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Abstract

A hypergraph is called an r × r grid, Gr×r, if it is isomorphic to a pattern of r horizontal

and r vertical lines. Three sets form a triangle if they pairwise intersect in three distinct

singletons. A hypergraph is linear if every pair of edges meet in at most one vertex.

Our aim is to construct a large linear r-hypergraphs which contain no grids. Moreover, a

similar construction gives large linear r-hypergraphs which contain neither grids nor triangles.

For r ≥ 4 our constructions are almost optimal. These investigations are also motivated by

coding theory: we get new bounds for optimal superimposed codes and designs.

Our main tool is a natural algebraic construction and some properties of pseudoline ar-

rangements.

Motivation, a method of estimating codes

There are many instances in Coding Theory when codewords must be restored from par-

tial information, like defected data (error correcting codes) or some superposition of the strings

(these lead to superimposed codes). Generally, the aim of investigating superimposed codes is to

construct and to estimate methods where no confusion arises on parallel transmission.

In this paper a binary code of length n is a family of 0-1 sequences, C ⊂ {0, 1}n. There is one to

one correspondence between codes and hypergraphs with vertex set [n] := {1, 2, . . . , n}. Speaking

about a hypergraph F = (V,F) we frequently identify the vertex set V = V (F) by the set of first

integers [n] := {1, 2, . . . , n}, or elements of a q-element finite field Fq. To shorten notations we
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frequently say ’hypergraph F ’ (or set system F) thus identifying F to its edge set F . F is linear

if for all A,B ∈ F , A 6= B we have |A ∩ B| ≤ 1. The degree, degF(x), of an element x ∈ [n] is

the number of hyperedges in F containing x. F is regular if every element x ∈ [n] has the same

degree. It is uniform if every edge has the same number of elements, r-uniform means |F | = r for

all F ∈ F .

The aim of this paper is to present a method to estimate the maximum size of some super-

imposed codes. Namely, first we investigate constant weight codes, these lead to Turan type

problems. This case we frequently apply algebraic/geometric methods for constructions. Second,

we generalize to the non-uniform case, if we can. We illustrate this by considering two kinds of

superimposed codes, cancellative and union-free families.

Cancellative families

A family of sets F (and the corresponding family of 0-1 vectors) is called cancellative if A

and A∪B determine B (in case of A,B ∈ F and A 6= A∪B). For a precise definition we require

that for all A,B, C ∈ F , A 6= B, A 6= C

A ∪B = A ∪ C =⇒ B = C.

Let CANC(n) be the size of the largest cancellative family on n elements, and let CANCr(n)

denote the size of the largest r-uniform family on n elements.

The asymptotics of the maximum size of a cancellative family was given by Tolhuizen [36]

(construction) and in [19] (upper bound) showing that there exists a γ > 0 such that

γ√
n

1.5n < CANC(n) < 1.5n (1)

holds. The problem was proposed by Erdős and Katona [28] who conjectured CANC(n) = Θ(3n/3)

which was disproved by an elegant construction by Shearer [33] showing CANC(3k) ≥ k3k−2

leading to CANC(n) > 1.46n for n > n0.

A lower bound can be obtained by considering the complete r-partite r-uniform hypergraph

with nearly equal parts.

CANCr(n) ≥ bn
r
cbn + 1

r
c . . . bn + r − 1

r
c. (2)

Since a cancellative 2-uniform family is a triangle-free graph Turan theorem implies that equality

holds in (2) for r = 2. Bollobás [5] showed that equality holds for r = 3, too. For the case

r = 4 equality was proved for all n divisible by 4 by Sidorenko [34] and for all n by Pikhurko [31].

However, Shearer [33] gave larger conctructions for r ≥ 11, so other cases of CANCr(n) are

unsolved.
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Uniform families and upper bounds

Theorem 1 (Tolhuizen [36] randomized algebraic construction, and [19] the upper bound for

n ≥ 2r).
γ0

2r

(
n

r

)
< CANCr(n) ≤ 2r

(
2r
r

)
(

n

r

)
. (3)

Here γ0 :=
∏

k≥1
2k−1
2k = .2887 . . .

