all degrees are ≈ √
n and almost every pair of vertices

must have a common neighbor (and no pair has two). This suggests that
the neighborhoods N(x) behave much like the lines in a projective plane,
in that the following statement “almost” holds: any two vertices lie in a
common set, and any two sets intersect in one vertex.

Theorem 3.4 (Erdős–Rényi–T. Sós [86], and Brown [36], see also [164]).

ex(n,C4) =
1

2
n3/2 +O(n3/2−c).

For the lower bound for ex(n,C4) we use the following
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Construction 3.5. Let p be a prime, n = p2 − 1. Construct a graph
as follows: the vertices are the p2 − 1 non-zero pairs (x, y) of residues
(modulo p), and (x, y) is joined to (a, b) by an edge if ax+ by = 1. (This
graph may contain loops, but we simply delete them.)

With n = p2 − 1, the resulting graph Hn has the necessary properties to
show the sharpness of Theorem 2.22 for C4:

(a) for a given pair (a, b), mostly there are p solutions to ax+ by = 1,
so that, even after the loops are deleted, there are at least 1

2(p
2 − 1)(p− 1)

edges in Hn and hence e(Hn) >
1
2n

3/2 − n;

(b) if Hn had a 4-cycle with vertices (a, b), (u, v), (a′, b′) and (u′, v′), then
the two equations ax+ by = 1 and a′x+ b′y = 1 would have two solutions,
which is impossible. Since the primes are “dense” among the integers, this
completes the proof of the the sharpness of Theorem 2.22 for a = b = 2.

Remark 3.6. An alternative possibility is to use the much more symmetric
polarity graph of the projective plane (we explain this in the next section):
here we used the Affine Geometric Variant because here we did not wish to
use anything from Projective Geometry.

3.3. Excluding C4: Exact results

The polarity graph19, used in [85], was also used in [86] and [36] to prove
that

(3.6) ex(n,C4) ≥
1

2
q(q + 1)2, for n = q2 + q + 1.

if q is a prime power.

Construction 3.7 (The Polarity Graph from the finite field). Assume
that q is a prime power. Consider the Finite Field GF (q). The vertices
of our graph are the equivalence classes of the non-zero triples (a, b, c) ∈
GF (q)3 where two of them, (a, b, c) and (a′, b′, c′) are considered the same if
(a′, b′, c′) = λ(a, b, c) for some λ �= 0. There are (q3 − 1)/(q− 1) = q2 + q+1
such classes. Further, the equivalence class of (a, b, c) is connected by an
edge to the class of (x, y, z) if ax+ by + cz = 0. Finally, we delete the q + 1
loops, i.e. those edges, where a2 + b2 + c2 = 0. This graph is C4-free and it
has 1

2(n(q + 1)− (q + 1)) edges.

19These C4-free graphs were studied earlier in finite geometry. The bipartite point-
line incidence graph appeared in Levi’s book (1942) and polarity graphs (modulo loops)
obtained from Levi graph had been described already by Artzy (1956). For more details
and references see Bondy [30].
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In general, a polarity corresponds to a symmetric incidence matrix
of a finite plane of size (q2 + q + 1)× (q2 + q + 1). According to a the-
orem of Baer [13] such a matrix has at least q + 1 non-zero elements in
its diagonal. Therefore using the polarity graph we cannot avoid los-
ing on loops. This way Erdős, Rényi and Sós [86] showed that indeed
ex(q2 + q + 1, C4) <

1
2n(q+1). Yet one could hope to get a better construc-

tion. Erdős conjectured [66], [71] that there are no better constructions, that
is, (3.6) is sharp if n = q2 + q + 1, (q is a prime power).

Füredi settled this conjecture in the following sense: First he proved
[103] that if q = 2k, then Erdős’ conjecture holds. Next he settled the case
q ≥ q0. Later he found a much shorter proof of the weaker assertion that
the Polarity graphs are extremal; however, this shorter version did not give
the extremal structure. So Füredi published the shorter version, while the
longer version can be found on his homepage.

Theorem 3.8 (Füredi [111], [104]). If q �= 1, 7, 9, 11, 13 and n = q2 + q+1,
then ex(n,C4) ≤ 1

2q(q+1)2 and for q > 13 the extremal graphs are obtained
from a polarity of a finite projective plane. Hence if q > 13 is a prime power,
then ex(n,C4) =

1
2q(q + 1)2.

The second part of this result probably holds for q ∈ {7, 9, 11, 13}, too.
Recently a new sharp construction has been found for n = q2 + q.

Theorem 3.9 (Firke, Kosek, Nash and Williford [102]). Suppose that q is
even, q > q0. Then

ex(q2 + q, C4) ≤
1

2
q(q + 1)2 − q.

Consequently, if q > q0, q = 2k and n = q2+q then ex(n,C4) = q(q+1)2−q.

They also announced that in a forthcoming paper they show that for
all but finitely many even q, any Sn ∈ EX(q2 + q, C4) is derived from an
orthogonal polarity graph by removing a vertex of minimum degree (the 1-
vertex-truncated Polarity graph, see Construction 3.7). This result shows
a kind of stability of the Polarity graph. More generally, McCuaig (private
communication, 1985) conjectured that each extremal graph is a subgraph
of some polarity graph. So this is true for infinitely many cases, but one of
the present authors strongly disagrees and he believes just the opposite that
for e.g., n = q2 + q + 2 maybe the extremal graphs are obtained by adding
an extra vertex and some edges to a polarity graph.

Remark 3.10. W. McCuaig calculated ex(n,C4) for n ≤ 21 (unpublished
letter, 1985). Clapham, Flockart and Sheehan determined the corresponding
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extremal graphs [48], and Yuansheng and Rowlinson [252], – using comput-
ers, – extended these results to n ≤ 31. (They also determined the graphs
in EX(n,C6) for n ≤ 26, [253].) Garnick, Kwong, Lazebnik, and Nieuwe-
jaar [122], [123] determined the values of ex(n, {C3, C4}) for all n ≤ 30.

3.4. Excluding K(2, t+ 1), t > 1

A slightly sharper form of the upper bound (3.1) was presented by Hyltén-
Cavallius [146]

(3.7) Z(m,n, 2, k) ≤ 1

2
n+

{
(k − 1)nm(m− 1) +

1

4
n2

}1/2

.

Obviously, for fixed k and large values of n, m, if n = o(m2), then the
right hand side of (3.7) is ≈

√
k − 1m

√
n. Using again the observation

2ex(n,K2,t+1) ≤ Z(n, n, 2, t+ 1) one obtains the upper bound

(3.8) ex(n,K2,t+1) ≤
1

2
n
√

tn− t+ 1/4 + (n/4).

The following theorem shows that the above (easy) upper bound is the best
possible asymptotically.

Theorem 3.11 (Füredi [113]). For any fixed t ≥ 1

(3.9) ex(n,K2,t+1) =
1

2

√
tn3/2 +O(n4/3).

To prove this Theorem one needs an appropriate lower bound, a con-
struction. Let q be a prime power such that (q− 1)/t is an integer. We will
construct a K2,t+1-free graph G on n = (q2 − 1)/t vertices such that every
vertex has degree q or q− 1. We will explain this below (Construction 3.15).

Then G has more than (1/2)
√
tn3/2 − (n/2) edges. The gap between the

lower and upper bounds is only O(
√
n) for n = (q2 − 1)/t. The lower bound

for the Turán number for all n then follows from the fact that such prime
powers form a dense subsequence among the integers. This means that for
every sufficiently large n there exists a prime q satisfying q ≡ 1 (mod t) and√
nt− n1/3 < q <

√
nt (see [145]).

Construction 3.15 below is inspired by constructions of Hyltén-Cavallius
and Mörs given for Zarankiewicz’s problem Z(n, n, 2, t+ 1).
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Theorem 3.12 (Hyltén-Cavallius [146]). Z(n, n, 2, 3) =
√
2n3/2 + o(n3/2).

Also √
�k/2� ≤ lim inf

n→∞
Z(n, n, 2, k)

n3/2
.

Theorem 3.13 (Mörs [194]). For all t ≥ 1,

Z(n, n, 2, t+ 1)

n3/2
→

√
t, as n → ∞.

The topic was so short of constructions that, as a first step, P. Erdős [66,

69] even proposed the problem whether limt(lim infn ex(n,K2,t+1)n
−3/2)

goes to ∞ as t → ∞.

Remark 3.14. Here we see three distinct quantities, exactly as it is de-
scribed in Problem 2.10. Z(m,n, 2, t+ 1) = ex∗(m,n,K2,t+1), estimated
from below by Mörs, by a construction, and ex(m,n,K2,t+1) estimated by
Füredi by the same construction. Füredi showed that the matrix of Mörs
contains neither a (t+ 1)× 2 submatrix, nor a 2× (t+ 1) submatrix of 1’s;
finally, Füredi, slightly changing the definitions in Mörs’s construction ex-
tended this “asymmetric matrix” result to the symmetric case and provided
a non-bipartite graph, proving (3.9).

Construction 3.15. Let GF (q) be the q-element finite field, and let
h ∈ GF (q) be an element of order t.This means, that ht = 1 and the set
H = {1, h, h2, . . . , ht−1} form a t-element subgroup of GF (q)\{0}. For q ≡ 1
(mod t) such an element h ∈ GF (q) always exists.

We say that (a, b) ∈ GF (q)×GF (q), (a, b) �= (0,0) is equivalent to (a′, b′),
in notation (a, b) ∼ (a′, b′), if there exists some hα ∈ H such that a′ = hαa
and b′ = hαb. The elements of the vertex set V of G are the t-element equiv-
alence classes of GF (q)×GF (q) \ (0, 0). The class represented by (a, b) is
denoted by 〈a, b〉. Two (distinct) classes 〈a, b〉 and 〈x, y〉 are joined by an
edge in G if ax+ by ∈ H. This relation is symmetric, and ax+ by ∈ H,
(a, b) ∼ (a′, b′), and (x, y) ∼ (x′, y′) imply a′x′ + b′y′ ∈ H. So this definition
is compatible with the equivalence classes.

For any given (a, b) ∈ GF (q)×GF (q) \ (0, 0) (say, b �= 0) and for any
given x and hα, the equation ax+ by = hα has a unique solution in y. This
implies that there are exactly tq solutions (x, y) with ax+ by ∈ H. The
solutions come in equivalence classes, so there are exactly q classes 〈x, y〉.
One of these classes might coincide with 〈a, b〉 so the degree of the vertex
〈a, b〉 in G is either q or q − 1.
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We claim that G is K2,t+1-free. First we show, that for (a, b), (a′, b′) ∈
GF (q)×GF (q) \ (0, 0), (a, b) �∼ (a′, b′) the equation system

(3.10) ax+ by = hα and a′x+ b′y = hβ

has at most one solution (x, y) ∈ GF (q)×GF (q)\(0,0). Indeed, the solution
is unique if the determinant det

(
a b
a′ b′

)
is not 0. Otherwise, there exists a

c such that a = a′c and b = b′c. If there exists a solution of (2) at all, then
multiplying the second equation by c and subtracting it from the first one
we get on the right hand side hα − chβ = 0. Thus c ∈ H, contradicting the
fact that (a, b) and (a′, b′) are not equivalent.

Finally, there are t2 possibilities for 0 ≤ α, β < t in (3.10). The set of
solutions again form t-element equivalence classes, so there are at most t
equivalence classes 〈x, y〉 joint simultaneously to 〈a, b〉 and 〈a′, b′〉.

Since then, there have been two additional almost optimal constructions,
strongly related to the Construction 3.15 above.

Construction 3.16 (Lazebnik, Mubayi [167]). Let GF (q)∗ be the finite
field of order q without the zero element. Suppose q ≡ 1 (mod t) and let H
be the t-element multiplicative subgroup of GF (q)∗. Define the graph G×
as follows. Let V (G×) = (GF (q)∗/H)×GF (q). For 〈a〉 , 〈b〉 ∈ (GF (q)∗/H)
and x, y ∈ GF (q), make (〈a〉 , x) adjacent to (〈b〉 , y) if x+ y ∈ 〈ab〉.

This graph (after deleting the eventual loops) is K2,t+1-free and every
vertex has degree q − 1 or q − 2. Actually, Construction 3.16 differs from
Construction 3.15 only in that its vertex set is smaller and instead of using
the rule that 〈a, b〉 is adjacent to 〈x, y〉 if ax+ by ∈ H they use the rule
ay + bx ∈ H. This change allows them to generalize it to multipartite
hypergraphs.

The following example works only if t is a power of a prime, and t|q.

Construction 3.17 (Lenz, Mubayi [173]). Suppose that t divides q and
let H be an additive subgroup of GF (q) of order t. Define the graph G+

as follows. Let V (G+) = (GF (q)/H)×GF (q)∗. We will write elements
of GF (q)/H as 〈a〉. It is the additive coset of H generated by a, 〈a〉 =
{h+a : h ∈ H}. For 〈a〉 , 〈b〉 ∈ (GF (q)/H) and x, y ∈ GF (q)∗, make (〈a〉 , x)
adjacent to (〈b〉 , y) if xy ∈ 〈a+ b〉. (This, in fact, means that there exists
an h ∈ H such that xy = a+ b+ h).
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3.5. Excluding K(3, 3), and improving the upper bound

The main result of this section is the description of the asymptotically sharp
value of ex(n,K3,3).

Theorem 3.18 (Brown [36] and Füredi [112]).

ex(n,K3,3) =
1

2
n5/3 +O(n(5/3)−c) for some c > 0.

The lower bound can be obtained from Brown’s example (discussed
below as Construction 3.20) who gave a (p2 − p)-regular K3,3-free graph
on p3 vertices for each prime p of the form 4k − 1.

Improving the upper bound in Theorem 2.22 Füredi showed that Brown’s
example is asymptotically optimal.

Theorem 3.19 (Füredi [112]). For all m ≥ a, n ≥ b, b ≥ a ≥ 2 we have

(3.11) Z(m,n, a, b) ≤ (b− a+1)1/amn1−(1/a)+(a− 1)n2−(2/a)+(a− 2)m.

For fixed a, b ≥ 2 and n,m → ∞ the first term is the largest one for
n = O(ma/(a−1)). This upper bound is asymptotically optimal for a = 2
and for a = b = 3 (m = n). We obtain

(3.12) ex(n,K3,3) ≤
1

2
Z(n, n, 3, 3) ≤ 1

2
n5/3 + n4/3 +

1

2
n.

Alon, Rónyai and Szabó [11] gave an example (discussed as Construc-
tion 3.25) showing that

(3.13) ex(n,K3,3) ≥
1

2
n5/3 +

1

3
n4/3 − C.

for some absolute constant C > 0 for every n of the form n = p3 − p2, p is
a prime. Their example shows that the upper bound (3.12) (and (3.11)) is
so tight that that we cannot leave out the second order term. It would be
interesting to see whether (3.11) is tight for other values of a and b, too.

The first step of the proof of Theorem 3.19 is that given a Ka,b-free
graph G, we apply the original bound (3.1) to the bipartite subgraphs
G[N(x), V \N(x)] generated by the neighborhood of a vertex x and its
complement.

When Brown gave his construction, the matching upper bound of
Theorem 3.19 was not known yet. He wrote that even the existence of
limn→∞ ex(n,K3,3)/n

5/3 was unknown.
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Construction 3.20. Let p be an odd prime n = p3 and d ∈ GF (p), d �= 0 a
quadratic residue if p is of the form 4k− 1 and d be a non-residue otherwise.
Construct a graph Bn whose vertices are the triples (x, y, z) of residue classes
(modulo p) and whose edges join vertices (x, y, z) and (x′, y′, z′) if

(3.14) (x− x′)2 + (y − y′)2 + (z − z′)2 = d.

