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Abstract: A graph G is called H-saturated if it does not contain any copy
of H, but for any edge e in the complement of G, the graph G + e contains
some H. The minimum size of an n-vertex H-saturated graph is denoted by
sat(n, H ). We prove

sat(n,Ck ) = n + n/k + O((n/k2) + k2)

holds for all n ≥ k ≥ 3, where Ck is a cycle with length k. A graph G is
H-semisaturated if G + e contains more copies of H than G does for ∀e ∈

Contract grant sponsors: Hungarian National Science Foundation OTKA; National
Science Foundation (to Z. F.); Contract grant number: NFS DMS 09-01276 (to Z. F.).

Journal of Graph Theory
C© 2012 Wiley Periodicals, Inc.

203



204 JOURNAL OF GRAPH THEORY

E (G). Let ssat(n, H ) be the minimum size of an n-vertex H-semisaturated
graph. We have

ssat(n,Ck ) = n + n/(2k ) + O((n/k2) + k ).

We conjecture that our constructions are optimal for n > n0(k ). C© 2012 Wiley

Periodicals, Inc. J. Graph Theory 73: 203–215, 2013
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1. A SHORT HISTORY

A graph G is said to be H-saturated if

(1) it does not contain H as a subgraph, but
(2) the addition of any new edge (from E(G)) creates a copy of H.

Let sat(n, H) denote the minimum size of an H-saturated graph on n vertices. Given
H, it is difficult to determine sat(n, H) because this function is not necessarily monotone
in n, or in H. Recent surveys are by Faudree, Faudree, and Schmitt [11], and by Pikhurko
[19] on the hypergraph case. It is known [17] that for every graph H, there exists a
constant cH such that

sat(n, H) < cHn

holds for all n. However, it is not known if the limn→∞ sat(n, H)/n exists; Pikhurko [19]
has an example of a four graph set H when sat(n,H)/n oscillates, it does not tend to a
limit.

Since the classical theorem of Erdős, Hajnal, and Moon [9] (they determined sat(n, Kp)

for all n and p), and its generalization for hypergraphs by Bollobás [5], there have been
many interesting hypergraph results (e.g., Kalai [16], Frankl [14], Alon [1], using Lovász’
algebraic method) but here we only discuss the graph case.

Remarkable asymptotics were given by Alon, Erdős, Holzman, and Krivelevich [2],
[10] (saturation and degrees). Bohman, Fonoberova, and Pikhurko [4] determined the sat-
function asymptotically for a class of complete multipartite graphs. More recently, for
multiple copies of Kp, Faudree, Ferrara, Gould, and Jacobson [12] determined sat(tKp, n)

for n ≥ n0(p, t).

2. CYCLE-SATURATED GRAPHS

What is the saturation number for the k-cycle, Ck? This has been considered by various
authors, however, in most cases it has remained unsolved. Here, relatively tight bounds
are given.

Theorem 2.1. For all k ≥ 7 and n ≥ 2k − 5(
1 + 1

k + 2

)
n − 1 < sat(n,Ck) <

(
1 + 1

k − 4

)
n +

(
k − 4

2

)
. (1)
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The construction giving the upper bound is presented at the end of this section, the
proof of the lower bound (which works for all n, k ≥ 5) is postponed to Section 10.

The case of sat(n,C3) = n − 1 is trivial; the cases k = 4 and k = 5 were established
by Ollmann [18] in 1972 and by Ya-Chen [7] in 2009, respectively.

sat(n,C4) = ⌊3n − 5

2

⌋
for n ≥ 5.

sat(n,C5) = ⌈10(n − 1)

7

⌉
for n ≥ 21. (2)

Actually, (2) was conjectured by Fisher, Fraughnaugh, Langley [13]. Later Ya-Chen [8]
determined sat(n,C5) for all n, as well as all extremal graphs.