If C is a cancellative family on [n] and A ∈ C then the sets B \ A are all distinct (B ∈ C)
yielding

|C| ≤ 2n−|A|. (4)

We also obtain CANCr(n) ≤ 2n−r. Considering the r-partite hypergraph on 2r vertices we get

CANCr(2r) = 2r. (5)

Proof of the upper bound (3).

Suppose that F ⊂ (
[n]
r

)
is a cancellative family, n ≥ 2r. Define FS := {A ∈ F : A ⊂ S} for

|S| = 2r. Then (5) gives

|F|
(

n− r

r

)
=

∑

S⊂V

|FS | ≤ 2r

(
n

2r

)
. 2

Proof of the upper bound (1).

Suppose that F ⊂ 2[n] is a cancellative family. If maxF∈F |F | ≥ n/2 then |F| ≤ 2n/2 by (4).

Otherwise, let F := F1 ∪F2 ∪F3 ∪ . . . with Fr := {F ∈ F : |F | = r}, r < n/2. The upper bound

(3) implies

|F| =
∑

r<n/2

|Fr| ≤
∑

r<n/2

√
r + 1
2r

(
n

r

)
<
√

n
∑

r

1
2r

(
n

r

)
=
√

n

(
3
2

)n

.

Since a kind of product of two cancellative families is again cancellative we have that

CANC(n1)CANC(n2) ≤ CANC(n1 + n2). This implies that CANC(n)1/n never exceeds its supre-

mum. 2

t-cancellative codes and families

F is 2-cancellative if for every fourtuple {A,B, C,D} with A,B, C,D ∈ F

A ∪B ∪ C = A ∪B ∪D =⇒ C = D.

t(4) := lim sup
n→∞, F⊂2[n]

1
n

log2 |F|.

The results of Alon, Fachini, and Körner [3], and Alon, Körner, and Monti [4], imply that

t(4) < 0.4561. (They were really concerned with so-called locally thin families). This was further

improved by Fachini, Körner, and Monti [16]. Körner and Sinaimeri [30] showed t(4) < 0.42.
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One can further generalize this notion. A code C ⊂ {0, 1}n and its corresponding hypergraph

F ⊂ 2[n] is called t-cancellative if

A1 ∪ · · · ∪At ∪B 6= A1 ∪ · · · ∪At ∪ C

for all t + 2 distinct members of F . CANC(n, t) := max{|F| : F ⊂ 2[n], t-cancellative}.

Problem 2 What is the rate of t-cancellative families?

Theorem 3 (An upper bound on t-cancellative codes, see [23]).

CANC(n, t) ≤ (
1 + 1

2t + o(1)
)n, so t(4) := lim supn→∞

1
n log2 CANC(n, 2)≤ 0.322.

Our method again is to investigate uniform t-cancellative families (i.e., Turán type problems)

and then use/extend the results to estimate CANC(n, t).

Union-free and sparse designs

Investigating the Rényi’s search model Dyachkov and Rykov [9] obtained several sufficient

conditions for the existence of regular binary superimposed codes. In [24] we answered their

question asymptotically which lead to union-free designs. A Steiner system S(v, r, 2) is a collection

of r-subsets (blocks) of a v-set which has the property that every pair of distinct elements occurs

in one block. Two families of r-sets A and B form a grid, Gr×r, if |A| = |B| = r, ∪A = ∪B
and | ∪ A| = r2, i.e., both A and B consists of disjoint sets and every A ∈ A meets every B ∈ B
in exactly one element. Let I≥2 be (more precisely Ir≥2) the class of hypergraphs of two edges

with intersection sizes at least two. This class consists of r− 2 non-isomorphic hypergraphs. The

Turán number of the r-uniform hypergraph H, denoted by ex(n,H), is the size of the largest

H-free r-graph on n vertices.

Problem 4 Given r, construct infinitely many grid-free Steiner systems, S(v, r, 2).

The present author and Ruszinkó [24] showed that there exist a linear, grid-free, r-uniform

hypergraph H on n vertices almost as big as a Steiner system

Theorem 5
n(n− 1)
r(r − 1)

− crn
8/5 < exr(n, {I≥2,Gr×r}) ≤ n(n− 1)

r(r − 1)

holds for every n, r ≥ 4.

In the case of r = 3 with probabilistic method we only have

Ω(n1.8) ≤ ex3(n, {I≥2,G3×3}) ≤ 1
6
n(n− 1).