It is easy to see that the graph Bn has 1
2n

5/3 +O(n4/3) edges. Given a

vertex (x′, y′, z′), the equation (3.14) has p2 − p solutions by a theorem of
Lebesgue. Thus (x′, y′, z′) has this many neighbors.

We claim that Bn does not contain K3,3. The geometric idea behind
Construction 3.5 (concerning C4-free graphs) was to join a point of the
finite plane to the points of its “polar” (with respect to the unit circle),
and then to use the fact that two lines intersect in at most one point.
In contrast, the Brown construction uses the fact that, if points of the
Euclidean space E3 at distance 1 are joined, then the resulting infinite
graph G does not contain K3,3. This is easily seen as follows: suppose
G does contain K3,3. Then the three points of one color class cannot be
collinear since no point is equidistant from three collinear points. On the
other hand, only two points are equidistant from three points on a circle,
and so K3,3 cannot occur. There is one problem with this “proof”: in
finite fields

∑
i x

2
i = 0 can occur even if not all xi’s are 0’s. Therefore in

finite geometries, in some cases, a sphere can contain a whole line. So here
the geometric language must be translated into the language of analytic
geometry, and the right hand side of (3.14) (that is d) must be chosen
appropriately.

Theorem 3.21 (Nikiforov, [198]). For b ≥ a ≥ 2 let k ∈ [0, a− 2] be an
integer. Then

Z(m,n, a, b) ≤ (b− k − 1)1/amn1−(1/a) + (a− 1)n1+(k/a) + km.

For k = 0 we get back Theorem 2.22, and substituting k = a− 2 we
obtain (3.11). Nikiforov remarks that letting k run from 0 to a− 2, we may
get the best results for various values of k as the relation of m and n varies,
but we still have no constructions to substantiate this. Nikiforov also proves
results on the spectral radius.



The History of Degenerate (Bipartite) Extremal Graph Problems 201

3.6. Further applications of Algebraic Methods

Most of the constructions providing sufficiently good lower bounds for Bi-
partite Extremal Graph Problems are coming either from Geometry or from
Algebra20. In all these cases the vertices of the graph-construction are “co-
ordinatized” and two vertices are joined if some (usually polynomial) equa-
tions are satisfied.21

Actually, this motivated Conjecture 1.6 or its weakening: If we use a
typical finite geometric construction, then there is a d-dimensional space,
where each vertex is joined to a t-dimensional subspace. Hence n = pd, the
degrees are around nt/d, so the construction has around n1+(t/d) edges. The
conjecture suggests that there are always such almost extremal construc-
tions.22

The most important question in this part is if one can find construc-
tions23 to provide lower bounds where the exponents match the exponents
in the upper bounds. Here we shall discuss when do we know the sharpness
of the Kővári–T. Sós–Turán upper bound, ex(n,Ka,b) = O(n2−(1/a)).

As we have mentioned in Section 1.1, Kollár, Rónyai and T. Szabó [159]
gave a construction which was improved by Alon, Rónyai and Szabó [11]
(Constructions 3.23 and 3.25 below). The basic idea of their proofs was
– at least in our interpretation – the same as that of William G. Brown;
however, much more advanced. In the three dimensional Euclidean space E3

the Unit Distance Graph contains no K3,3. If we change the underlying field
to a finite field GF (q) (as Brown did in Construction 3.20) then we obtain
a finite graph having n = q3 vertices. The neighborhood of each vertex will
have ≈ q2 neighbors, and therefore ≈ 1

2n
5/3 edges. Now comes the crucial

part: despite the fact, that this is highly nontrivial, we could say, that –
because of the geometric reason, – this graph contains no K3,3 proving the
sharpness of (2.6).24

If we wish to extend the above construction to get lower bounds for
ex(n,Ka,a) and we mechanically try to use unit balls in the a-dimensional

20The Random Graph Methods are very nice but mostly they are too weak to provide
sufficiently sharp lower bounds.

21Some of the constructions may seem number theoretic.
22Here we have to make some remarks about our “Conjectures”: Many of them have the

feature that it is not that interesting if they are true or false: in proving any alternative,
we get new, important knowledge about our topics. The first such “Conjecture” was
that of Turán on “Diagonal” Ramsey Numbers, that lead to the Erdős Random Graph
Approach, see Remark 2.29.

23Or “random constructions”.
24Actually, as we have already discussed this in Subsection 3.20, the Will Brown’s lower

bound also proves this sharpness, only, the lower bound of [11] is a little better.
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space GF (q)a then several problems occur. We would need that any a of
them intersect in at most a− 1 points. Then we would be home.

In E4 we can choose two orthogonal circles of radii 1√
2
, e.g.,{

(x1, x2, 0, 0) : x21 + x22 = 1/2
}

and
{
(0, 0, x3, x4) : x23 + x24 = 1/2

}
,

then each point on the first one has distance 1 from each point in the
second one. Hence the “Unit Distance Graph” contains K(∞,∞). (Simi-
larly, the “Unit Distance Graph” of GF (q)4 contains a Kq,q.) So everything
seems (!) to break down? Not quite, by the Kollár–Rónyai–Szabó construc-
tion. Instead of the ‘Euclidean metric’ they use a so-called norm in the
space GF (qa). Two vectors x and y are connected if the norm of their
sum is 1; N(x+ y) = 1. (In this context there is not much difference be-
tween connecting them this way or take a bipartite graph and connecting
the vertices in it if N(x− y) = 1).

Theorem 3.22 (Kollár, Rónyai, and T. Szabó [159] for b > a!, Alon, Rónyai,
and Szabó [11] for b > (a− 1)!). There exists a ca > 0 such that for b >
(a− 1)! we have

ex(n,Ka,b) > can
2−(1/a).

Below we provide the Kollár-Rónyai-Szabó construction and a short
verification. The norm of an element x ∈ GF (qa) is defined as

N(x) := x · xq · · · · xqa−1
.

Construction 3.23 (Kollár–Rónyai–T. Szabó [159], the Norm Graph).
The vertices of G(q, a) are the elements x ∈ GF (qa). The elements x and
y are joined if N(x+ y) = 1.

We claim that G(q, a) is Ka,b-free where b = a! + 1. If we have a Kb,a ⊆
G(q, a), then fixing – as parameters – the a vertices y1, . . . ,ya, we get a
equations of the form N(x+yi) = 1 with b solutions x ∈ {x1, . . . ,xb}. Then
we can use the following result from Algebraic Geometry with t = a.

Lemma 3.24. Let K be a field and αi,j , βi ∈ K for 1 ≤ i, j ≤ t such that
αi1,j �= αi2,j if i1 �= i2. Then the system of equation

(x1 − α1,1)(x2 − α1,2) . . . (xt − α1,t) = β1

(x2 − α2,1)(x2 − α2,2) . . . (xt − α2,t) = β2

...
...

(xt − αt,1)(x2 − αt,2) . . . (xt − αt,t) = βt

has at most t! solutions (x1, x2, . . . , xt) ∈ Kt.
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Construction 3.25 (Alon–Rónyai–T. Szabó [11]). The vertices of the
graph H(q, a) are the elements (x,X) ∈ GF (q)∗×GF (qa−1) and (x,X) and
(y, Y ) are joined if N(X + Y ) = xy.

Here the normN(X) is defined inGF (qa−1) and so it isX ·Xq · · · ·Xqa−2
.

The graph H(q, a) has (q − 1)qa−1 vertices, it is qa−1 − 1 regular, and
contains no Ka,b with b = (a− 1)! + 1. To show this we use Lemma 3.24
with t = a− 1 only.

Theorem 3.26 (Ball and Pepe [19]). The Alon–Rónyai–T. Szabó graph

H(q, 4) does not contain K5,5. Hence ex(n,K5,5) ≥ (12 + o(1))n7/4.

This is better than the earlier lower bounds of ex(n,Ka,b) for a = 5,
5 ≤ b ≤ 12, and a = 6, 6 ≤ b ≤ 8.

Recently, Blagojević, Bukh, and Karasev [24] gave a new algebraic
construction to provide lower bounds on Z(m,n, a, b) matching the (3.1)
upper bound. Their example is weaker than the Kollár–Rónyai–Szabó in
the sense that it only works for b > (a2(a+ 1))a. On the other hand, they
give new insight about the limits of the Algebraic Geometric method on
which constructions may and which may not work.

We close this section mentioning that Noga Alon has a survey paper
in the Handbook of Combinatorics [7] providing ample information on the
topics treated here (i.e., applications of algebra in combinatorics).

3.7. The coefficient in the Kővári–T. Sós–Turán bound

Alon, Rónyai and Szabó [11] observed that their Construction 3.25 can be
factored with a t-element subgroup H ⊂ GF (q)∗ (when t divides q − 1) in
the same way as it was done in Construction 3.15. Namely, the vertex set
of the new graph Ht(q, a) are the elements (x,X) ∈ GF (q)∗/H ×GF (qa−1)
and (x,X) and (y, Y ) are joined if N(X + Y )x−1y−1 ∈ H. Then the graph
Ht(q, a) has n = (q − 1)qa−1/t vertices, its degrees are about qa−1, and it
contains no Ka,b for b = (a− 1)!ta−1 + 1. Let q → ∞. Then also n → ∞,
and we get that for these fixed values of a and b one gets

ex(n,Ka,b) ≥ (1− o(1))
a
√
b− 1

2 a
√

(a− 1)!
n2−(1/a).

This shows that the order of magnitude of the coefficient in the KST bound
(3.1) should be indeed a

√
b− 1.

Montágh [193] found a clever factorization of the Brown graph (using the
spherical symmetry of the balls) thus proving the same result with even a
slightly better bound than the bound of Alon, Rónyai and Szabó, for a = 3.
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3.8. Excluding large complete subgraphs

The following theorem was discovered many times because its connections
with Computer Science problems: given a graph G with n vertices, there
exists a decomposition of its edges into complete balanced bipartite graphs
Kai,ai having altogether O(n2/ logn) vertices,

∑
i ai = O(n2/ logn). Lately,

Mubayi and Gy. Turán [195] gave a a polynomial algorithms finding such
a subgraph partition efficiently. Strictly speaking, this is not a Turán
type problem but their result implies, e.g., that there exists a polynomial
algorithm to find a Ka,a in a graph of n2/4 edges of size a = Θ(logn). The
bound O(log n) is the best possible (shown by the random graph).

It is also not very difficult to show that usually the random graph gives
the correct order of the Turán number ex(n,Ka,a) for n, a → ∞ simultane-
ously.

The case when a, b are very large i.e. a+ b = Ω(n) was considered by
Griggs, Quyang, and Ho [126], [125]. In this case Z(m,n, a, b) is almost
mn so they considered the dual question. Let us mention only one result
of this type by Balbuena, Garćıa-Vázquez, Marcote, and Valenzuela, who
have more papers on this topic.

Theorem 3.27 (see [14], [16] and the references there). Z(m,n; a, b) =
mn− (m+ n− a− b+ 1) if max{m,n} ≤ a+ b− 1.

There is another direction of research, when the ratio of m and n is
extreme. Here we only mention a classical result, that it is easy to solve the
case when n is very large compared to m.

Theorem 3.28 (Čuĺık [55]).

Z(m,n, a, b) = (a− 1)n+ (b− 1)

(
m

a

)
for n ≥ (b− 1)

(
m

a

)
.

4. Excluding Cycles: C2k

To start with, Bondy wrote a long chapter in the Handbook of Combina-
torics [30] and also a very nice survey on Erdős and the cycles of graphs [31].

Let C be a (finite or infinite) set of cycles. The study of ex(n, C) is espe-
cially interesting if C has a member of even length. However, constructions
of dense graphs without some given even cycles is usually very difficult; the
examples use polarities of finite geometries (generalized polygons [171]), or
Ramanujan graphs [190], [181] or some other families of polynomials [170].



The History of Degenerate (Bipartite) Extremal Graph Problems 205

An odd cycle, C2k+1 is chromatically critical. Hence a theorem of
Simonovits [221] implies that ex(n,C2k+1) = [14n

2] for n > nk and the only
extremal graph is K�n/2�,�n/2�.

In this Section we concentrate on even cycles C2k.

4.1. Girth and Turán numbers, upper bounds

What is ex(n, {C3, C4, . . . , Cg−1}), the maximum number of edges in a
graph with n vertices and girth g? This problem can be considered in
a dual form, what is the least number of vertices n = n(d, g) in a graph
of girth g and an average degree at least d? If we replace ‘average’ with
‘minimum’ δ then a simple argument gives the so-called Moore bound for
odd girth:

(4.1) |V (G)| = n ≥ n0(δ, 2k + 1) := 1 + δ
∑

0≤i≤k−1
(δ − 1)i.

Alon, Hoory and Linial [8] showed that (4.1) holds for the average degree,

too. Rearranging we have dave < n1/k + 1, in other words

Theorem 4.1 (Upper bound when the girth is odd).

(4.2) ex(n, {C3, C4, . . . , C2k}) <
1

2
n1+(1/k) +

1

2
n.

To prove an upper bound n1+(1/k) is trivial by induction on n. Then
(4.2) was improved but with a larger linear additive term.

Theorem 4.2 (Lam and Versträete [166], Excluding only even cycles).

(4.3) ex(n, {C4, C6, . . . , C2k}) <
1

2
n1+(1/k) + 2k

2
n.

They also note that for k = 2, 3, 5 the n-vertex polarity graphs of gener-
alized (k + 1)-gons (defined by Lazebnik, Ustimenko and Woldar [171] de-

scribed below as Construction 4.27) have 1
2n

1+(1/k) +O(n) edges and have
no even cycles of length at most 2k.

Corollary 4.3 ([166] and [171] Even girth is 6, 8 or 12). In case of
2k ∈ {4, 6, 10} we have

(4.4) ex(n, {C4, C6, . . . , C2k}) = (1 + o(1))
1

2
n1+(1/k).
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On the other hand, Füredi, Naor and Verstaëte [117] showed that

if we exclude only C2k, then ex(n,C6) > 0.53n4/3 (see below as Con-
struction 4.29) and Lazebnik, Ustimenko, and Woldar [169], showed that

ex(n,C10) > 0.579n6/5 (see below as Construction 4.28).

Concerning the Moore bound for even girth we have

(4.5) |V (G)| = n ≥ n0(δ, 2k + 2) := 2
∑

0≤i≤k
(δ − 1)i.

Alon, Hoory and Linial [8] showed that (4.5) holds for the average degree,

too. Rearranging, we have dave < (n/2)1/k + 1, in other words

Theorem 4.4 (Upper bound when the girth is even).

(4.6) ex(n, {C3, C4, . . . , C2k+1}) <
1

21+(1/k)
n1+(1/k) +

1

2
n.

This upper bound with a weaker error term was also proved earlier by
Erdős and Simonovits [93].

Note that because of Theorems 3.2, 4.21, and 4.23 one can easily show
that asymptotic bound holds in (4.6) for 2k = 4, 6, 10. The other cases are
unsolved.

Theorem 4.5. For 2k = 4, 6 and 10 as n → ∞ we have

(4.7) ex(n, {C3, C4, . . . , C2k+1}) = (1 + o(1))
1

21+(1/k)
n1+(1/k).

Moreover, infinitely many exact values are obtained for 2k = 4, 6, 10: for
n = 2(qk + qk−1 + · · ·+ q + 1),

(4.8) ex(n, {C3, C4, . . . , C2k+1}) = (q + 1)(qk + qk−1 + · · ·+ q + 1)

whenever q is a power of a prime.