The best previously known general lower bound came from Barefoot, Clark, Entringer,
Porter, Székely, and Tuza [3], and the best general upper bound (a clever, complicated
construction resembling a bicycle wheel) came from Gould, Łuczak, and Schmitt [15]

(
1 + 1

2k + 8

)
n ≤ sat(n,Ck) ≤

(
1 + 2

k − ε(k)

)
n + O(k2), (3)

where ε(k) = 2 for k even ≥ 10, ε(k) = 3 for k odd ≥ 17. Although there is still a
gap, Theorem 2.1 supersedes all earlier results for k ≥ 6 except the construction giving
sat(n,C6) ≤ 3

2 n for n ≥ 11 from [3].
Our new construction for a k-cycle-saturated graph for n = (k − 1) + t(k − 4), where

k ≥ 7, t ≥ 1, can be read from the picture below.

To be precise, define the graph H := Hk,n on n vertices, for arbitrary n ≥ 2k − 5, k ≥ 7
as follows. Write n in the form

n = (k − 1) + r + t(k − 4),

where t ≥ 1 is an integer and 0 ≤ r ≤ k − 5. The vertex set V (H) consists of the pair-
wise disjoint sets A, B, C, D, and Ri for 1 ≤ i ≤ t, V (H) = A ∪ B ∪ C ∪ D ∪ R1 ∪ R2 ∪
· · · ∪ Rt , where |A| = |B| = 2, |C| = k − 5, |D| = r, and |R1| = |R2| = · · · = |Rt | =
k − 4 and A = {a1, a2}, B = {b1, b2}, C = {c1, c2, · · · , ck−5}, D = {d1, d2, · · · , dr},
Rα = {rα,1, rα,2, . . . , rα,k−4}. We also denote A ∪ B ∪ C ∪ D by Q and R1 ∪ · · · ∪ Rt

by R.
The edge set of H does not contain b1b2 and it consists of an almost complete graph

Kk−3 minus an edge on C ∪ B, a K4 minus an edge on B ∪ A, r pendant edges joining ci

and di for 1 ≤ i ≤ r, and t paths Pα of length k − 3 with vertex sets A ∪ Rα with endpoints

Journal of Graph Theory DOI 10.1002/jgt
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a1 and a2. The number of edges

|E(G)| =
(

k − 3

2

)
+ 4 + r + t(k − 3).

It is not difficult to check that, indeed, H is Ck-saturated (see details in Section 3). After
which, a little calculation yields the upper bound in (1).

We strongly believe that this construction is essentially optimal.

Conjecture 2.2. There exists a k0 such that sat(n,Ck) =
(

1 + 1

k − 4

)
n + O(k2) holds

for each k > k0.

3. THE GRAPH Hk,n IS Ck -SATURATED, THE PROOF OF THE UPPER

BOUND FOR sat(n,Ck )

First, we check that H := Hk,n is Ck-free. If a cycle with vertex set Y is entirely in Q, then
it is contained in A ∪ B ∪ C, so |Y | ≤ k − 1. If Y contains a vertex rα,i then A ∪ Rα ⊂ Y ,
the k − 3 edges of the path Pα are part of the cycle. However, it is impossible to join
a1 and a2 by a path of length 3, so |Y | �= k. Note that here we used k ≥ 7, because we
needed that k − 3 (the length of another Pβ) is not 3.

The key observation to know that H is Ck-saturated is that a1 and a2 are connected
inside Q by a path T� of any lengths � except for 3:

∃ path T� ⊂ Q : � ∈ {1, 2, 4, 5, . . . , k − 3, k − 2} with endpoints a1, a2. (4)

For example, T1 = a1a2, T2 = a1b1a2, T4 = a1b1c1b2a2, etc. Also the vertices ai (i = 1, 2)
and q ∈ Q \ {ai} are connected by a path Ui

m of length m inside Q for 
(k + 1)/2� ≤ m ≤
k − 2:

∃ path Ui
m ⊂ Q : m ∈ {
(k + 1)/2�, . . . , k − 3, k − 2} with endpoints ai, q ∈ Q. (5)

Note that this is true for any m ≥ 4 but we will apply (5) only for 
(k + 1)/2� ≥ 4.
Now add an edge e to H from its complement. We distinguish four disjoint cases.

