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1. Introduction, notations

Let §(n,diam = d) be the class of graphs of diameter d on n labeled vertices. We usually identify the vertex sets
with the set of the first n integers, [n] = {1,2,...,n}. It is well known [1] that almost all graphs have diameter 2,
16.(n, diam = 2)| = (1 — 0(1))2(2). Tomescu [4] proved that |4(n, diam = d)| = 2(2)(6 - 24 + o(1))" for any fixed
d > 3asn — oo.0ur aim is to give an exact asymptotic and to extend his result for almost all d and n.

For a graph G and vertex v we use the notation N(v) (or Ng(v)) for the neighborhood of v. For positive integers n and k
we use 1, for the k-term product n(n — 1) ... (n — k+ 1). exp,[x] stands for 2* and (a,bfmz) is the multinomial coefficient

n!/(alb!...z!).
2. Two classes of diameter d graphs

Let SU{a, b} be an s+ 2-element set, |S| = s > 1.Define #(S, a, b) as the class of graphs, G, with underlying set SU {a, b}
such that the distance between every pair of vertices is at most 2 except for a and b, their distance is 3. We have

2(2)3 (1 — 30.9°) < |#(S, a, b)| < 3°2(2), (1)

where c3 > 0is an absolute constant, independent of s. Indeed, the neighborhoods of a and b are disjoint, there are at most
3* possibilities for (N(a), N(b)). This gives the upper bound. On the other hand, we can get the lower bound by counting
the number of graphs on S U {a, b} with the property that N(a) " N(b) = ¥ and N(x) N N(y) = ¢ for some (x, y) # (a, b);
e.g., see Tomescu [3].
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Example 1 (A Block Plus a Path). Suppose 3 < d < n.Let #;(n, d) be a class of graphs of diameter d with vertex sets V := [n]
obtained as follows. Split V into three disjoint non-empty parts A, S, Bwith |A| =i,|S|=n—d+1,|[Bj=d—1—-i(1 <
i <d — 2).Putapath (vg, v1, ..., vji—1) to A, a path (viy2, ..., v4_1, Vg) to Band a copy of # (S, vi_1, Vit2)-

As the reversed sequences A" := {vg, V4_1, ..., Vis2}, B := {vi_1, ..., vo} yield the very same graphs, we have that the
number of graphs in the above class is

d—2 n—d+1
hy(n, d) (1 - C30~9n_d) < |Hi1(n,d)| < n(d—1)3"_d+12( 2 ) =: hy(n, d). (2)
Example 2 (Snake-like Graphs). Suppose %n < d < n.Let (Vo, Vq, ..., Vy) be a partition of [n] into 1 and 2 element parts
such that |Vy| = |Vq| = |Va| = |V4—2| = |V4—1] = |V4| = 1 and there are no two consecutive 2-element sets (i.e., |V;| = 2

implies |Vi1| = 1).Let us connect each vertex of V; to at least one vertex of V;_1, and add edges inside the V;’s arbitrarily. The
class of graphs obtained this way is denoted by #,(n, d). Every G € #,(n, d) is of diameter d, and the only pair of vertices of
distance d is {Vy, Vy}. Let N; be the set of vertices of G of distance i from V;. We have N; = Vj. If the sequence Ny, N1, ..., N4
also satisfies |[Ng| = |[Nqy| = |N2| = 1, |Ng—2| = [Ng—1] = |INg| = 1, and |N;| < 2 then G appears twice in #,(n, d). Denote
the class of these graphs by #; (n, d), and let #, (n, d) = #>(n, d) \ H#;(n, d).