4.2. Excluding a single C2k, upper bounds

Concerning our central problem, Erdős showed that excluding just one even
cycle has essentially the same effect as excluding all smaller cycles as well.
This is far from trivial! Erdős never published a proof of his result.
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Theorem 4.6 (Erdős, The Even Cycle Theorem).

(4.9) ex(n,C2k) = O(n1+(1/k)).

The first proof was published by Bondy and Simonovits in the following
stronger form.

Theorem 4.7 (Bondy and Simonovits [32]). Let Gn be a graph with e

edges, and let t satisfy 2 ≤ t ≤ e/(100n) and tn1/t ≤ e/(10n). Then Gn

contains a C2t.

In some sense, this is a “pancyclic theorem”: there is a meta-principle,
that if some reasonable conditions ensure the existence of a Hamiltonian
cycle, then they ensure the existence of all shorter cycles. Here we go the
other direction: if we ensure the existence of a C2k, then we ensure the
existence of all longer cycles, up to a natural limit, with the natural parity.

Corollary 4.8. If Gn has at least 100kn1+(1/k) edges, then it contains a
C2t, for every t ∈ [k, kn1/k].

The Erdős–Bondy–Simonovits upper bound together with earlier known
constructions imply that the exponent 1 + (1/k) is sharp for C4 (see, e.g.,
Theorem 3.4), C6, and C10 (Theorems 4.22 and 4.24 below).

Corollary 4.9 (The only known exact exponents for single cycles).

ex(n,C4) = Θ(n3/2), ex(n,C6) = Θ(n4/3), ex(n,C10) = Θ(n6/5).

The upper end of the interval in Corollary 4.8 is also sharp, apart
from the constant 100 take the disjoint union of complete graphs of order
200kn1/k. We made the following conjecture:

Conjecture 4.10 (Erdős–Simonovits). ex(n,C2k) ≥ ckn
1+(1/k). Moreover,

ex(n,C2k)

n1+(1/k)

converges to a positive limit.

It is only known for C4. A weakening of this conjecture would be the
following: Let Θk,� denote the graph of order 2 + (k − 1)
 in which two
vertices are joined by 
 paths of length k.

Conjecture 4.11 (Simonovits). For each k there is an 
 = 
(k) for which

ex(n,Θk,�) ≥ ckn
1+(1/k).
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Perhaps the first very annoying unsolved problem on this area is

Conjecture 4.12. ex(n,C8) ≥ c4n
5/4.

Returning to the Turán number of C2k, the multiplicative constant of the
upper bound in the Bondy–Simonovits theorem was improved by Verstraëte
[246] from 100 to 8. The best known upper bound today is that of Oleg
Pikhurko:

Theorem 4.13 (Pikhurko, [203]).

ex(n,C2k) ≤ (k − 1)n1+(1/k) + 16(k − 1)n.

Historical Remark 1.
(a) Pikhurko, in his very nice paper [203] gives a short description of the

whole story.

(b) Pikhurko mentions that the Bondy–Simonovits proof gives a constant
20: originally it was stated as 100. It would be extremely interesting if the
upper bound k− 1+ o(1) for ex(n,C2k)/n

1+(1/k) could be improved to o(k).

4.3. Eliminating short cycles, a promising attempt

It was relatively easy to prove the upper bound (4.2) for the number of edges

for a graph Gn with girth exceeding 2k, e(Gn) = O(n1+(1/k)). Suppose that
G has no C2k. Erdős bipartite subgraph lemma 2.14 states that there is
a bipartite subgraph H with e(H) ≥ 1

2e(G). This way we have eliminated
all the odd cycles C3, C5, . . . , C2k−1 from G. It is a natural to ask whether
one can eliminate other short cycles, thus obtaining an easy proof for the
Erdős–Bondy–Simonovits upper bound, (4.9).

Problem 4.14. Is it true that there exists a constant α2k > 0 such that each
C2k-free Gn contains an Hn with girth(Hn) > 2k and e(Hn) > α2ke(Gn)?

The answer is still unknown. The first step was done by E. Győri. The
following lemma implies that α6 exists and it is at least 1/4.

Lemma 4.15 (Győri [134]). If Gn is bipartite and it does not contain
any C6, then it contains an Hn with

e(Hn) ≥
1

2
e(Gn) + 1,

not containing C4’s either (for e(G) ≥ 2). This is sharp only for Gn =
K2,n−2.
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We mention two generalizations.

Theorem 4.16 (Füredi, Naor and Verstraete [117]). Let G be a hexagon-
free graph. Then there exists a subgraph of G of girth at least five,
containing at least half the edges of G.

Furthermore, equality holds if and only if G is a union of edge-disjoint
complete graphs of order four or five. We got α6 = 1/2.

Theorem 4.17 (Getting rid of C4’s, Kühn and Osthus [165]). Every
bipartite C2k-free graph G contains a C4-free subgraph H with e(H) ≥
e(G)/(k − 1).

The factor 1/(k− 1) is best possible, as the example Kk−1,n−k+1 shows.

These theorems settle some special cases (namely L = {C4, C2k}) of the
following compactness conjecture of Erdős and Simonovits.

Conjecture 4.18 (Compactness. Erdős–Simonovits [93]). For every finite
family of graphs L (containing bipartite members as well) there exists an
L0 ∈ L for which ex(n,L) = O(ex(n,L0)).

The following result of Kühn and Osthus makes a little step toward
solving Problem 4.14 and Conjecture 4.18.

Theorem 4.19 ([165]). Let g ≥ 4 be an even integer and let 
(g) =:
Π1≤i≤g/2 i. Suppose that k − 1 is divisible by 
(g) and Gn is a C2k-free
graph. Then Gn contains an Hn with girth(Hn) > g such that e(Hn) ≥
e(Gn)/2(4k)

(g−2)/2.

In other words, for some very special values of k’s a C2k-free graph
contains a subgraph having a positive fraction of the edges and of girth at
least Ω(log k/ log log k).

4.4. A lower bound for C6: The Benson Construction

In the preceding section, we asserted that the Erdős theorem on even circuits
is sharp for C4, C6 and C10 (and is conjectured to be sharp in all cases).
For C4, the sharpness follows from Construction 3.5. For C6, it can be
deduced from the Benson construction [22] which we explain below. Note
that (about the same time) Singleton [231] described the same graph but
his definition was much more complicated.

The points of the d-dimensional finite projective geometry PG(d, q) are
the equivalence classes of the nonzero vectors of GF (q)d+1 where x and y
are equivalent if there is a γ ∈ GF (q)∗ such that x = γy. There are (qd+1 −



210 Z. Füredi and M. Simonovits

1)/(q − 1) such classes. Then the i-dimensional subplanes are generated by
the (i+ 1)-dimensional subspaces of the vector space GF (q)d+1.

Let

A =

⎛⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎠ .

Clearly, A is non-singular. Define the surface S by the equation xAxT = 0,

S := {x ∈ PG(4, q) : xAxT = 0}

Construction 4.20 (Benson’s C6-free bipartite graph). Let L be the set
of lines of PG(4, q) contained entirely in S. The vertex set of the bipartite
graph Bq is S ∪ L, and x ∈ S is joined to L ∈ L if x ∈ L.

Theorem 4.21 (Benson [22], Singleton [231]). Bq is a (q + 1)-regular,
bipartite, girth 8 graph with 2(q3 + q2 + q + 1) vertices.

Corollary 4.22. ex(n,C6) ≥ (1 + o(1))(n/2)4/3.

First, we can see that S does not contain a full 2-dimensional projective
plane. We can use the fact that for x and y on S, the line xy consists of
the points z = ax+ (1− a)y, and lies entirely in S if both yAyT = 0 and
xAyT = 0.

Second, the number of lines from L containing a given point x ∈ S is
q+1. Since the number of points on a line is q+1 we immediately get that
|S| = |L|.

Furthermore, Bq contains no cycles of length 3, 4, 5 or 7. (For the odd
cases this is because it is bipartite, and the existence of a 4-cycle would
imply that two points of S are on two distinct lines.) Now suppose that Bq

contains a 6-cycle v1w1v2w2v3w3v1. Then S must contain the three lines
v1v2, v2v3, and v3v1, and so it must contain the plane < v1v2v3 >. But this
is impossible. If we apply a coordinate transformation T with v1, v2 and v3
as the first three base vectors, we get the matrix⎛⎜⎜⎜⎝

0 0 0 ? ?
0 0 0 ? ?
0 0 0 ? ?
? ? ? ? ?
? ? ? ? ?

⎞⎟⎟⎟⎠
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since viAv
T
j = 0. But then A′ cannot be regular, contradicting the regularity

of A. Hence Bq cannot contain C6 either.

All these imply that |S| = q3 + q2 + q+1 and that every x ∈ S, L ∈ L if
x /∈ L then there exists a unique line L′ ∈ L such that x ∈ L′ and L∩L′ �= ∅.

In concluding this section, we note that finite geometry constructions
can also be used in hypergraph extremal problems (see [39], [40] and [220]).

4.5. Girth 12 graphs by Benson and by Wenger

Theorem 4.23 (Benson [22]). Let q be an odd prime power. There is a
(q+1)-regular, bipartite, girth 12 graph B∗q with 2(q5+ q4+ q3+ q2+ q+1)
vertices.

Corollary 4.24. ex(n,C10) ≥ (1 + o(1))(n/2)6/5.

One half of the vertex set of B∗q are the points of the quadric Q6 in

PG(6, q) defined by x20 + x1x−1 + x2x−2 + x3x−3 = 0. Its size is exactly
(q6 − 1)/(q − 1). Then we select a set of lines L contained entirely in Q6

and covering each point of Q6 exactly q+1 times. The family L is selected as
follows: If x ∈ Q6 and x,y ∈ L ∈ L then x and y must satisfy the following
six bilinear equations:

x0yi − xiy0 + x−jy−k − x−ky−j = 0

where (i, j, k) is a cyclic permutation of (1, 2, 3) or (−1,−2,−3).

Construction 4.25. The bipartite graph B∗q is defined, as before, by the
incidences x ∈ L.

Now consider the much simpler example of Wenger.

Construction 4.26 (Wenger [247]). Let p be a prime, k = 2, 3 or 5. Hk(p)
is defined as a bipartite graph with two vertex classes A and B, where |A| =
|B| = pk and the vertices of A are k-tuples a = (a0, a1, . . . , ak−1) ∈ GF (p)k

and same for b = (b0, b1, . . . , bk−1) ∈ B. The vertices a and b are joined if

bj ≡ aj + aj+1 · bk−1 (mod p) for j = 0, 1, . . . , k − 2.

One can see that for every a ∈ A each bk−1 determines exactly one b ∈ B
joined to it. This easily implies that G[A,B] is p-regular, with n = 2pk

vertices and pk+1 = (n/2)1+(1/k) edges.

Wenger gives an elegant proof of that H2(p) has no C4, H3(p) has no C4,
nor C6. Finally, H5(p) contains no C4, C6 or C10, however, it has many C8’s.
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4.6. Short cycles, C6 and C10

The densest constructions of 2k-cycle-free graphs for certain small values of
k arise from the existence of rank two geometries called generalized d-gons.
These may be defined as rank two geometries whose bipartite incidence
graphs are regular graphs of diameter d and girth 2d. These are known
to exist when d is three, four or six. This is the background of the above
Constructions 4.20 and 4.25.

Construction 4.27 (Lazebnik, Ustimenko and Woldar [171]). One can use
the existence of polarities of the generalized (k + 1)-gons to obtain dense
2k-cycle-free graphs when k ∈ {2, 3, 5}. In particular, for these k’s

(4.10) ex(n,C2k) ≥
1

2
n1+(1/k) +O(n)

for infinitely many n.

In [93], Erdős and Simonovits formulated the following conjecture. For

fixed k and n → ∞, ex(n,C2k) =
1
2n

1+(1/k) + o(n1+(1/k)). This holds for C4

(Theorem 3.4), but was disproved first for C10, then for C6 by the following
two examples.

Construction 4.28 (Lazebnik, Ustimenko and Woldar [171]). Consider
a bipartite graph G[A,B] of girth exceeding 2k. Replace each vertex of A
by k − 1 new vertices with the same neighborhood. Then the new graph
G[(k − 1)A,B] is still C2k-free. In particular, starting with the girth 12
bipartite graph of Theorem 4.23 (here k = 5) one gets a graph of about 5q5

vertices and about 4q6 edges, implying

(4.11) ex(n,C10) ≥ 4(n/5)6/5 > 0.5798n6/5

for infinitely many n.

Since the C6-free graph of Construction 4.27 does not have C3 and C4

either, doubling a random subset appropriately, one obtains a denser C6-free
graph:

Theorem 4.29 (Füredi, Naor and Versträete [117]). For infinitely many n,

ex(n,C6) >
3(
√
5− 2)

(
√
5− 1)4/3

n4/3 +O(n) > 0.5338n4/3.

They also showed that



The History of Degenerate (Bipartite) Extremal Graph Problems 213

Theorem 4.30 (Füredi, Naor and Versträete [117]). ex(n,C6) ≤ λn4/3 +
O(n), where λ ≈ 0.6271 is the real root of 16λ3 − 4λ2 + λ− 3 = 0.

These theorems give the best known lower and upper bounds for
ex(n,C6). The proof of Theorem 4.30 requires a statement about hexagon-
free bipartite graphs, which is interesting in its own right (see de Caen and
Székely [44]). Let ex(m,n,C6) be the maximum number of edges amongst
all m by n bipartite hexagon-free graphs. Then

Theorem 4.31 (Füredi, Naor and Verstraëte [117]). Let m, n be positive
integers with n ≥ m. Then

ex(m,n,C6) < 21/3(mn)2/3 + 10n.

Furthermore, if n = 2m then as n tends to infinity,

ex(m,n,C6) =

{
21/3(mn)2/3 +O(n) for infinitely many m

21/3(mn)2/3 − o(n4/3) for all m.

The lower bound is given by the graph defined in Construction 4.28
starting with the Benson graph (Theorem 4.21, k = 3).

4.7. Bipartite hosts with extreme sides

We have already seen two such results concerning the Zarankiewicz number,
by Reiman (Theorem 3.2) and Čuĺık (Theorem 3.28). András Sárközy and
Vera Sós formulated the following conjecture25

Conjecture 4.32.

ex(m,n,C6) < 2n+ c(nm)2/3.

A weaker version of this was proved by Gábor N. Sárközy, [212] and
later Győri [134] proved a stronger

Theorem 4.33. There exists a constant ck > 0 for which if G[A,B] is a
bipartite graph with color classes A,B, and |A| = m, |B| = n ≥ m2, and

e(G[A,B]) ≥ (k − 1)n+ ckm
2,

then G[A,B] ⊃ C2k.

25A weaker version of this conjecture was formulated by Erdős several years earlier.
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This means that for n > m2 the extremal number becomes linear. For
more recent results see, e.g., Balbuena, Garćıa-Vázquez, Marcote, and
Valenzuela [15]. Later Győri [135] showed that c3 = 1/8, proving

ex(m,n,C6) ≤ 2n+
1

8
m2,

for n,m > 100, n ≥ m2/16 and here equality holds if m is a multiple of 4.

4.8. The effect of odd cycles

Let L be a set of graphs and let exbip(n,L) denote the bipartite Turán
number of L, the size of the largest L-free bipartite graph on n vertices.

Theorem 4.34 (Erdős and Simonovits [93]).

ex(n, {C4, C5}) = (1 + o(1))exbip(n,C4) = (1 + o(1))(n/2)3/2.

They also conjecture that the same holds for {C3, C4} (i.e., for the
girth problem) but this is still unsolved. Then, they make the following
bold conjecture.