Case 1. If the endpoints of e are in A ∪ Rα , then we get a path connecting a1 and a2

in A ∪ Rα of length t, where t is at least two and at most k − 4. This path together
with Tk−t forms a k-cycle.

Case 2. If the endpoints of e are rα,i and rβ, j with α �= β then we may suppose that
1 ≤ i ≤ j ≤ k − 4. The vertex rα,i splits the path Pα into two parts, P1

α and P2
α ,

where P1
α starts at a1 and has length i, and P2

α ends at a2 and has length k − 3 − i.
Consider the path π := P1

αeP2
β , its length is k − 2 − j + i. This length is between

3 and k − 2, so we can apply (4) to add an appropriate Tj−i+2 to complete π to a
k-cycle unless j − i + 2 = 3. In the latter, the edge a1a2 together with P1

β , e, and
P2

α forms a Ck.

Case 3. If the endpoints of e are rα,i and q ∈ B ∪ C ∪ D, then again by symmetry,
we may suppose that i ≤ (k − 3)/2, so the length of P1

α is at most �(k − 3)/2�.
Then, by (5) there is an U1

m so that P1
α , e, and U1

m form a k-cycle.

Case 4. Finally, e is contained in Q. Without loss of generality, we may consider
only the following six subcases depending on the edge added.
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For e = a1c1, we use P1 to get the k-cycle a1c1b1a2P1,
for e = a1d1, we have the k-cycle a1d1c1c2 . . . ck−5b2a2b1,
for e = b1b2, we have to use P1, (here we need again that t ≥ 1),
for e = b1d1, we have the k-cycle b1d1c1c2 . . . ck−5b2a2a1,
for e = c1d2, we have the k-cycle c1d2c2 . . . ck−5b2a2a1b1, finally
for e = d1d2, we have the k-cycle d1d2c2 . . . ck−5b2a2b1c1.

4. SEMISATURATED GRAPHS

A graph G is H-semisaturated (formerly called strongly saturated) if G + e contains
more copies of H than G does for ∀e ∈ E(G). Let ssat(n, H) be the minimum size of an
H-semisaturated graph. Obviously, ssat(n, H) ≤ sat(n, H).

It is known that ssat(n, Kp) = sat(n, Kp) (it follows from Frankl/Alon/Kalai general-
izations of Bollobás set pair theorem) and ssat(n,C4) = sat(n,C4) (Tuza [20]). Below on
the left we have a C5-semisaturated graph on 1 + 8t vertices and 11t edges. Each vertex
other than y can be reached by a path of length 2 from y.

Joining one, two, or three triangles to the central vertex y one obtains C5 semisaturated
graphs with 8t + 3, 8t + 5, or 8t + 7 vertices and 11t + 3, 11t + 6, or 11t + 9 edges,
respectively. Leaving out a pendant edge, we can extend these constructions for even
values of n

ssat(n,C5) ≤ ⌈11

8
(n − 1)

⌉
for all n ≥ 5. (6)

The picture on the right is the extremal C5-saturated graph by (2).

Conjecture 4.1. ssat(n,C5) = 11

8
n + O(1). Maybe equality holds in 6 for n > n0.

Since 11/8 = 1.375 < 10/7 = 1.42... inequalities (2) and (6) imply that

ssat(n,C5) < sat(n,C5) for all n ≥ 21.

Our next theorem implies that similar statement holds for the k-cycle Ck with k > 12
(though probably for k ∈ {6, 7, . . . , 12}, too).