We conjecture that here the upper bound holds for infinitely n. On the contrary, Elekes [10]

conjectures a o(n2) upper bound.
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The real question is to determine the unavoidable substructures in different classes of designs.

Only a few results are know, all in the case r = 3. A Steiner triple system is said to be s-

sparse if it contains no i blocks on i + 2 elements for any i, 4 ≤ i ≤ s. The question whether

s-sparse STS(v) exists was proposed by Erdős [11]. A 4-sparse STS(v) is known to exist for each

admissible v 6= 7, 13 (Brouwer [6], Grannell, Griggs, and Whitehead [25]). Recently there has

been substantial progress towards the goal of establishing that a 5-sparse STS(v) exists for each

sufficiently large admissible v (Wolfe [37]). An infinite class of 6-sparse STS(v) is described by

Forbes, Grannell, and Griggs [17], but no 7-sparse STS(v) is known for any v.

The basic algebraic construction

Given integers q ≥ r ≥ 2, q prime we define the transversal design mod q, Lr,q as an r-uniform

hypergraph on n := rq vertices as follows. Vertex set is V := {(j, y) : 1 ≤ j ≤ r, y ∈ Fq} =

[r]× Fq, the lattice points on R2, {(j, y) : y ∈ Fq} = j’th column. For integers 0 ≤ y, m < q

define the r-set L(y, m) a combinatorial line of slope m

L(y,m) = {(1, y), (2, y + m), . . . , (r, y + (r − 1)m)},

where the second coordinates are taken modulo q. Finally, the hypergraph L is the set of all

combinatorial lines

L := Lr,F = {L(y, m) : y ∈ Fq, m ∈ Fq}.

L has q2 = n2/r2 hyperedges (i.e., ‘lines’, r-tuples). It is easy to see that if q is a prime (and

q ≥ r), then Lr,F is a linear hypergraph. Our main observation is that

Lemma 6 [24] If q is a prime, q > r4r, r ≥ 4, then Lr,F is Gr×r-free.

We conjecture that this lemma should be true for all q > r.

When r = 3 there are crossing families of straight (Euclidean) lines. Let y, m, a, b ∈ Fq (with

a, b > 0) and consider L(y + 4a + 2b,m− 3a), L(y− 2a + 2b,m− 3b), L(y− 2a− 4b,m + 3a + 3b),

and L(y + 4a + 2b,m− 3a− 3b), L(y − 2a + 2b,m + 3a), L(y − 2a− 4b,m + 3b).

The corresponding crossing system forms a G3×3

{(1, y + 4a + 2b), (2, y + m + a + 2b), (3, y + 2m− 2a + 2b)}
{(1, y − 2a + 2b), (2, y + m− 2a− b), (3, y + 2m− 2a− 4b)}
{(1, y − 2a− 4b), (2, y + m + a− b), (3, y + 2m + 4a + 2b)}

{(1, y + 4a + 2b), (2, y + m + a− b), (3, y + 2m− 2a− 4b)}
{(1, y − 2a + 2b), (2, y + m + a + 2b), (3, y + 2m + 4a + 2b)}
{(1, y − 2a− 4b), (2, y + m− 2a− b), (3, y + 2m− 2a + 2b)}.
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More on union-free and cover-free codes

A family F ⊆ 2[n] is g-cover-free if for arbitrary distinct members A0, A1, . . . , Ag

A0 6⊆
g⋃

i=1

Ai.

Let CFg(n) (CFg(n, r)) be the maximum size of a g-cover-free n vertex code (r-uniform hyper-

graph, resp.).

A family F ⊆ 2[n] is t-union-free if for distinct t-multisets {A1, . . . , At} and {B1, . . . , Bt}
Ai, Bj ∈ F we have

A1 ∪A2 ∪ · · · ∪At 6=B1 ∪B2 ∪ · · · ∪Bt.

Let UFt(n) (UFt(n, r)) be the maximum size of a t-union-free n vertex code (r-uniform hyper-

graph, resp.).

If F is t-CF then it is t-UF, and if F is t-UF then it is (t− 1)-CF. Hence

CF(n, t) ≤ UF(n, t) ≤ CF(n, t− 1) ≤ UF(t− 1, n) ≤ . . .