Conjecture 4.35 (Erdős and Simonovits [93] on the effect of odd cycles).
Let Codd

2�+1 denote the set of odd cycles {C3, C5, . . . , C2�+1}. For any family
L consisting of bipartite graphs there exists an odd integer 2
+1 such that
ex(n,L ∪ Codd

2�+1) ≈ exbip(n,L).

This conjecture was verified in a few cases by extending and sharpening
Theorem 4.34 as follows.

Theorem 4.36 (Keevash, Sudakov and Verstraëte [157]). Let Ceven
2k denote

the set of even cycles {C4, C6, . . . , C2k}. Suppose that 2k ∈ {4, 6, 10} and
suppose that 2
+ 1 > 2k. Then

ex(n, Ceven
2k , C2�+1) = (1 + o(1))exbip(n, Ceven

2k ) ∼ (n/2)1+(1/k).

They even proved a stability result (when n → ∞) and, using it, an
exact version: If 2k ∈ {4, 6, 10} and 2
+ 1 ≥ 5, 15, or 23, respectively, and
n = 2(qk + qk−1 + · · ·+ q + 1) then for n > n2�+1 we have

ex(n, Ceven
2k ∪ C2�+1) ≤ (q + 1)n

and here equality holds only if there is a generalized (k + 1)-gon of order q.
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In a more recent work Allen, Keevash, Sudakov and Verstraëte [5] ver-
ified the stronger form of the Erdős–Simonovits conjecture proving that
for any fixed 2
+ 1 ≥ 5 one has ex(n, {K2,t, C2�+1}) ∼ exbip(n,K2,t) and
ex(n, {K3,3, C2�+1}) ∼ exbip(n,K3,3). They also show

ex(n, {K2,t, Bt, C2�+1}) ∼ exbip(n, {K2,t, Bt}) ∼ (n/2)3/2

for any fixed t ≥ 2 and 2
+ 1 ≥ 9, where Bt is a “book” of t C4’s sharing
and edge: it has 2t+ 2 vertices and 3t+ 1 edges. Their main tool is the
smoothness of the corresponding Turán number’s and the sparse regularity
lemma of A. Scott [213].

On the other hand, for any t ≥ 1 and prime q > 2t
4
, they construct

(t+ 2)-partite graphs Gq,t with no triangle or K2,2t+1 having n = (t+ 2)q2

vertices and
(
t+2
2

)
q2(q − 1) edges. This implies

(4.12) ex(n, {K2,2t+1, C3}) ≥ (1 + o(1))
t+ 1√
t+ 2

n3/2.

So, using exbip(n,K2t+1) ∼
√
tn3/2, which follows easily from (3.7) and

(3.9), they obtain

(4.13) lim inf
n→∞

ex(n, {K2,2t+1, C3})
exbip(n,K2,2t+1)

≥ t+ 1√
t(t+ 2)

> 1.

In particular the ratio is 2/
√
3+o(1) for K2,3. We explain their construction

yielding (4.12) only for t = 1.

Construction 4.37 (Allen, Keevash, Sudakov and Verstraëte [5]). Let
q ≡ 2 (mod 3) be a prime. Let Gq be a three-partite graph with parts
A1, A2 and A3 which are copies of GF (q)×GF (q). Join (x1, x2) ∈ Ai to
(y1, y2) ∈ Ai+1 if

(y1, y2) = (x1, x2) + (a, a2)

for some a ∈ GF (q), a �= 0.

The obtained graph is K2,3 and C3-free, and has n = 3q2 vertices and

n3/2/
√
3 edges. This yields the ratio 2/

√
3 + o(1) for K2,3 in (4.13). They

believe that Erdős’ Conjecture 1.8 is false:

Conjecture 4.38 ([5]).

lim inf
n→∞

ex(n, {C3, C4})
exbip(n,C4)

> 1.
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4.9. Large girth: Ramanujan graphs

Until this point we were fixing the excluded subgraphs. However, there
is a subcategory of extremal graph problems, which we could also call
“Parametrized Extremal Graph Problems”. Instead of defining them we
give an almost trivial but important example: Horst Sachs and Erdős [87]
reformulated the Moore bounds (4.1) (4.5), in a slightly different form.

Theorem 4.39. If the minimum degree of Gn, d := dmin(Gn) > 2 then Gn

contains a C� with

(4.14) 
 <
2 log n

log(d− 1)
.

Here we arrived at an area where some constructions (for lower bounds)
were needed, and the lower bounds were easily obtained by probabilistic
arguments; however they were very difficult to obtain them in a constructive
way. Instead of going into details, we mention a result of Margulis [188] that
(4.14) is sharp up to a constant: there are – not too complicated – Cayley
graphs of constant (even) degrees d and girth at least c logd−1 n. Here –
surprisingly, Margulis’ construction is better than the random graph and a
construction of Imrich yields an even better constant c:

Theorem 4.40 (Imrich [147]). For every integer d > 2 one can (effectively)
construct infinitely many d-regular Cayley graphs Xn with

girth(Xn) > 0.4801
log n

log(d− 1)
− 2.

The next step in this area was a much deeper and more important results
of Margulis [190, 189], Lubotzky, Phillips and Sarnak, [181] on the Expander
graphs, that are eigenvalue-extremal. In this sense the Margulis–Lubotzky–
Phillips–Sarnak graph is very nice. There is only one problem with it. While
defining these graphs is non-trivial, but not extremely complicated, to verify
their extremal properties requires deep mathematical tools. Below we give
a very compressed description of it.

Definition 4.41. Given a connected k-regular graph X, we denote by λ(X)
the largest of the absolute values of eigenvalues of the adjacency matrix ofX,
different from k. An n-vertex k-regular graph Xn,k is a Ramanujan graph

if λ(Xn,k) ≤ 2
√
k − 1.
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Remark 4.42. In case of k-regular graphs, the largest absolute values of
the eigenvalues is k. The bipartite graphs have the property that if λi is
eigenvalue, then −λi is also an eigenvalue. By the Alon–Boppana inequality,
(see Proposition 4.2 of [181])

lim inf
n→∞ λ(Xn,k) = 2

√
k − 1.

Ramanujan graphs are important because they are expander graphs,
which are extremely important in Theoretical Computer Science.

There are quite a few cases, where – instead of using “random graph
constructions” one tries to use Cayley Graphs. Cayley graphs are graphs
whose vertices are the elements of some group G and the edges are the pairs
(g, αig), where g ∈ G and α1, . . . , αk are elements of G. If we look for a
digraph, then this is a correct definition. However, if we are looking for
ordinary graphs, then we have to assume that S := {α1, . . . , αk} is closed
under taking the inverse: if α ∈ S then α−1 ∈ S as well. If we choose G
and S appropriately, then the obtained graph will provide us with nice
constructions; mainly, because it behaves as if it were a random graph, or,
occasionally, even better.

Construction 4.43 ([181]). Let p and q be unequal primes congruent
to 1 mod 4. The Ramanujan graphs Xp,q of [181] are p+ 1-regular Cayley
graphs26 of the group PSL(2,Z/qZ): p+1 generators of the group are fixed,
which are obtained from the solutions of

(4.15) p = a2 + b2 + c2 + d2, where a > 0 is odd and b, c, d are even.

The number of solutions of (4.15) is connected to the famous Ramanujan
conjecture, which is still open. However, good approximations are known,
by Eichler and Igusa, enough for the purposes of [181]. Originally most
of the authors were interested in the eigenvalue properties (spectral gap)
of these graphs, that are also strongly connected to them being expander
graphs (see Alon, [6], Alon–Milman [10]).

From here on, Xn,k = Xp,q is a special sequence of Ramanujan graphs,

which is non-bipartite if the Jacobi symbol ( qp) = 1; then it has n =

(q3 − q)/2 vertices.

Theorem 4.44. For k = p+1, Xp,q is k-regular, its eigenvalues are λ = ±k
or |λ| ≤ 2

√
k − 1.

26There are two of them, a bipartite and a non-bipartite, we forget the bipartite one.
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This property is optimal and leads to the best known explicit expander
graphs. Alon turned the attention of the authors to that these graphs satisfy
a number of extremal combinatorial properties.

Theorem 4.45 (Observation of Alon). The girth of Xn,k is asymptotically

≥ 4
3

logn
log(k−1) .

This gives larger girth than what was previously known by explicit or
non-explicit constructions. Also, it is one of the “cleanest” way to define
graphs with large girth and high chromatic number:

Theorem 4.46 ([181]). If Xn,k is a non-bipartite Ramanujan graph, then
its independence number and chromatic number satisfy

α(Xn,k) ≤
2
√
k − 1

k
n and χ(Xn,k) ≥

k

2
√
k − 1

.

For a more informative description of these and many other related areas
see the survey of Alon in the Handbook [7].

4.10. The girth problem: the Lazebnik–Ustimenko approach

After 20 years Theorem 4.47 still yields the best known lower bound for the
girth problem: Lazebnik, Ustimenko and Woldar’s work [170] gives a slight
improvement (an O(1) in the denominator of the exponent) to what we can
get from the Ramanujan’ graphs.

Theorem 4.47 ([170]). ex(n, {C3, C4, . . . , C2k+1}) = Ω(n · n2/(3k−3+ε))
where k ≥ 2 is fixed, ε = 0 if k is odd, ε = 1 if k is even and n → ∞.

We have seen basically two approaches on how to construct graphs with
high girth. One was the use of Finite Geometries, and the other the use
of Cayley Graphs of some matrix groups (Ramanujan graphs). There is
(at least) one further important approach to this question which we find in
the works of Lazebnik and Ustimenko and later Lazebnik, Ustimenko and
Woldar.

Remark 4.48 (History). In this survey many important areas had to be
skipped. One of them is the family of Lazebnik–Ustimenko type algebraic
constructions. This family of constructions is much more flexible than many
earlier ones, and provides a lot of new constructions in extremal graph
theory, in Ramsey type problems, for graphs and hypergraphs as well. The
first results were achieved by Lazebnik and Ustimenko [168]. Lazebnik and
his coworkers created a school in this area. The reader is referred here
to [167].
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The main feature of this approach can be described (perhaps slightly
cheating) as follows. We take a set R (a finite or infinite ring or field),
its dth power, and a sequence of polynomials f2, . . . , fd. Define a bipartite
graph, where the colour classes A and B consist of vectors (a1, . . . , ad) and
(b1, . . . , bd) that are joined if

a2 + b2 = f2(a1, b1)

a3 + b3 = f3(a1, b1, a2, b2)

. . .

ad + bd = fd(a1, b1, . . . , ad, bd).

We may also identify A and B to get non-bipartite graphs as well. In
general, either we get digraphs, or some symmetry conditions are assumed
on the functions fi, ensuring that if (a1, . . . , ad) is joined to (b1, . . . , bd), then
(b1, . . . , bd) and (a1, . . . , ad) are joined as well. Yet, it is not an easy area
to describe it on a few pages: this is why we basically skip it. Perhaps the
more interested reader should look at [172].

4.11. Cycle length distribution

As a measure of the density of the cycle lengths in a graph G, Erdős
introduced the number L(G), the sum of the reciprocals of the distinct cycle
lengths of G. The following beautiful theorem, due to Gyárfás, Komlós and
Szemerédi, proves a conjecture of Erdős and Hajnal, asserting that in some
sense the complete graph or the complete bipartite graph are the densest
concerning cycle lengths:

Theorem 4.49 ([131]). There exists a positive constant c > 0 such that if
dmin(G) ≥ k, then for the sum of the reciprocals of the cycle lengths 
i of G
we have

L(G) =
∑ 1


i
> c log k.

The union of complete graphs Kk+1 or bipartite graphs Kk,m (where
m ≥ k) show that this lower bound is sharp.

Generalizing a theorem of Bondy and Vince [33], Gengua Fan proved
several nice results on the distribution of cycle lengths. We mention only
one of them.

Theorem 4.50 (G. Fan [96]). Let xy be an edge in a 2-connected graph G,
k be a positive integer and suppose that all the vertices of G but x and y
have degrees at least 3k. Then xy is contained in k+1 cycles C0,C1, . . . ,Ck,
such that k+1 < |E(C0)| < |E(C1)| < · · · < |E(Ck)|, |E(Ci)|− |E(Ci−1)| =
2 for i = 1, . . . , k − 1 and 1 ≤ |E(Ck)| − |E(Ck−1)| ≤ 2.
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A related result concerning k odd cycle lengths can be found in Gyárfás
[130].

Next we recall a conjecture of Burr and Erdős.

Conjecture 4.51 (Burr and Erdős). For every odd integer k > 0, and
every integer 
, there exists a ck such that if e(Gn) > ckn, then some m ≡ 

(mod k), we have Cm ⊆ Gn.

This was proved by Bollobás [25] with ck ≤ ((k+ 1)k − 1)/k. Häggkvist
and Scott ([137], [138]) decreased ck and extended the Bollobás result,
proving that every graph Gn with minimum degree at least 300k2 contains k
cycles of consecutive even lengths. Soon after, the right order of magnitude
of ck was established.

Theorem 4.52 (Verstraëte [246]). Let Gn be a graph with e(Gn) ≥ 4kn.
Then there are cycles of k consecutive even lengths in Gn.

We close this part with the following theorem:

Theorem 4.53 (Sudakov, Verstraëte [234]). Let girth(Gn) = g be fixed
and d = 2e(Gn)/n. Let C(G) denote the set of cycle-lengths in G. Then

C(Gn) contains at least Ω(d
�(g−1)/2�)) consecutive even integers, as d → ∞.

5. Paths and Long Cycles

In this section we shall describe results connected with ex(n, Pk),
ex(n, C≥k), (where the cycles of at least k vertices are excluded). This
problem was proposed by Turán and the (asymptotic) answer were given by
Erdős–Gallai.

5.1. Excluding long cycles

Theorem 5.1 (Erdős and Gallai [80]). Let Gn be a graph with more than
1
2(k− 1)(n− 1) edges, k ≥ 3. Then Gn contains a cycle of length at least k.
This bound is the best possible if n− 1 is divisible by k − 2.

A matching lower bound 1
2(k − 1)n−O(k2) can be obtained gluing to-

gether complete graphs of sizes at most k − 1. If k is odd, then there are
nearly extremal graphs having a completely different structure. Namely,
one can take a complete bipartite graph with partite sets A and B of sizes
|A| = k−1

2 and |B| = n− k−1
2 and add all edges in A, too.

The exact value was determined by Woodall [249] and independently
and at the same time by Kopylov [162].
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Theorem 5.2 ([162], [249]). Let n = m(k − 2) + r, where 1 ≤ r ≤ k − 2,
k ≥ 3, m ≥ 1 integers. If

e(Gn) > m

(
k − 1

2

)
+

(
r

2

)
,

then Gn contains a cycle of length at least k, and this bound is the best
possible:

(5.1) ex(n, C≥k) =
1

2
(k − 1)n− 1

2
r(k − r).

Caccetta and Vijayan [43] gave an alternative proof of the result. We
need a definition.

Construction 5.3. LetHn,k,s be an n-vertex graph consisting of a complete
graph Kk−s on the set A∪B, |A| = k− 2s, |B| = s and a complete bipartite
graph Ks,n−(k−s) with parts B and C where A, B and C form a partition
of V (H) (hence |C| = n− (k − s) and n ≥ k, (k − 1)/2 ≥ s ≥ 1).

The graph H contains no cycle of size k or larger and for s ≥ 2 it is
2-connected. Denote its size by h(n, k, s).