Theorem 4.2. For all n ≥ k ≥ 6(
1 + 1

2k − 2

)
n − 2 < ssat(n,Ck) <

(
1 + 1

2k − 10

)
n + k − 1. (7)
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The proof of the lower bound is postponed to Section 9. The construction yielding the
upper bound is presented in the next two sections where we describe a way to improve the
O(k) term as well as give better constructions for k = 6. We believe that our constructions
are essentially optimal.

Conjecture 4.3. There exists a k0 such that ssat(n,Ck) =
(

1 + 1

2k − 10

)
n + O(k)

holds for each k > k0.

5. CONSTRUCTIONS OF SPARSE Ck -SEMISATURATED GRAPHS

In this section, we define an infinite class ofCk-semisaturated graphs, H2
k,n (more precisely

H2
k,n(G)). Call a graph G k-suitable if

(S1) G is Ck-semisaturated,
(S2) ∃ a path T� in G with endpoints a1 and a2 and of length � for all 1 ≤ � ≤ k − 2,

and
(S3) for every q ∈ V (G) \ {a1, a2}, and integers m1 and m2 with m1 + m2 = k and

2 ≤ mi ≤ k − 2 ∃ an i ∈ {1, 2} and a path U (ai, q, mi) of length mi and with
endpoints ai and q.

A k-wheel with r spikes, W r
k , is a graph with a (k + r)-element vertex set

{a1, a2, . . . , ak, d1, . . . , dr} and it has 2k − 2 + r edges joining a1 to all other ai’s,
forming a cycle a2a3 . . . ak of length k − 1, and joining each di to ai. It is easy to
see that W r

k is k-suitable when k ≥ r and k ≥ 4.
Define the graph H := H2

k,n(G) as follows, when n is in the form

n = |V (G)| + t(k − 3),

where t ≥ 0 is an integer. The vertex set V (H) consists of the pairwise disjoint sets Q and
Ri for 1 ≤ i ≤ t, V (H) = Q ∪ R1 ∪ · · · ∪ Rt , where |Q| = |V (G)|, |R1| = |R2| = · · · =
|Rt | = k − 3, and A := {a1, a2} ⊂ Q. The edge set of H consists of a copy of G with
vertex set Q, and t paths with endpoints a1 and a2 and vertex sets A ∪ Rα . The number of
edges is

|E(H)| = |E(G)| + t(k − 2).

It is not difficult to check that, indeed, H is Ck-semisaturated, the details are similar (but
much simpler) to those in Section 3, so we do not repeat that proof.

Finally, considering H2
k,n(W

r
k ) (where now 4 ≤ r ≤ k), we obtain that for all n ≥ k + 4

ssat(n,Ck) ≤ n + ⌊n − 7

k − 3

⌋ + k − 3. (8)

Corollary 5.1. ssat(n,C6) ≤ ⌈4

3
n
⌉

for all n ≥ 10.
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6. THINNER CONSTRUCTIONS OF SPARSE Ck -SEMISATURATED

GRAPHS

In this section, we define another infinite class of Ck-semisaturated graphs, H3
k,n (more

precisely H3
k,n(G)) yielding the upper bound (7) in Theorem 4.2.

Call a graph G {k, k + 2}-suitable with special vertices a1 and a2 if (S1) and (S2) hold
but (S3) is replaced by the following

(S3)+ for every q ∈ V (G) \ {a1, a2}, and integers m1, m2 either there exists a path
U (a1, q, m1) (of length m1 and with endpoints a1 and q) or a path U (a2, q, m2) in the
following cases

m1 + m2 = k and 3 ≤ mi ≤ k − 3,

m1 + m2 = k + 2 and 4 ≤ mi ≤ k − 4.

It is easy to see that the wheel W r
k with r spikes is such a graph, k ≥ r ≥ 0, k ≥ 4.