CFr(n, t) ≤ UFr(n, t) ≤ CFr(n, t− 1) ≤ UFr(t− 1, n) ≤ · · · ≤ UF2(n, r).

Union free and cover free families were introduced by Kautz and Singleton [29]. They studied

binary codes with the property that the disjunctions (bitwise ORs) of distinct at most g-tuples of

codewords are all different. In information theory usually these codes are called superimposed

and they have been investigated in several papers on multiple access communication (see, e.g.,

Nguyen Quang A and Zeisel [1], D’yachkov and Rykov [8], Johnson [27]). The same problem

has been posed – in different terms – by Erdős, Frankl and Füredi [12, 13] in combinatorics,

by Sós [35] in combinatorial number theory, and by Hwang and Sós [26] in group testing. For

recent generalizations see, e.g., Alon and Asodi [2], and De Bonis and Vaccaro [7]. D’yachkov and

Rykov [8] proved that there are positive constants α1 and α2 such that

α1
1
g2

<
log CFg(n)

n
< α2

log g

g2

holds for every g and n > n0(g). One can find short proofs of this upper bound in [22] and in

Ruszinkó [32]

Frankl and the present author [21] determined asymptotically the maximum size of an r-

uniform g-cover-free family showing that there exists a positive constant γ := γ(r, g) such that

CFg(n, r) = (γ + o(1))ndr/ge

Problem 7 Given r ≥ t ≥ 1 find an asymptotic for UFt(n, r).

The order of magnitude of UFr(n, 2) was determined by Frankl et al. [18, 20]. It is a long-

standing conjecture of Erdős and Simonovits [14, 15] that

UF2(n, 2) =
(

1
2
√

2
+ o(1)

)
n3/2 (?)
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Theorem 8 (Füredi and Ruszinkó [24]) There exists a β = β(r) > 0 such that for all n ≥
r ≥ 4

n2e−βr
√

log n < ex(n, {I≥2,T3,Gr×r}) ≤ UFr(n, r) ≤ n(n− 1)
r(r − 1)

.

We have only weaker estimates for r = 3

Ω(n5/3) ≤ UF3(n, 3) ≤ 1
6
n(n− 1).

We conjecture that here the right hand side should be o(n2).

The determination of the size of maximal t-union-free families is one of the important and

likely solvable Turán type problems.

More problems

Call a code F t∗-cancellative if

A1 ∪ · · · ∪At ∪B = A1 ∪ . . . At ∪ C =⇒ B = C or {B, C} ⊂ {Ai, . . . , At}

for every t + 2 member sequence from F , and let c∗t (n) be the maximum size of such a code

F ⊂ 2[n]. Obviously CF(n, t) ≤ c∗t (n) ≤ CF(n, t + 1) ≤ CANC(n, t). One wonders if equality

holds in some of these, and what other relations these functions can have.

The grid cannot be covered by r − 1 vertices, it has r disjoint edges. So the r-graph having

all edges meeting an (r − 1)-element set is grid free. This gives the lower bound

ex(n,Gr×r) ≥
(

n− 1
r − 1

)
+

(
n− 2
r − 1

)
+ · · ·+

(
n− r + 1

r − 1

)
.

The classical result concerning the Turán number of the complete r-partite graph on r×r vertices

by Erdős gives only an upper bound O(nr−δ) with δ = r−r+1. The truth should be much closer

to the lower bound.

Problem 9 Determine the order of magnitude of ex(n,Gr×r).

References

[1] Nguyen Quang A, and T. Zeisel, Bounds on constant weight binary superimposed codes, Probl. of

Control and Information Theory 17 (1988), 223–230.

[2] N. Alon and V. Asodi, Tracing a single user, European J. of Combinatorics 27 (2006), 1227–1234.

[3] N. Alon, E. Fachini, and J. Körner, Locally thin set families, Combin. Probab. Comput. 9 (2000),

481–488.

[4] N. Alon, J. Körner, and A. Monti, String quartets in binary, Combin. Probab. Comput. 9 (2000),

381–390.
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[19] P. Frankl and Z. Füredi, Union-free hypergraphs and probability theory, European J. of Combinatorics

5 (1984), 127–131. Erratum, ibid 5 (1984), p. 395.
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