They all ([162], [249], [43]) characterized the structure of the extremal
graphs in Theorem 5.2. Namely either

— the blocks of Gn are m complete graphs Kk−1 and a Kr, or
— k is odd, r = (k + 1)/2 or (k − 1)/2 and q of the blocks of Gn are

Kk−1’s and a copy of a Hn−q(k−2),k,(k−1)/2.
The strongest result on the field is due to Kopylov who also investigated

2-connected graphs.

Theorem 5.4 (Kopylov [162]). Suppose that n ≥ k ≥ 5 and the 2-con-
nected graph Gn contains no cycles of length of k or larger. Then

e(Gn) ≤ max{h(n, k, 2), h(n, k, �1
2
(k − 1)�)}

and this bound is the best possible.

Moreover, only the graphs Hn,k,s could be extremal, s ∈ {2, �(k−1)/2�}.

This theorem was also conjectured by Woodall [249] and he also proved
it for n ≥ (3k − 5)/2. It was also reproved much later in [97].



222 Z. Füredi and M. Simonovits

5.2. Excluding Pk

One of the oldest problems is the question of determining ex(n, Pk).

Theorem 5.5 (Erdős and Gallai [80]). If Gn is a graph containing no Pk,
(k ≥ 2), then

e(Gn) ≤
k − 2

2
n

with equality if and only if k − 1 divides n and all connected components
of G are complete graphs on k − 1 vertices.

Consider the n-vertex graph Gn which is the union of �n/(k−1)� vertex-
disjoint Kk−1 and a Kr (0 ≤ r ≤ k − 2). If Tk is any connected k-vertex
graph, then Tk �⊆ Gn. Hence

(5.2) ex(n, Tk) ≥
k − 2

2
n− 1

8
k2.

In particular,

(5.3) ex(n, Pk) ≥
k − 2

2
n− 1

8
k2.

Fig. 2. Potential extremal graphs

If k is even, then there are nearly extremal graphs having a completely
different structure. Namely, one can take a complete bipartite graph with
partite sets A and B of sizes |A| = k−2

2 and |B| = n− k−2
2 and add all edges

in A, too (Fig. 2). Faudree and Schelp [98] proved that the extremal graph
for Pk can indeed be obtained in this way for all n and k. They needed this
to prove some Ramsey theorems on paths. The variety of extremal graphs
makes the solution difficult.

Theorem 5.6 (Faudree and Schelp [98] and independently Kopylov [162]).
Let n ≡ r (mod k − 1), 0 ≤ r < k − 1, k ≥ 2. Then

(5.4) ex(n, Pk) =
1

2
(k − 2)n− 1

2
r(k − 1− r).
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Faudree and Schelp also described the extremal graphs which are either
— vertex disjoint unions of m complete graphs Kk−1 and a Kr, or
— k is even and r = k/2 or k/2− 1 and another extremal graphs can be

obtained by taking a vertex disjoint union of t copies of Kk−1 (0 ≤ t < m)
and a copy of H(n− t(k − 1), k/2, k/2− 1).

Theorem 5.7 (Kopylov [162]). Let Gn be a connected graph containing
no Pk, (k ≥ 4) and n ≥ k. Then

e(G) ≤ max{h(n, k − 1, 1), h(n, k − 1, �1
2
(k − 2)�)}

and this bound is the best possible.

Moreover, only the graphs Hn,k−1,s could be extremal, s ∈ {1, �(k −
2)/2�}.

Balister, Győri, Lehel and Schelp [18] also provided the extremal struc-
tures.

5.3. Proof ideas

Let excon(n, Pk) be the maximum number of edges in connected, n-vertex,
Pk-free graphs, and let ex2-con(n, C≥k) denote the maximum number of edges
in 2-connected, n-vertex, C≥k-free graphs. Determining these functions give
upper bounds for ex(n, Pk) and ex(n, C≥k).

Indeed, every Pk-free graph is a vertex disjoint union of Pk-free compo-
nents, we have

ex(n, Pk) = max∑
ni=n, ni≥1

∑
excon(ni, Pk).

Similarly, a maximal C≥k-free graph is connected and every connected graph
is a cactus-like union of 2-connected blocks (and edges) so we have

(5.5) ex(n, C≥k) = max∑
(ni−1)=n−1, ni≥2

∑
ex2-con(ni, C≥k),

where we define ex2-con(2, C≥k) = 1.

Let G be a connected, n-vertex, Pk-free graph. Add a new vertex to it
and join to all other vertices. We obtain Gn+1 with e(Gn+1) = e(G) + n.
This new graph has no cycle of length exceeding k and its connectivity is
one larger than that of Gn. We obtain

(5.6) ex(n, Pk) + n ≤ ex(n+ 1, C≥k+1)
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and

(5.7) excon(n, Pk) + n ≤ ex2-con(n+ 1, C≥k+1).

So Theorem 5.1 and (5.6) imply Theorem 5.5. Similarly, Theorem 5.2
and (5.6) imply Theorem 5.6.

The upper bounds for ex2-con(n,C≥k+1) yield upper bounds for
excon(n, Pk). (Actually, (5.7) and Theorem 5.4 lead to the solution of
excon(n, Pk), Theorem 5.7).

Again Theorem 5.4 and (5.5) lead to Theorem 5.2 which is obviously
stronger than Theorem 5.1.

Finally, the proof of Theorem 5.4 uses induction on n and k, by deleting
small degree vertices, contracting edges, and finally applying Pósa’s theorem
on Hamiltonian graphs.

5.4. Generalizations

In a recent work Lidický, Hong Liu and Cory Palmer [174] determined the
exact Turán number (and the unique extremal graph) when the forbidden
graph L is a linear forest, each component is a path. They also considered
star-forests.

Gyárfás, Rousseau, and Schelp [132] determined ex(K(m,n), Pk) for all
m, n, k. Their formula and proof are rather involved, they distinguish 10
subcases.

6. Excluding Trees

Here we shall discuss two extremal problems on trees: the Erdős–Sós con-
jecture and the Loebl–Komlós–Sós conjecture.

6.1. Erdős–Sós conjecture

We have already discussed the Erdős–Gallai theorems. Since the extremal
numbers for Pk and for the star K1,k−1 are roughly the same, this led Erdős
and T. Sós to the following famous conjecture.

Conjecture 6.1 (Erdős–Sós [63]). Let Tk be an arbitrarily fixed k-vertex
tree. If a graph Gn contains no Tk, then

(6.1) e(Gn) ≤
1

2
(k − 2)n.
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As we have seen – by (5.2) – the disjoint union of complete graphs Kk−1
shows that ex(n, Tk) ≥ 1

2(k − 2)n− 1
8k

2. Though several partial cases were
settled, the upper bound was unknown until Ajtai, Komlós, Simonovits, and
Szemerédi proved:

Theorem 6.2 (Main Theorem, Sharp [1, 2, 3]). There exists an integer
k0 such that if k > k0 and Tk is an arbitrarily fixed k-vertex tree, and the
graph Gn contains no Tk, then

(6.2) e(Gn) ≤
1

2
(k − 2)n.

Below we list a few subcases where this conjecture is verified, but we do
not try to give a complete list.

Theorem 6.3 (Sidorenko [215]). If Tk has a vertex x connected to at least
k/2 vertices of degree 1 (i.e., leaves) then the Erdős–Sós conjecture holds
for this Tk.

Theorem 6.4 (McLennan [182]). If the diameter of Tk is at most 4, then
the Erdős–Sós conjecture holds for this Tk.

Dobson (and coauthors) have several results in this area, under some
strong condition of sparsity. We mention only the Brandt–Dobson theorem
[34], or Sacle and Wozniak, [251], [211].

6.2. Sketch of the proof of Theorem 6.2

We are given a Tk, and a Gn violating (6.2). We wish to embed Tk into Gn

(Tk↪→Gn). The proof is very involved and will be given in three rather long
papers. The following weakening plays a central role.

Theorem 6.5 (η-weakening [1]). For any (small) constant η > 0 there
exists a k0(η) such that for n ≥ k > k0(η), if

(6.3) e(Gn) >
1

2
(k − 2)n+ ηkn,

then each k-vertex tree Tk is contained in Gn.

(a) First, in [1] we prove this theorem. If, in addition, we assume that
Gn is dense: for some c > 0, k > cn, then we can apply the Szemerédi
Regularity Lemma [235]. The proof of this theorem follows basically the line
which was later used to prove the Loebl Conjecture, by Ajtai, Komlós and
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Szemerédi [4] and later by Yi Zhao [255]. Also it was used in the Komlós–
Sós conjecture by Diana Piguet and Maya Stein [201], Cooley [54], Hladký
and Piguet [144], in stronger and stronger form, and now the publication
of that proof is almost finished by Hladký, Komlós, Simonovits, Stein, and
Szemerédi [143].

(b) In the second part, [2] we prove several theorems asserting that under
some very special conditions Tk ⊆ Gn. Some of these steps are “stability
arguments”.

Analyzing the proof of Theorem 6.5, shows that either we can gain at
some points, in some of the estimates ηkn edges, and therefore Theorem
6.5 (more precisely, its slightly modified proof) implies the sharp version,
Theorem 6.2, or else Gn must have a very special structure: it contains a
smaller copy of the conjectured extremal graphs: for some m ≈ k,

(b1) either it contains a Gm which is almost a Km;

(b2) or a Gm which is almost a K(m/2− εm,m+ δm).

(c) In both cases, if many edges connect Gn −Gm to Gm, then we can
embed Tk into Gn, embedding a smaller part of Tk outside of Gm, a larger
part in the dense Gm, concluding that Tk↪→Gn.

(d) If, on the other hand, we have found such a “mini-almost-extremal”
Gm ⊆ Gn, but e(Gm, Gn −Gn) is “small”, then we prove that

e(Gn −Gm) >
1

2
(n−m)(k − 2).

Hence we may forget the larger Gn: replace it by the smaller Gn −Gm. (In
other words, we can apply induction on n.)

(e) The real difficulty comes when we have sparse graphs: e(Gn) = o(n2).
Then we partition V (Gn) into three parts: C contains the vertices of high
degrees, B contains a part of V (Gn) not containing dense subgraphs, and
therefore behaving in a pseudo-random way, and A behaves very similarly
to the graphs we have in the dense cases.

How do we handle the dense case?. (i) Applying the Regularity Lemma
to Gn, we get a so called Cluster Graph Hν . If this cluster graph has an
(almost)-1-factor, then we can relatively easily embed Tk into Gn, using the
extra ηkn edges of (6.3).

(ii) Next we extend this case to a more general situation, when Gn

contains a so called Generalized 1-factor. We can prove the η-weakening in
this case as well.

(iii) If the Cluster Graph Hν does not contain an almost-1-factor, then
we apply the Gallai-Edmonds structure-theorem (on graphs without 1-
factors) to Hν . In this case we can either embed Tk into Gn directly, or
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reduce this case to Case (ii) above. Case (iii) is a very important subcase,
with 3-4 subsubcases (depending on, how do we count them). Some of them
go back to Case (ii) and in some others we directly (pseudo-greedily) embed
Tk into Gn.

6.3. Komlós–Sós conjecture on median degree

The Komlós–Sós conjecture was already formulated in Section 1.4. This is
a generalization of the Loebl conjecture:

Conjecture 6.6 (Loebl–Komlós–Sós Conjecture [79]). If Gn has at least
n/2 vertices of degree at least k − 1, then Gn contains all the k-vertex
trees Tk.

The authors of [143] plan to write up the sharp version as well, which
asserts the following.

Theorem 6.7. If k is sufficiently large, then the Loebl–Komlós–Sós con-
jecture is true.

Remarks 6.8. (a) The Loebl conjecture originates from a paper of Erdős,
Füredi, Loebl, and T. Sós, on the discrepancy of trees [79].

(b) Pósa’s theorem on the existence of Hamiltonian cycles also is – in
some sense – a theorem asserting that if G has many vertices of suffi-
ciently high degree, then it is Hamiltonian. There were earlier cases, when
Woodall [250], proved an Erdős–Gallai type theorem on cycles, using the
condition that there are many vertices of high degree. Also, Erdős, Faudree,
Schelp, and Simonovits – trying to prove some Ramsey type theorems, –
found a similar statement [78], but not for all the trees, only for the paths,
and they proved there an almost sharp theorem. Their sharp conjecture
was later proved by Hao Li.

(c) There were many important steps to reach the theorem above. We
should mention here Ajtai–Komlós–Szemerédi, [4], then Yi Zhao [255], next
Piguet and Stein [201], [202], Cooley [54], Hladký and Piguet [144], and
many others.

7. More Complex Excluded Subgraphs

In this section we present three theorems, each leading to a reduction
method to prove new results from old estimates. Still there is no general
theory to determine the bipartite Turán numbers.
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The three results we pick are the Erdős–Simonovits cube theorem (Theo-

rem 7.1), ex(n,Q8) = O(n8/5) which led to the Erdős–Simonovits reduction,
the Faudree–Simonovits theorem (Theorem 7.8) concerning Theta graphs,
a generalization of the Erdős–Bondy–Simonovits theorem, ex(n,C2k) =

O(n1+(1/k)), and Füredi’s theorem (Theorem 7.15) on two levels of the

Boolean lattice which implies a general upper bound ex(n, L) = O(n2−(1/r))
for any graph L with vertices of degrees at most r on one side of L.

7.1. The Erdős–Simonovits Reduction and the Cube theorem

We have already mentioned Theorem 1.5, on the extremal number of the
cube. Here we formulate a sharpening of it.

Theorem 7.1 ([90]). Let Q8 denote the graph determined by the 8 vertices
and 12 edges of a cube, and Q+

8 denote the graph obtained by joining two
opposite vertices of this cube. Then

ex(n,Q8) ≤ ex(n,Q+
8 ) = O(n8/5).

One reason why Erdős and Simonovits considered
the extremal problem of the Cube graph was that this
was one of Turán’s originally posed problems. The rea-
son that Q+

8 was also considered was that Erdős and Si-
monovits got it for free: their proof of Theorem 1.5 gave
the same upper bound for Q+

8 .

Let L be a bipartite graph with partite sets X and Y , and let Kt,t ∗ L
denote the graph obtained by completely joining one partite set of Kt,t to
X and the other to Y .

Theorem 7.2 (Erdős and Simonovits Reduction Theorem [90]). If L
is a bipartite graph with ex(n,L) = O(n2−a), a ≤ 1, and b is defined by
1
b = 1

a + t, then ex(n,Kt,t ∗ L) = O(n2−b).

The proof can go by induction on t and by counting the number of C4’s.

Let H be the graph obtained by deleting just three independent edges
from K4,4. Since H = K1,1 ∗ C6, Theorem 7.2 and ex(n,C6) = O(n4/3)
(Corollary 4.9) imply Theorem 7.1.

Since ex(n,L) = O(n) if L is a tree, so we have the following result:

Corollary 7.3. For any tree L, ex(n,Kt,t ∗ L) = O(n2−(1/(t+1))).
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This can be considered as a generalization
of the Kővári–T. Sós–Turán theorem, since for
L = K2 we have Kt+1,t+1 = Kt,t ∗K1,1. Since
Q8 − e is a subgraph of K1,1 ∗ P6, Corollary 7.3
implies

Corollary 7.4 (Erdős and Simonovits).

ex(n,Q8 − e) = O(n3/2).

Further,

Theorem 7.5 (Erdős). Delete an edge from Ka,a. For the resulting

L = Ka,a − e we have ex(n,L) = O(n2− 1
a−1 ).

Indeed, for a ≥ 3 the graph Ka,a − e is a subgraph of Ka−2,a−2 ∗ P4.

Since Kb,b −Ka,a (for b− 2 ≥ a ≥ 1) can be written as Kb−a−1,b−a−1 ∗ T
where T is a double star, Corollary 7.3 also implies that ex(n,Kb,b −Ka,a) =

O(n2−(1/(b−a))). For this important case Füredi and West gave a sharper
upper bound.