Define the graph H3
k,n(G) as follows, when n is in the form

n = |V (G)| + t(2k − 10) − r, (9)

where t ≥ 2 is an integer and 0 ≤ r < 2k − 10. The vertex set V (H) consists of the pair-
wise disjoint sets Q, Ri, and D for 1 ≤ i ≤ t,V (H) = Q ∪ R1 ∪ · · · ∪ Rt ∪ D, where |Q| =
|V (G)|, |R1| = |R2| = · · · = |Rt | = k − 5, |D| = t(k − 5) − r, and A := {a1, a2} ⊂ Q.
The edge set of H consists of a copy of G with vertex set Q, and t paths with endpoints
a1 and a2 and vertex sets A ∪ Rα and finally |D| spikes, a matching with edges from ∪Rα

to D.
The number of edges is

|E(H)| = |E(G)| + t(2k − 9) − r. (10)

It is not difficult to check that H is Ck-semisaturated, the details are similar (but simpler)
to those in Section 3. As an example, we present one case.

Add the edge qd to H, where q ∈ V (G) \ {a1, a2} and d ∈ D. Let us denote the (unique)
neighbor of d by x, x ∈ Rα . The distance of x to a1 is denoted by �. Then the length of the
qdx . . . a1 path is � + 2 ≥ 3 and the length of the qdx . . . a2 path is (k − 4 − �) + 2 ≥ 3
and one can find a Ck through qd using property (S3)+.

Considering H3
k,n(Wk) (with t ≥ 2), we obtain from (9) and (10) that for all n ≥ 3k − 9

ssat(n,Ck) ≤ ⌈ (
1 + 1

2k − 10

)
(n − k)

⌉ + 2k − 2. (11)
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Using H2(k, n), it is easy to see that (11) holds for all n ≥ k, leading to the upper bound
in (7).

One can slightly improve (8) and (11) if there are special graphs thinner than the
wheel Wk.

Problem 6.1. Determine s(k), the minimum size of a k-vertex k-suitable graph (i.e., one
satisfying (S1)–(S3)). Determine s′(k), the minimum size of a k-vertex {k, k + 2}-suitable
graph (i.e., one satisfying (S1), (S2), and (S3)+).

7. DEGREE ONE VERTICES IN (SEMI)SATURATED GRAPHS

Suppose that G is a Ck-semisaturated graph where k ≥ 5, |V (G)| = n ≥ k. Obviously, G
is connected. Let X be the set of vertices of degree one, X := {v ∈ V (G) : degG(v) = 1},
its size is s and its elements are denoted as X = {x1, x2, . . . , xs}. Denote the neighbor of xi

by yi, Y := {y1, . . . , ys} and let Z := V (G) \ (X ∪ Y ). We also denote the neighborhood
of any vertex v by NG(v) or briefly by N(v).

Lemma 7.1. (The neighbors of degree one vertices.)

(i) yi �= y j for 1 ≤ i �= j ≤ s, so |Y | = |X |.
(ii) deg(y) ≥ 3 for every y ∈ Y ,

(iii) if degG(x) = 1, then G − {x} is also a Ck-semisaturated graph.

Proof. If yi = y j, then the addition of xix j to G does not create a new k-cycle. If
deg(yi) = 2 and N(yi) = {xi, w}, the addition of xiw to G does not create a new k-cycle.
Finally, (iii) is obvious. �

Split Y and Z according to the degrees of their vertices. Thus, divide V (G) into five
parts {X,Y3,Y4+, Z2, Z3+},

Y3 := {v ∈ Y : degG(v) = 3} and Y4+ := {v ∈ Y : degG(v) ≥ 4},
Z2 := {v ∈ Z : degG(v) = 2} and Z3+ := {v ∈ Z : degG(v) ≥ 3}.

Lemma 7.2. (The structure of Ck-saturated graphs. See [3]). Suppose that G is a
Ck-saturated graph (and k ≥ 5).

(iv) If xiyiw is a path in G (with xi ∈ X , yi ∈ Y ), then deg(w) ≥ 3. So there are no edges
from Z2 to Y (or to X).