Theorem 7.6 ([121]). For every n ≥ b > a we have

ex(n,Kb,b −Ka,a) ≤
1

2
(b+ a− 1)1/(b−a)n2−(1/(b−a)) +

1

2
(b− a− 1)n.

In particular, it gives ex(n,K3,3 − e) ≤ 1
2

√
3n3/2 +O(n). This was fur-

ther improved by J. Shen [214] to

ex(n,K3,3 − e) ≤
√
15

5
n3/2 +O(n).

He also showed that ex(n, n,K3,3 − e) ≤ (4/
√
7)n3/2 + (n/2).

Pinchasi and Sharir extended the cube theorem, using a somewhat dif-
ferent proof:

Theorem 7.7 (Pinchasi and Sharir [204]). A bipartite graph G[A,B] with
|A| = m and |B| = n, not containing the cube Q has

O(n4/5m4/5 +mn1/2 + nm1/2)

edges.
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Another, more explicit proof for Theorem 7.7 was presented in [115].

Historical remarks: (a) Erdős and Simonovits first proved the Cube
theorem, using the Δ-almost-regularization.

(b) It seems that Theorem 7.2 covered all the cases known until that
point.

(c) This (i.e. the Cube Recursion Theorem) was the first case, where one
got an exponent, different from 2− (1/a) and 1 + (1/a). Actually, Erdős
thought earlier, that all the exponents must be of this form, (see [70]).
This was disproved in their paper [90]: not by the cube, since there is no

good lower bound for the cube: even ex(n,Q8)/n
3/2 → ∞ is not known.

However, a more complicated example, for which the lower bound – using
random graphs – was good enough, disproved Erdős’ conjecture. Actually,
one thinks that each rational α ∈ (0, 1) is extremal exponent for some finite
Lα, see Conjecture 2.37.

To disprove the Erdős conjecture concerning the exponents are of the
form 1 + (1/a) or 2− (1/a) it is enough to notice that we have graphs H
with

cHn(8/5)−ε(H) < ex(n,H) = O(n8/5),

(
cH > 0, ε(H) <

1

10

)
.

More generally, consider the graph H(t, 
) ob-
tained by connecting a Θ(3, 
) to K(t, t), as described
in Theorem 7.2. By the Theorem 2.26 (lower bound)
and Theorem 7.2 and Theorem 7.8 (upper bound) we
obtain

c�,tn
2− 2�+2t

3�+t2+2t(�+1)−1 < ex(n,Ht,�) ≤ c̃�,tn
2− 2

2t+3 .

So all the numbers 2− 2
2t+3 are points of accumulations of exponents, in

this sense. Actually, applying this argument with t = 1, 
 = 3, we get a
simple counterexample, with the upper bound O(n8/5) and a lower bound

cn2−(8/17) (c > 0).

(d) In [92], Erdős and Simonovits proved the Supersaturated graph
theorem (see Section 11) corresponding to the cube, thus providing a second
proof of the Cube Theorem, that needed “less regularization”.



The History of Degenerate (Bipartite) Extremal Graph Problems 231

7.2. Theta graphs and the Faudree–Simonovits reduction

There is an alternative proof for the Bondy–Simonovits Theorem in [99].
This proof enabled a generalization to Θ-graphs. Recall that Θk,� denotes
the graph consisting of 
 paths of length k with the same endpoints but no
inner intersections. We have v(Θk,�) = 2 + (k − 1)
 and e(Θk,�) = k
.

Theorem 7.8 (Theta-graph, Faudree–Simonovits [99]). For fixed k and


 ≥ 2 one has ex(n,Θk,�) = O(n1+(1/k)).

This exponent is conjectured to be the best pos-
sible, see Conjecture 4.11.

Applying the Erdős–Rényi Random Lower bound
(Theorem 2.26) in its simpler form to Θk,� we get

ex(n,Θk,�) > ck,�n
1+ 1

k
− 2

k� ,

asymptotically matching the upper bound’s exponent.

The proof of Theorem 7.8 came from a “Recursion” theorem, asserting
that if one knows good upper bounds for an L, and L∗ is built from L in a

simple way, then one has a good upper bound on
ex(n,L∗) as well.

Definition 7.9. Let L be a bipartite graph, with
a fixed 2-colouring ψ in RED-BLUE with h RED
vertices. Let x /∈ V (L) be a vertex from which h
independent paths of k− 1 edges go the RED vertices
of L, (these paths intersect only in x). Denote the
obtained graph by Lk(L,ψ).

Theorem 7.10 (Faudree–Simonovits Reduction, Trees [99]). If L is a tree,
then

ex(n,Lk(L,ψ)) = O(n1+(1/k)).

The Theta graph Θk,� is obtained from a star of 
 edges. One has to be
cautious with the next theorem, see Remark 7.12.

Theorem 7.11 (Faudree–Simonovits Reduction, General Case [99, 100]).
Let L be an arbitrary bipartite graph with a fixed coloring ψ and assume
that

(7.1) ex∗(n,L) = O(n2−α).
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Then for

β =
α+ α2 + · · ·+ αk−2

1 + α+ α2 + · · ·+ αk−2

we have

(7.2) ex(n,Lk(L,ψ)) ≤ ex∗(n, Lk(L,ψ)) = O(n2−β).

Remark 7.12. Most probably, this recursion is never sharp but for trees.
In its proof one has to apply standard arguments to subgraphs of K(m,n)
where n � m. We very seldom have matching lower and upper bounds in
such cases.

7.3. A universal graph and dependent random choice

Erdős asked the following question:
what are the extremal numbers for the
two graphs on the left: The left one will
be called M10, the right one M11 and
they are described as special cases of the
following

Definition 7.13. Let k, r and t be given positive integers. U(k, r, t) is
obtained from the k vertices x1, . . . , xk by joining to each of the r-element
subsets of {x1, . . . , xk} t distinct vertices yii1,...,ir . U+(k, r, t) is obtained

from U(k, r, t) by joining a new vertex w to all xh, h = 1, . . . , k.

Problem 7.14 (Erdős). Determine (or estimate) ex(n,L) for L := M10 =
U(4, 2, 1) and L := M11 = U+(4, 2, 1).

One could ask for the motivation: why these graphs? Perhaps hav-
ing obtained the cube theorem, we had good upper and lower bounds only
in very special cases, when L contained some sample graphs – say a C4

for which we have already provided sharp lower bounds. U(4, 2, 1) clearly
needed a new approach, and e.g. U+(k, 2, 1) contains many C4’s but the ear-
lier methods did not yield appropriate upper bounds. Füredi [107] answered

this question proving that ex(n,U+(k, 2, 1))) < k3/2n3/2. More generally,

Theorem 7.15 (Füredi [107]). Let U+(k, r, t) be the universal bipartite

graph from Definition 7.13. Then there exists a c = ck,tr > 0 such that

(7.3) ex(n,U+(k, r, t)) < cn2−(1/r).
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Concerning the Erdős question we have ex(n,U+(k, 2, 1)) < k3/2n3/2 and
more generally

(7.4) ex(n,U+(k, 2, t)) < n3/2 ·
√

tk(k − 1)2 + 2(k − 2)(k − 1)

8
+ n

k − 1

4
.

Multiplying each vertex (k − 1) times in a C4-free graph we get a

U+(k, 2, 1)-free graph which yields ex(n,U+(k, 2, 1)) ≥ Ω(k1/2n3/2).

Erdős had the more general conjecture

Conjecture 7.16 (Erdős, [66], see also [92], [225]). If every subgraph of
the bipartite graph L has a vertex of degree at most r, then

ex(n,L) = O(n2−(1/r)).

The upper bound (7.3) for the universal graph immediately gives

Corollary 7.17. If L is bipartite and has a 2-coloring where in the first
color class all but one vertex is of degree at most r, then

ex(n,L) = O(n2−(1/r)).

Indeed, all such graphs can trivially be embedded into an appropriate
U+(k, r, t).

Alon, Krivelevich, and Sudakov [9] gave a new probabilistic proof (for
graphs where on one side all vertices are of degree at most r) with a better

constant ck,tr . Their proof method became known as “dependent random
choice”; for a survey see [101].

Lemma 7.18 (Dependent random choice, see, e.g., [101]). Let k, t, r be
positive integers. Let Gn be a graph with n vertices and average degree d,
d be an integer. If there is a positive integer a such that

da

na−1 −
(
n

r

)(
t

n

)a

≥ k,

then Gn contains a subset U of at least k vertices such that every r vertices
in U have at least t common neighbors.

Note that in this lemma they do not claim that U(k, r, t) is a subgraph.

Nevertheless, using this lemma they improve the constant c = ck,tr in (7.3)

from O((t+ 1)1/rk2−(2/r)) to c ≤ 2−1+(2/t)(t+ 1)1/rk.
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As they mention at the end of [9], both proofs of Theorem 7.15 give a
bit more (and thus Corollary 7.17 can be sharpened accordingly):

(7.5) ex(n,U+r(k, r, t)) < cn2−(1/r),

where the graph U+r is obtained from U+(k, r, t) by replacing the vertex
w in Definition 7.13 by an independent set of r vertices with the same
neighbors, x1 . . . , xk.

However, the method of Dependent random choice gives more. Call a
graph Lh on h vertices r-degenerate if it satisfies the condition of Conjecture
7.16. In other words, there is an ordering of its vertices x1, . . . , xh such that
for every 1 ≤ i ≤ h the vertex xi has at most r neighbors xj with j < i.

Theorem 7.19 (Alon, Krivelevich, and Sudakov [9]). If L is bipartite
r-degenerate graph on h vertices, then for every n ≥ h

ex(n,L) ≤ h1/(2r)n2−(1/4r).

Applying the above results with r = 2, t = 1 and k = c
√
n to find a

U(k, 2, 1) one immediately obtains the following. Any graph on n vertices
with c1n

2 edges contains a 1-subdivision of Kk with k = c2
√
n for some

positive c2 depending on c1. This answers a question of Erdős [72]. The
theorems of Bollobás and Thomason [29] and Komlós and Szemerédi [161]
also imply the existence of such a large topological clique but their subgraph
is not necessarily a 1-subdivision.

Given any graph L, let d denote the maxX⊆V (L){2eL(X)/|X|}, the

maximum local average degree. Then L is �d�-degenerate. Hence the upper
bound of Theorem 7.19 and the random method lower bound in (2.9) yield
that

Corollary 7.20. For every bipartite graph L,

(7.6) Ω(n2−c) ≤ ex(n,L) ≤ O(n2−(c/8)),

where c = 2/d, is the same as in (2.9).
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8. Eigenvalues and Extremal Problems

Let A = A(Gn) be the adjacency matrix of Gn, and j be the vector each
entry of which is 1. Since

(8.1) e(Gn) =
1

2
jAjT

and, more generally,

(8.2) wk(Gn) =
1

2
jAkjT

counts the number of k-edge walks in Gn, therefore it is not so surprising
that eigenvalues can be used in extremal graph problems. An easy to read
source on spectra of graphs is Cvetkovič–Doob–Sachs [56].

Theorem 8.1 (Babai–Guiduli [12]). Let Λ(G) = max |λi|, where λ1, . . . , λn

are the eigenvalues of A(Gn). If Ka,b �⊆ Gn, (and 2 ≤ a ≤ b) then

(8.3) Λ ≤ a
√
b− 1 · n1−(1/a) + o(n1−(1/a)).

Since trivially

(8.4) 2e(Gn) ≤ Λn

the inequality (8.3) implies Theorem 2.22 apart from the o() term.

Remark 8.2. For regular or almost regular graphs Λ(Gn) ≈ 2e(Gn)
n , and

then the two estimates are basically equivalent. The constant in the above
theorem is not sharp since – as we know from Theorem 3.19,– the constant
can be improved.

We have already mentioned Nikiforov’s result (Theorem 3.21) on the
Zarankiewicz problem. In fact, he proved [198] that for all n ≥ b ≥ a ≥ 2
and a Ka,b-free graph Gn we have

(8.5) Λ(Gn) ≤ (b− a+ 1)1/an1−(1/a) + (a− 1)n1−(2/a) + (a− 2).

This improves the coefficient in Theorem 8.1. It also implies Füredi’s bound
(3.11) for the ex(n,Ka,b) according to (8.4). For C4-free graphs he has
Λ2 − Λ + 1 ≤ n.

Recall that Tn,k denotes the Turán graph, the k-partite complete graph
of maximum size. Given a Kk+1-free graph Gn Nikiforov [197] showed that
Λ(Gn) < λ(Tn,k) unless G = Tn,k. For a recent reference of a generalization
see Z. L. Nagy [196].
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9. Excluding Topological Subdivisions

9.1. Large topological subgraphs

We have already mentioned that our classification does not hold for infinite
families of excluded subgraphs. One important phenomenon is that ex(n,L)
can be linear for infinite L even if L contains only cycles.27 Here we consider
a very central graph theoretical problem strongly connected to the 4-colour
conjecture.

Definition 9.1. Given a graph H, its subdivision (or a topological H) is
obtained from it by replacing each edge e of H by some paths Pe so that
these paths do not have their inner (new) vertices in common.

Wagner asked if for any integer 
 there exists a k = k� such that any G
with chromatic number χ(G) > k� must contain a topological subdivision
of K�. This was proved by Gabor Dirac and H. Jung (independently).
Answering a question of Dirac, Mader proved the following important result.

Theorem 9.2 (Mader, [183]). If Gn is an n-vertex graph, and

e(Gn) ≥ n(
− 1)2(
�−1
2 )−1,

then Gn contains a subdivision of the complete 
-graph.

This statement is stronger than the original Wagner conjecture, since a
graph with large chromatic number contains a subgraph with large minimum
degree. Mader, and independently, Erdős and Hajnal conjectured that

Conjecture 9.3 (Mader, Erdős–Hajnal). There exists a constant c > 0
such that if e(Gn) > c
2n, then Gn contains a topological K�.

A slightly weaker form of this conjecture was proved by Komlós and
Szemerédi, [160], then – by a different method – Bollobás and Thomason
[29] proved this conjecture and, almost immediately after that, Komlós and
Szemerédi [161] proved Conjecture 9.3 as well.

Theorem 9.4 (Bollobás–Thomason). Every graph Gn of size at least
256
2n edges contains a topological complete subgraph of order 
.

27Here the simplest case is Theorems 5.1.
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As to the small values of 
, Dirac conjectured that for n ≥ 3 every Gn,
with e(Gn) ≥ 3n− 5 contains a topological K5. This improvement of the
famous Kuratowski theorem was proved by Mader in [184] and the corre-
sponding extremal graphs were characterized in [186]. The reader is recom-
mended the excellent “featured review” of Carsten Thomassen on the paper
of Mader [184], on the MathSciNet.

An excellent survey of Mader on this topic is [185].

9.2. Turán numbers of subdivided graphs

Let ε be a positive real, 0 < ε < 1. Kostochka and Pyber [163] proved that

every n-vertex graph Gn with at least 4t
2
n1+ε edges contains a subdivision

of Kt on at most (7t2 ln t)/ε vertices, where 0 < ε < 1. This (for t = 5)
answers a question of Erdős about finding a non-planar subgraph of size
c(ε) in a graph with n1+ε edges.

Recently, T. Jiang [150] improved the Kostochka-Pyber upper bound to
O(t2/ε). On the other hand, for each 0 < ε < 1 and n > n0(ε) there are n-
vertex graphs of girth at least 1/ε (see Corollary 2.30). In such a graph any
subdivision of Kt must contain Ω(t2/ε) vertices, so Jiang’s result is sharp.