(v) If yiy j is an edge of G (with yi, y j ∈ Y ), then deg(yi) ≥ 4. So there are no edges
in Y3, no edges from Y3 to Y4. In other words, every y ∈ Y3 has one neighbor in X
and two in Z3+.

(vi) The induced graph G[Z2] consists of paths of length at most k − 2.

Journal of Graph Theory DOI 10.1002/jgt
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8. SEMISATURATED GRAPHS WITHOUT PENDANT EDGES

Claim 8.1. Suppose that G is a Ck-semisaturated graph on n vertices with minimum
degree at least 2, k ≥ 5. Then every vertex w is contained in some cycle of length at most
k + 1.

Proof. Consider two arbitrary vertices z1, z2 in the neighborhood N(w). If z1z2 ∈
E(G), then w is contained in a triangle. If z1z2 �∈ E(G), then G + z1z2 contains a new
k-cycle; there is a path P of length (k − 1) in G with endpoints z1 and z2. If P avoids w,
then P together with z1wz2 forms a k + 1 cycle. If w splits P into two paths L1, L2, where
Li starts in zi and ends in w, then either L1 + z1w, or L2 + z2w, or both forms a proper
cycle of length at most k − 1. �

Note that Claim 8.1 itself (and the connectedness of G) immediately imply

e(G) ≥ (n − 1)
k + 2

k + 1
.

We can do a bit better repeatedly using the semisaturatedness of G.

Lemma 8.2. Suppose that G is a Ck-semisaturated graph on n vertices with minimum
degree at least 2, k ≥ 5. Then

e(G) ≥ k

k − 1
n − k + 1

k − 1
.

Proof. We will show that there exists an increasing sequence of subgraphs
G1, G2, . . . , Gt = G with vertex sets V1 ⊆ V2 ⊆ · · · ⊆ Vt = V (G) such that Gi is a sub-
graph of Gi+1 and

|E(Gi+1) \ E(Gi)| ≥ k

k − 1
(|Vi+1| − |Vi|) (12)

(for i = 1, 2, . . . , t − 1). This, together with

e(G1) ≥ k

k − 1
|V1| − k + 1

k − 1
, (13)

imply the claim.
G1 is the shortest cycle in the graph G. Its length is at most k + 1 so (13) obviously

holds.

Journal of Graph Theory DOI 10.1002/jgt
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If Gi is defined and one can find a path P of length at most k with endpoints in
Vi but E(P) \ E(Gi) �= ∅, then we can take E(Gi+1) = E(Gi) ∪ E(P). From now on,
we suppose that such a short returning path does not exist. Our procedure stops if
V (Gi) = V (G) =: V .

In the case of V \ Vi �= ∅, the connectedness of G implies that there exists an xy edge
with x ∈ Vi and y ∈ V \ Vi. Since |N(y)| ≥ 2, we have another edge yz ∈ E(G), z �= x.

We have N(y) ∩ Vi = {x}, otherwise one gets a path xyz of length smaller than k with
endpoints in Vi but going out of Gi, contradicting our earlier assumption. Similarly, we
obtain that N(y) contains no edge, otherwise we can define E(Gi+1) as either E(Gi) plus
the three edges of a triangle xy, yz, xz or we add four edges xy, yz1, yz2, and z1z2 but only
three vertices (namely y, z1, and z2). The obtained Gi+1 obviously satisfies (12) in both
cases. Similarly, if there is a cycle C of length at most k − 1 contaning y, then we can
define E(Gi+1) as E(Gi) plus E(C) and xy. From now on, we suppose that such a short
cycle through y does not exist.

Fix a neighbor z of y, z �= x. Since zx �∈ E(G), G contains a path P of length k − 1 with
endvertices x and z. Since G does not contain a short returning path nor a short cycle
through y, we obtain that P avoids y and V (P) ∩ Vi = {x}.

If the cycle C := P + xy + yz of length k + 1 has any diagonal edge then Gi+1 is
obtained by adding C together with its diagonals. From now on, we suppose that C
does not have any diagonals. More generally, if there is any diagonal path P of length
� ≤ k − 1 with edges disjoint from E(Gi) ∪ E(C) but with endpoints in Vi ∪ V (C) then
we can define E(Gi+1) := E(Gi) ∪ E(C) ∪ E(P) and have added k + � − 1 vertices and
k + � + 1 edges, obviously satisfying (12).

However, such a diagonal path exists. Let w �= y be the other neighbor of x in C. Since
wz �∈ E(G), there is a path P′ of length k − 1 with endpoints w and z. This P′ must have
edges outside E(Gi) ∪ E(C) so it can be shortened to a diagonal path P of length at most
k − 1. This completes the proof of the lemma. �

9. A LOWER BOUND FOR THE NUMBER OF EDGES OF

SEMISATURATED GRAPHS

In this section, we finish the proof of Theorem 4.2. Let G be a Ck-semisaturated graph on
n vertices with minimum number of edges, k ≥ 5. Let X be the set of degree one vertices,
x := |X |. By Lemma 7.1 |X | ≤ n/2, and for G′ := G \ X , we have e(G′) = e(G) − x and
G′ is a Ck-semisaturated graph on n − x vertices with minimum degree at least 2. Then
Lemma 8.2 can be applied to e(G′). We obtain

ssat(n,Ck) = e(G) ≥ x + (n − x)
k

k − 1
− k + 1

k − 1

≥ n

2
+ n

2

k

k − 1
− k + 1

k − 1
= n

(
1 + 1

2k − 2

)
− k + 1

k − 1
.

Since sat(n,Ck) ≥ ssat(n,Ck), this is already a better lower bound than the one in (3)
from [3].
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10. A LOWER BOUND FOR THE NUMBER OF EDGES OF

Ck -SATURATED GRAPHS

In this section, we finish the proof of Theorem 2.1. Let G be a Ck-saturated graph on n
vertices, k ≥ 5. Let us consider the partition of V (G) = X ∪ Y3 ∪ Y4+ ∪ Z2 ∪ Z3+ defined
in Section 7, where X is the set of degree one vertices, Y is their neighbors. By Lemma 7.1
|X | = |Y |. To simplify notation, we use a := |Z2|, b := |Y3|, c := |Z3+|, and d := |Y4+|.
We have

n = a + 2b + c + 2d.

By definition of the parts, we have the lower bound

2e(G) =
∑
v∈V

deg(v) ≥ |X | + 2|Z2| + 3|Y3| + 3|Z3+| + 4|Y4+|.

This yields

2e ≥ 2n + c + d. (14)

Now, we estimate the number of edges by considering four disjoint subsets of E(G).
The part X is adjacent to |X | edges, and according to Lemma 7.2, Z2 is adjacent to at
least k

k−1 |Z2| edges, Y3 is adjacent to exactly 3|Y3| edges of which |Y3| has already been
counted at X , and finally Y4+ is adjacent to at least another 3

2 |Y4+| edges. We obtain

e(G) ≥ |X | + k

k − 1
|Z2| + 2|Y3| + 3

2
|Y4+|.

Therefore, we get

e ≥ n + 1

k − 1
a + b − c + 1

2
d. (15)

By Lemma 7.1 G \ X is also Ck-semisaturated. Apply Lemma 8.2 to estimate e(G \
X ) = e − b − d, multiply by (k − 1) and rearrange, we get

(k − 1)e ≥ kn − b − d − (k + 1). (16)

Adding up the above three inequalities (14), (15), and (16), we obtain

(k + 2)e ≥ (k + 3)n + 1

k − 1
a + 1

2
d − (k + 1).

This implies the desired lower bound in (1).

Remark. We can do slightly better if we multiply (14), (15), and (16) by k, k − 1,
and k − 3, respectively, then by adding up and simplifying , we get

e(G) >
k2

k2 − k + 2
n − 1. (17)

�
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