Theorem 9.5 (Jiang and Seiver [151]). Let L be a subdivision of another
graph H. For each edge xy ∈ E(H) let 
(x, y) denote the length of the path
in L replacing the edge xy. Suppose that 
(x, y) is even for each edge of H,

and let min{
(x, y) : xy ∈ E(H)} = 2m. Then ex(n,L) = O(n1+(8/m)).

The main tools in the proof are the Dependent Random Choice, Lemma
7.18, and the Erdős–Simonovits Δ-almost-regularization, Theorem 2.19.

10. Hypergraph Extremal Problems

10.1. Positive Density problems

This is a short detour into Hypergraph Extremal Problems. Now our
“Universe” is the class of r-uniform hypergraphs. Katona, Nemetz and
Simonovits [154] showed (using a simple averaging) that

Theorem 10.1 (Katona, Nemetz and Simonovits [154]). exr(n,L)/
(
n
r

)
is

monotone decreasing, and therefore convergent.
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The hypergraph extremal problems are extremely
hard. Even the simplest extension of Turán’s theorem

is unsolved: Let K
(3)
4 be the three-uniform hypergraph

with 4 vertices and 4 triples.

Construction 10.2 (Turán, the simplest case). We par-
tition n vertices into three classes C1, C2, C3 and we take
all the triples of the form (x, y, z), where

(a) x ∈ Ci, y ∈ Ci, z ∈ Ci+1 (where the indices are taken mod 3);
(b) the three vertices are in three different groups.

One can easily see that his construction contains no K
(3)
4 .

Conjecture 10.3 (Turán). Construction 10.2 is asymptotically extremal

for K
(3)
4 . (Perhaps it is extremal, not only asymptotically extremal, at least

for n > n0.)

Here we cut it short and recommend the reader (among others) the
survey of Füredi on hypergraph extremal problems [108], and also the
papers of Füredi and Simonovits [120], Keevash and Sudakov [156], Füredi–
Pikhurko–Simonovits [119], and the survey of Keevash [155].

10.2. Degenerate hypergraph problems

For r-uniform hypergraphs the r-partite graphs generalize the bipartite
graphs. An important illustration of this is the one below, extending The-
orem 2.31.

Theorem 10.4 (Degenerated hypergraph problems). For an r-uniform

extremal hypergraph problem of L(r), ex(n,L(r)) = o(nr), if and only if

there is an L ∈ L(r) which can be r-vertex-colored so that each hyperedge
of L gets r distinct colors.

Theorem 10.4 is an easy corollary of the following theorem of Erdős,
(which generalizes Theorem 2.22).

Theorem 10.5 (Erdős [65]). Let K(r)(a1, . . . , ar) be the r-uniform hyper-
graph with r vertex-classes C1, . . . , Cr, where |Ci| = ai, and a1 = t. Then

ex(r)(n,K(r)(a1, . . . , ar)) = O(nr−(1/tr−1)).

Extending some problems and results for ordinary graphs, Brown, Erdős
and Sós started investigating the following
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Problem 10.6 (Brown, Erdős, and Sós [39], [40]). Consider r-uniform
hypergraphs for some fixed r, and denote by Hr

k,� the family of r-uniform k-

vertex hypergraphs with 
 hyperedges. Determine or estimate fr(n, k, 
) :=
ex(n,Hr

k,�).

Brown, Erdős, and Sós proved many upper and lower bounds for special
cases of Problem 10.6. We have already mentioned one of them: the
f3(n, 6, 3)-problem.28 It is easy to see that f3(n, 6, 3) <

1
6n

2. The real

question was if f3(n, 6, 3) = o(n2) or not. Ruzsa and Szemerédi [210] proved
that the answer is YES. We formulated this in Theorem 1.9. This theorem
became a very important one. We originate, among others, the “Removal
Lemma” from here.

We shall return to this problem in the section on applications.

11. Supersaturated Graphs

The theory of Supersaturated extremal problems is a very popular area
today. Here we shall restrict ourselves to the supersaturated extremal graph
problems related to bipartite excluded graphs, just mention a few further
references, like Lovász and Simonovits [178], Razborov [179], Lovász [177],
Reiher [205].

Given a graph G, denote by N(G,F ) the number of subgraphs of G
isomorphic to F . Here we have to be slightly cautious: if F has non-trivial
automorphisms, then we can count isomorphisms or isomorphic subgraphs,
and the ratio of these two numbers equal to the automorphism number.

A theorem which asserts that a graph Gn contains very many graphs
L from a family L is called a theorem on supersaturated graphs.
Such theorems are not only interesting in themselves, but also are often
useful in establishing other extremal results. At this point it is worthwhile
mentioning such a result for complete bipartite graphs, obtained by Erdős
and Simonovits [94]:

Theorem 11.1 (Number of complete bipartite graphs). For any integers
a and b there exists a constant ca,b > 0 such that if Gn is a graph with

e edges, then Gn contains at least [ca,be
ab/n2ab−a−b] copies of Ka,b.

Corollary 11.2. Let c > 0. If e(Gn) = e > (1 + c)ex(n,C4), then Gn con-
tains at least γe4/n4 copies of C4, for some γ(c) > 0. The random graph
with e edges shows that this is sharp.

28If r = 3, then we delete the subscript in f3.
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Proof of the Cube Theorem (Sketch). Apply Theorem 2.19 obtaining

a Δ-almost-regular (bipartite) G̃n ⊆ Gn. Apply the corollary to this G̃n. It

contains γ e4

n4 C4’s. On the average, an edge of Gn is contained in γe3/n4

copies of C4. Take a typical edge xy: the bipartite graph G[U, V ] spanned

by the neighbors U := N(x) and V := N(y) – by ex(m,C6) = O(m4/3), –
will contain a C6. Now, xy and this C6 will provide a Q+

8 : a cube with a
diagonal.

Basically the same argument proves Theorem 7.2.

11.1. Erdős–Simonovits–Sidorenko conjecture

In this part χ(L) = 2. Erdős and Simonovits [225] formulated three con-
jectures and also that the main idea behind these conjectures is that the
number of copies of subgraphs L ∈ Gn is minimized by the random graph
if E = e(Gn) is fixed and is not too small.

To formulate these conjectures, first we calculate the “expected number
of copies” of L ⊆ Rn if Rn is a random graph with edge probability p =
E/

(n
2

)
. Let v = v(L), and e = e(L). Clearly, if the edges are selected

independently, with probability p, then Kn contains
(
n
v

)
possible v-tuples,

each containing the same number aL of copies of L, and therefore
(11.1)

E(#(L ⊆ Rn)) = (aL + o(1))
nv

v!
pe = (aL + o(1))

nv

v!

(
2E

n2

)e

= a∗L
Ee

n2e−v

Conjecture 11.3 (Erdős–Simonovits, [225]). There are two constants,
Ω = ΩL > 0 and c = cL > 0 such that if E > Ω · ex(n,L), then any graph
Gn with E edges contains at least

cL
Ee

n2e−v

copies of L.

This was the weakest form. The strongest form of this conjecture was

Conjecture 11.4 (Erdős and Simonovits). For every ε > 0, if E > (1 + ε) ·
ex(n,L), then any graph Gn with E edges contains at least (1 + ε)ER
(n,L,E) copies of L, if n > n0(ε), where ER(n,L,E) denotes the expected
number of edges of a random Erdős–Rényi graph with n vertices and E
edges.
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Obviously, one has to assume that e(Gn) > ex(n,L).

Remark 11.5 (Relation to Sidorenko’s Conjecture). At first sight Sido-
renko’s conjecture [216] seems to be sharper than the above one. This is
not the case. In fact, Sidorenko’s Conjecture applies only to dense host
graphs. There, as Sidorenko points out in his papers, the two versions are
equivalent.

Also, it is obvious that there is not much difference if we consider above
the hypergeometric model of random graphs, where the number of vertices
and edges are given, or if we fix only n but the edges are taken independently,
and therefore e(Gn) follows a binomial distribution.

Sidorenko, working on applications of extremal graph theorem to prob-
ability distribution translated the above conjecture to integrals and arrived
at a conjecture [216], where the error terms disappeared. The meaning of
his version was that if one considers dense graphs and defines L ⊆ R for
the case when G is a function, generalizing the notion of graphs, then the
Random Continuous graph will have the least number of copies of L, more
precisely, that will minimize the corresponding integral.

We skip the formulation of this problem, just refer to some papers of
Lovász, and Hatami [140], and to the book of Lovász [177].

Jagger, Št́ov́ıček, and Thomason [148] investigated the following problem
originating from a conjecture of Erdős, disproved by Thomason.

Problem 11.6. Given a sample graph L, denote by ρL(Gn) the sum of
copies of L in Gn and in its complementary graph. What is the minimum
Γn(L) of this, taken over all n-vertex graphs?

Erdős conjectured that the random graph yields the minimum, for K4.
This was disproved by Thomason [237]. Investigating the case of general L,
Jagger, Št́ov́ıček, and Thomason proved some interesting results in connec-
tion with Sidorenko’s conjecture.

Here we should emphasize that there is a slight difference between look-
ing for copies of an L in Gn or for copies of homomorphic images: In the
second case we allow vertices to map into Gn with some coincidences.

As to the Sidorenko Conjecture, the first unknown case (as Sidorenko
mentions) is when we delete the edges of a Hamiltonian cycle from K5,5.

Theorem 11.7 (Conlon, Fox, Sudakov [52] [53]). The Sidorenko Conjecture
holds if L = L[A,B] is a bipartite graph with a vertex x ∈ A completely
joined to B.
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Remark 11.8. Unfortunately, we do not have sufficiently good lower
bounds for the extremal problem of the cube. The Erdős–Simonovits Con-
jecture was proved for Q8 in [92].

Hatami proved the Sidorenko conjecture for any cube (i.e. of any dimen-
sion), yet, that was not really enough to provide a reasonable upper bound
for the 4-dimensional cube. This reflects some difference between extremal
problems and the corresponding Supersaturated Graph Problems (at least,
for dense host graphs).

12. Ordered Structures

12.1. Directed graphs, ordered graphs

There is an extensive literature on Digraph extremal problems, see e.g., the
survey of Brown and Simonovits [42], or [41]. We skip here the general
theory.

Denote
−−→
ext(n,

−→
L ) the maximum number of edges in a directed graph not

containing the oriented subgraph
−→
L . For every

−→
L containing a directed path

of length 2 one has
−−→
ext(

−→
L ) ≥ �n2/4�. Indeed, orient the edges of Kn/2,n/2

simultaneously into one direction. For bipartite
−→
L it is more interesting to

consider the minimum outdegree.

Consider the following directed graph
−→
L 1,a,b on 1 + a+ b vertices w,

x1, . . . xa, y1, . . . , yb. The oriented edges are w to xi and xi to yj (1 ≤ i ≤ a,
1 ≤ j ≤ b).

Theorem 12.1 (Erdős, Harcos and Pach [82]). Given integers a and b, there
exists a c = ca,b > 0 such that the following holds. Any oriented graph with

minimum out-degree δ+ ≥ cn1−(1/a) contains a copy of
−→
L 1,a,b.

This result opened up a new interesting field with many open problems.

Another ordered Turán function was defined by Timmons [239]. He
showed that if a graph with vertex set {1, 2, . . . , n} has at least

(1 + o(1))(2/3)n3/2

edges, then it contains a C4 with vertices a1b1a2b2 such that a1, a2 < b1, b2.
He extended other ordinary Turán problems to these zig-zag type questions.
Many problems remain unsolved.
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12.2. Erdős–Moser conjecture on unit distances

Erdős and Leo Moser [83] conjectured that

Conjecture 12.2. If n points of the plane are in convex position, then the
number of unit distances among them is O(n).

Füredi proved a slightly weaker result:

Theorem 12.3 (Füredi [106]). If n points are in convex position in the
plane, then there are at most O(n log n) unit distances among them.

To prove this, Füredi directly formulated the excluded Ordered Matrix
Property and solved a matrix-containment problem. The crucial point of
his proof was Theorem 12.6 below.

The best known lower bound in the Erdős–Moser problem, 2n− 7, is
due to Edelsbrunner and P. Hajnal [58].

12.3. Ordered submatrices

The ordered matrix problems partly came from geometric problems (see
Bienstock and Győri, [23], Füredi [106]), but they are interesting on their
own, too. A geometric application, called Erdős–Moser conjecture, is dis-
cussed above in Subsection 12.2.

We have already indicated that most extremal graph problems have
matrix forms, too: To determine ex∗(m,n, L) we considered all m× n 0-1
matrices not containing any permutation of the bipartite adjacency matrix
of L.

In the ordered case here we exclude only those submatrices where the
indexing of the rows and columns of M is fixed. This way we exclude fewer
subconfigurations.

Definition 12.4 (Matrix containment). Let M and P be two 0-1 matrices.
We say that M contains P if we can delete some rows and columns of M
and then perhaps switch some 1’s into 0 so that the resulting matrix be P.
Otherwise we say that M avoids P.

So, we can delete rows and columns of M but can not permute them.
Now we can define the Matrix Extremal Problems:

Problem 12.5 (Ordered Matrix Problem). Given an a× b 0-1 (sample)
matrix P, and a (huge) m× n 0-1 matrix M, how many 1’s can occur in
M under the condition that M does not contain P in the “ordered” way.
Denote by extmat(m,n,P) the maximum.
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One of the first nontrivial results was

Theorem 12.6 (Füredi [106]). Let

P =

(
1 1 0
1 0 1

)
.

If the n×n 0-1 matrix M does not contain P, then it has at most O(n logn)
1’s. In fact, extmat(n, n,P) = Θ(n log n).

Tardos [236] proved that extmat(n,P) = n log2 n+O(n).

Completing earlier works of Füredi and Péter Hajnal [116] Tardos [236]
classified the ordered matrix Turán numbers for all small submatrices. The
extremely slow growing inverse Ackermann function is denoted by α(n).

Theorem 12.7 ([116], [236]). If P is a 0-1 matrix with at most four 1’s,
then

extmat(n, n,P) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 or

Θ(n), or

Θ(nα(n)), or

Θ(n log n), or

Θ(n3/2).

12.4. Ordered matrices and the Stanley–Wilf conjecture on sub-
permutations

Trying to prove the Erdős–Moser Conjecture, Füredi and Péter Hajnal [116]
arrived at the following conjecture, proved by Marcus and Tardos.

Theorem 12.8 (Füredi–Hajnal conj. [116]/Marcus–Tardos theorem [187]).
For all permutation matrices P we have extmat(n, n,P) = O(n).

This time there was a famous Stanley–Wilf conjecture around, on the
number of permutations “avoiding” a fixed permutation. To formulate it,
we need to define the Permutation containment:

Definition 12.9 (Permutation containment). We say that a permutation
σ : [1, n] → [1, n] contains a permutation π : [1, k] → [1, k], if there exist
1 ≤ x1 < x2 < · · · < xk ≤ n for which

σ(xi) < σ(xj) if and only if π(i) < π(j).

The famous Stanley–Wilf conjecture29 states that

29Marcus and Tardos [187] write that it is difficult to locate the corresponding reference.
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Conjecture 12.10 (Stanley–Wilf). For any permutation pattern q, if
Sn(q) is the number of permutations of length n avoiding the pattern q,
then there is a constant cq so that Sn(q) ≤ cnq .

Theorem 12.11 (Klazar [158]). The Füredi–Hajnal conjecture implies the
Stanley–Wilf conjecture.

So Marcus and G. Tardos settled this conjecture as well.

Remark 12.12. The permutation containment is just a subcase of the more
general question. In some other cases there are definite differences between
ordinary Turán type extremal problems and the ordered matrix problems.
For a special matrix, where the corresponding graph is a tree, hence it has
linear Turán function, our threshold function turns out to be Θ(n log n).

13. Applications in Geometry

13.1. Applicability of the Kővári–T. Sós–Turán bound

We have mentioned that Theorem 2.22 is applicable in several cases. Here
we mention only two.

(A) The Unit Distance Graph of the Plane contains no K(2, 3). Erdős

used this to estimate the number of unit distances by O(n3/2).

(B) G. Megyesi and Endre Szabó30 answered a question of F. E. P.
Hirzebruch using this theorem.

Assume that we are given k smooth curves in the the Complex Pro-
jective Plane and assume that their union has only nodes and tacnodes31

as singularities. Let t(k) denote the maximum number of tacnodes in
such cases. Hirzebruch proved that t(k) ≤ 4

9k
2 + 4

4k. Hirzebruch asked if
lim sup t(k)/k > 0.

Theorem 13.1 (G. Megyesi, and E. Szabó [191]). There exist three positive
constants, A, B and C for which

Ak1+(B/ log log k) ≤ t(k) ≤ Ck2−(1/7633).

30We use the longer versions of the names whenever we see chances to mix up authors
of similar names.

31Tacnode means roughly that the curve is touching itself.
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13.2. Unit Distances

Erdős was interested in the following problem:

Problem 13.2 (Unit distances). Given an n-element set in the d-dimen-
sional Euclidean space Ed, how many of the distances can be the same, say
equal to 1?

Conjecture 13.3 (Unit distances). For any ε > 0, there is an n0 such that
if n > n0 and given an n-element set in the plane E2, then the number of
unit distances is at most n1+ε.

The motivation of this conjecture is – as Erdős observed – that if we
arrange the n = k × k points into a k × k grid, and rescale this grid so
that the “most popular” distance be 1, then this distance will occur at
most n1+ε times, (actually, approximately n1+(c/(log logn)) times). So Erdős
conjectured that the number of unit distances is in the plane has an upper
bound of roughly this form.

The first upper bound was a trivial application of Theorem 2.22:

Theorem 13.4 (Unit distances, Erdős 1946). Given n points in the plane,
the number of unit distances among them is at most

ex(n,K2,3) <

(
1√
2
+ o(1)

)
n3/2.

In E3 the number of unit distances is at most

(13.1) ex(n,K3,3) < c3,3n
5/3.

Proof. Since two circles intersect in at most 2 points, the Unit Distance
Graph of E2 contains no K2,3. This implies the first inequality. Since 3 unit
balls intersect in at most 2 points, the Unit Distance Graph of E3 does not
contain any K3,3. This implies (13.1).

Remarks 13.5. (a) Everything is different for the higher dimensions: E4

contains two orthogonal circles of radii 1√
2
, and these form a K(∞,∞) in

the corresponding unit graphs of Ed, for d ≥ 4. (This is the so called Lenz
Construction.) (See also Section 3.6.)

(b) How sharp is this application? As the reader can see, it is very far

from the conjectured upper bound. However, just to improve it to o(n3/2)

is non-trivial (Józsa-Szemerédi [152]). Actually, for the plane an O(n4/3)
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upper bound was proved by Beck and Spencer [20] and Spencer, Szemerédi
and Trotter [233], which is sharp if we do not insist on Euclidean metric,
only on “normed spaces”. For this see the results of Peter Brass [35] and
Pavel Valtr [245].

13.3. Cells in line arrangements

Let I(m,n) denote the maximum number of edges in m distinct cells deter-
mined by an arrangement of n lines in the plane. Canham [45] showed that
for an absolute constant c > 0

(13.2) I(m,n) < c(m
√
n+ n).

Indeed, if we construct a bipartite graph where one side of the vertex set
consists of the m cells (or any other family of m convex sets with disjoint
interiors), the other side of the vertex set consists of the n (tangent) lines and
two vertices are joined if the corresponding geometric objects are incident,
then it is easy to see that this graph does not contain a K5,2.

This was a first nontrivial step toward the determination of the exact
order of the magnitude of I(m,n) by Clarkson, Edelsbrunner, Guibas,

Sharir, and Welzl [49]; it is Θ(n2/3m2/3 + n). More about this and other
geometric applications see the monograph of Pach and Agarwal [199].

14. Further Connections and Problems

14.1. Connections of hypergraphs and critical graphs

We discussed Degenerate Hypergraph Extremal Problems in Section 10.
Here we continue that line.

Excluding the 3-uniform hypergraph cones.Many of the other results,
problems of [39] were also degenerate ones. One of them was where T is the
family of triangulations of the 3-dimensional sphere. This problem gave the
name to this paper [39]. The crucial point was excluding the double cones:

Definition 14.1 (r-cones). The vertices of the 3-uniform hypergraph Qr,t

are x1, x2, . . . , xr, and y1, y2, . . . , yt for some t, and the hyperedges are
xiyjyj+1, for all the possible i, j, where yt+1 = y1. Further, Qr := {Qr,t :
t = 3, 4, 5, . . . }.
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Theorem 14.2 (Brown, Erdős, Sós, r = 2, [39], Simonovits [219] r ≥ 2).

ex(n,Qr) := O(n3−(1/r)).

For r = 2, 3 there are matching lower bounds here. Actually, for r = 2
Brown, Erdős and Sós gave a construction, where not only the double-cone
was excluded, but all the triangulations of the sphere. In Simonovits’ lower
bound only the double cone was considered.

In [220] Simonovits returned to this question and – using the main idea
of Brown’s construction [36] – he proved

Theorem 14.3 (Simonovits [220]). There are (finite geometric) 3-uniform
hypergraphs without triple-cones (i.e. without hypergraphs from Q3) and

still having at least cn3−(1/3) triples.

We saw that for the family of triangulations of the sphere, and for the
family of Double Cones the extremal number is O(n3−(1/2)) [39], (see [219]).

Brown, Erdős and T. Sós arrived at their question (most probably)
since they wanted to generalize certain results from ordinary graphs to
hypergraphs. Simonovits came from a completely different direction: he
used this to disproved a conjecture of Gallai on independent vertices in
4-colour-critical graphs.

G is colour-edge-critical, if deleting any edge of G, we get a (χ(G)− 1)-
chromatic graph. The 3-colour-critical graphs are the odd cycles, so the
problem of critical graphs becomes interesting for the 4-chromatic case.
Here we shall restrict ourselves to this case and suggest the reader to read
Bjarne Toft’s results on this topic in general.

Erdős asked if a 4-colour-critical graph can have cn2 edges and Bjarne

Toft constructed such a 4-chromatic graph [240] of ≈ n2

16 edges. This and
some related questions can also be found in Lovász’ book: Combinatorial
Exercises [176].

Gallai had many beautiful conjectures on 4-colour-critical graphs. One
of them, however, was “completely demolished”. He conjectured that if
Gn is 4-colour-critical, then α(Gn) ≤ n/2. G4m+2 = C2m+1 ⊗ C2m+1 is 6-
critical, with dmin(G4m+2) = 2m+3. Simonovits – “blowing up” the vertices
in one of the two odd cycles, – proved that there are 6-critical graphs Gn

with α(Gn) = n− o(n).

It turned out that slightly earlier Brown and Moon [38] already disproved
Gallai’s conjecture for the 4-chromatic case, with a “clever but simple”
construction.
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Theorem 14.4 (Brown and Moon [38]). There exist 4-chromatic edge-
critical graphs Gn with α(Gn) > n− c

√
n, for some constant c > 0.

Next, Bjarne Toft came up with his construction, mentioned above.
Using this and a hypergraph extremal theorem, Simonovits proved

Theorem 14.5. There exists a constant c2 > 0 such that if Gn is 4-colour-
critical, then α(Gn) ≤ n− c2n

2/5.

This was obtained as follows: Simonovits reduced the original problem
to estimating the number of independent vertices of degree 3 in a 4-colour-
critical graph. The neighborhoods of these vertices generated a 3-uniform

hypergraph H(3)
m on the remaining vertices. Simonovits – using the Sperner

Lemma from Topology proved that if I is a set of independent vertices
of degree 3, in V (Gn), then for m := n− |I|, |I| < ex3(m,Q2) = O(m5/2),

see [219]. He observed that H(3)
m cannot contain double cones. This proved

that |I| < n− cn2/5.

(b) Lovász observed that instead of excluding the graphs from Q2 one

can exclude a larger family, Q̃: those 3-uniform hypergraphs which obey
the conclusion of Sperner’s lemma [175]: each pair (x, y) is contained in
an even number of hyperedges. This enabled him to completely settle this
Gallai problem on colour-critical graphs. He proved that ex(n, Q̃2) ≤

(
n
2

)
.

So he obtained |I| < n− c
√
n, in Gallai’s problem. Besides proving and

using a more applicable extremal graph theorem he also generalized the
Brown–Moon construction.

(c) It was an interesting feature of Lovász’ solution that to get an upper

bound on ex(n, Q̃) he used linear algebra.

We finish this part by sketching the proof of Lovász on the upper bound.

Theorem 14.6 (Lovász [175]). Let E(3) denote the family of 3-uniform
hypergraphs H in which each pair of vertices is contained in an even number
of triplets (i.e. hyperedges). Then ex(n,E(3)) ≤

(
n
2

)
.

Proof (Sketch). Assume that H
(3)
n contains no subgraphs from E(3). Con-

sider that vectorspace over GF (2) of dimension
(
n
2

)
where the coordinates

are indexed by pairs from 1, . . . , n. Represent each triple of H
(3)
n by such a

vector, where we have 1 in those coordinates which are pairs form our triple.

The condition that H
(3)
n contains no subgraphs from E(3) translates into the

fact, that these vectors are linearly independent. Hence their number is at
most the dimension of the vector-space.
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Now, repeating the original argument of Simonovits, Lovász obtained

Theorem 14.7. There exists a constant c3 > 0 such that if Gn is 4-colour-
critical, then α(Gn) ≤ n− c3n

1/2,

This with the Brown-Moon construction completely settles Gallai’s orig-
inal problem, providing a matching lower bound. Lovász proved a more
general theorem, and extended the Brown-Moon construction as well. We
close this part with a beautiful conjecture of Erdős:

Problem 14.8. Is it true that if (Gn) is a sequence of 4-colour-critical
graphs, then dmin(Gn) = o(n)?

(Simonovits [219] and Toft [240] succeeded in constructing 4-color-
critical graphs with minimum degrees around c 3

√
n.)

Further sources to read: Several related results can be found in Lovász
[176].

14.2. A multiplicative Sidon problem and C2k-free graphs

As it was explained in Subsection 1.5, the Erdős problem about ex(n,C4)
in [60] was obtained from a multiplicative Sidon type question. He investi-
gated subsets of integers of A ⊂ {1, 2, . . . , n} with the property that for any
four members of A the pairwise products are distinct, aiaj �= aka�.

A. Sárközy, P. Erdős, and V. T. Sós [88] started investigating the more
general problem.

Problem 14.9. Fix an integer k. How many integers can we take from
[1, n] if the product of no k of them is a square.

Interestingly, this Problem also lead to Turán type questions, namely to
ex(m,n,C2k) with m � n. Their conjecture (Conjecture 4.32 above) was
proved by Győri [134], see Theorem 4.33. We shall not go into the number
theoretic details; just refer the reader again to [134].

14.3. Cycle-free subgraphs of the d-dimensional hypercube

The d-dimensional hypercube, Qd, is the graph whose vertex set is {0, 1}d
and whose edge set is the set of pairs that differ in exactly one coordinate,
e(Qd) = d2d−1. Let γ(C�) = limd→∞ ex(Qd, C4)/e(Q

d). Note that γ(C�)
exists, because ex(Qd, C4)/e(Q

d) is a non-increasing and bounded function
of d. Considering the edges between the levels 2i to 2i+ 1 one can see that
ex(Qd, C4) ≥ (1/2)e(Qd). The following conjecture is still open.
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Conjecture 14.10 (Erdős [74]). ex(Qd, C4) =
(
1
2 + o(1)

)
e(Qd).

The best upper bound γ(C4) ≤ 0.6226 was obtained by Thomason and
Wagner [238], slightly improving the result of Chung [46].

Erdős [74] also asked whether ex(Qd, C2k) is o(d)2
d for k > 2. This was

answered negatively for C6 by Chung [46], showing that γ(C6) ≥ 1/4. The
best known results for C6 are 1/3 ≤ γ(C6) < 0.3941 due to Conder [50] and
Lu [180], respectively.

On the other hand, for every t ≥ 2 the inequalities

(14.1) ex(Qd, C4t) ≤ O(d
1
2
− 1

2t 2d) and ex(Qd, C4t+6) = O(d
15
16
− 1

16t 2d)

were proved by Chung [46] and Füredi and Özkahya [118], respectively.
Hence γ(C2k) = 0, except γ(C4) ≥ 1/2, γ(C6) ≥ 1/3 and the problem of
deciding whether γ(C10) = 0 is still open.

Conlon [51] generalized (14.1) by showing ex(Qd, H) = o(e(Qd)) for all
H that admit a k-partite representation, also satisfied by each H = C2k

except for k ∈ {2, 3, 5}.

14.4. Two problems of Erdős

Of course, we should close with two open problem of Erdős. The first one
is the general version of that problem which was solved in [124] and [141],
see Section 1.1.

Conjecture 14.11 (Erdős [75]). Suppose that G is a graph on (2k + 1)n
vertices and of odd girth 2k + 1. Then G contains at most n2k+1 induced
cycles of length 2k + 1.

The next conjecture is also very famous and is motivated by the blown
up pentagon (if we restrict it to k = 2.)

Conjecture 14.12 (Erdős [75]). Suppose that G is a graph on (2k + 1)n
vertices and of odd girth at least 2k + 1. Then G can be made bipartite by
omitting at most n2 edges.

For the best known results here, for k = 1, see Erdős, Faudree, Pach,
and Spencer [77] and Erdős, Győri, and Simonovits [81].

Acknowledgements. The authors are greatly indebted for fruitful discus-
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E. Győri, and Z. Nagy.
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solution of the Erdős–Sós conjecture on trees, (manuscript).

[2] M. Ajtai, J. Komlós, M. Simonovits, and E. Szemerédi: Some elementary lemmas
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Paul Erdős and his mathematics, II (Budapest, 1999), pp. 157–203, Bolyai Soc.
Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.

[43] L. Caccetta and K. Vijayan: Long cycles in subgraphs with prescribed minimum
degree, Discrete Math. 97 (1991), no. 1–3, 69–81.
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[57] G. Damásdi, T. Héger, and T. Szőnyi: The Zarankiewicz problem, cages, and
geometries, manuscript 2013.

[58] H. Edelsbrunner and P. Hajnal: A lower bound on the number of unit distances
between the vertices of a convex polygon, J. Combin. Theory Ser. A 56 (1991),
no. 2, 312–316.



The History of Degenerate (Bipartite) Extremal Graph Problems 255
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[89] P. Erdős and M. Simonovits: A limit theorem in graph theory, Studia Sci. Math.
Hungar. 1 (1966), 51–57.
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[143] J. Hladký, J. Komlós, M. Simonovits, M. Stein, and E. Szemerédi: An approximate
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260 Z. Füredi and M. Simonovits
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[212] G. N. Sárközy: Cycles in bipartite graphs and an application in number theory,
J. Graph Theory, 19 (1995), 323–331.
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[233] J. Spencer, E. Szemerédi, and W. T. Trotter: Unit distances in the Euclidean plane,
Graph theory and combinatorics (Cambridge, 1983), pp. 293–303, Academic Press,
London, 1984.
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