Every partition gives 2"~¢~13"~¢~1 graphs, and the number of partitions is

(n)<n_2>~~<n_2(n_d_2))><[n—2(n—d—1)]!><(d_S_(n_d_1)+l).
2 2 2 n—d—1

So this procedure produces ng,1)(2d — 3 — n)u_q_1,3" %" graphs and the members of #2(n, d) are counted twice. Hence
2072 (n, &) + 176} (n, d)] = ngasy2d — 3 — Mg 3"

We have |[N;| = |N;| = N3] = 1and |[Ny| = 1. One can see that max{|Ny_1|, |Ng—2|} > 1 is possible only if max{|V;_3]|,
|Va—4|} = 2.Similarly, |N;| > 3 implies that |Vy_;| = |V4_it2| = 2. The number of such partitions (Vp, V1, ..., Vg) is at most

n! d—7—(nn—-d-2)+1 d—7—-n—-d-2)+1
2n—d—1x<2< n—d—2 )Hn_d_z)( n—d—2 ))

The sum in the parentheses is at most

(n—d) d—6—-—n—-d-1+1 (n—d) nm—d—-1) d—5—-—(nn—d—-1)+1
— = —_ X .
n—d-—2 d—5—-(n—-d-1)+1 n—d—1

We obtain
e m—dn—-d—-1)
2|7, (n, d)| < 2d —3 — ) u_g—13" 41 [ 1 .
|Ho(n, d)| < N ( ) (n—d—1) < + 24— 03 )
Since
L 2m—d+ 1)\ m—dy(n—d—1) L
it - — 2d —3 — ) p_g_1 [ 1 < -1
< F ) <( Mn—d-1 [ 1+ d—n_3 < ,
we get for some ¢y > 0
—d—1)>2 1
(1 - q%) ha(n,d) < [ Ha(n, d)] < Sngnd'™ 34 = hy(n, . (3)

The estimates (2) and (3) give the lower bounds for the next two theorems.

3. Results

Theorem 1. There is a constant ¢; > 0 such that the following holds. If 3 < d < n — cylogn and n — oo then almost all
n-vertex graphs of diameter at least d belong to ¥, (n, d), hence

d—2
2

n—d+1 )

|6.(n, diam = d)| = (14 0o(1)) n(d_l)3n7d+12< 5
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Theorem 2. There exists a constant ¢, > 0 such that for n — c;logn < d < n, n — o0 almost all n-vertex graphs of diameter
at least d belong to #,(n, d), hence

1
|G.(n, diam = d)| = (1 + 0(1))5n(d+1)d“‘d‘13“‘d‘1,

Corollary 1. For2 <d <n—cylognorn>d>n—clogn

im |§(n, diam > d + 1)|
n>oo  |g(n,diam =d)|

(4)

Eq. (4) was proved by Tomescu [4] for every fixed d > 2 and by Grable [2] for all 2 < d <« +/n/ log n. The main ideas of
our proofs are rather straightforward, but one needs very careful estimates and calculations.

4. Lemmas for the upper bound

Let V be an n-element set, X, € V, and let P := (Ng, Ny, ..., Ng) be an ordered partition of V into d + 1 non-empty parts,
No = {xo}, n; := |Ni|. Let (X0, N1, ..., Ny) be the class of graphs G with vertex set V such that N; is the i’th neighborhood

of xo, N = {y € V : d¢(xp,y) = i}. The number of graphs in each set of the partition is 2( 21) and the number of bipartite
graphs between N; and N;,; with no isolated vertex in Ni;1 is (2" — 1)"+1, We obtained

1900, Ny, ... Ng)| = 251 1‘[(2"' — 1, (5)
Taking all possible (d + 1)—part1t10ns (X0, N1, ..., Ng) we count each graph from g (n, diam = d) at least twice. We have
n
219(n, diam = d)| < > ( ) 2E( ]_[(2”1 — 1)ttt (6)
1, ny, ny, ..
nq+ny+-+ng=n—1

n1,n2,...,ng=1

In the rest of the proof we give sharp upper bounds for the right hand side of (6). We will use the following estimate.

n yd ‘
&i= 1 2M _ 1)+
(1,n1,n2,.. ) 1_[( )
n—d—1 mydp ,
=n<d+1>(n1_ )22 (3 )]"[—_<2”'—1)"l+1

1,n,—1,...,n5—1 i1 M
n—d-—1 n;
<n X ex ( )+ niniz1— 1) | . 7
- (d+1)<n1—1,n2—1,...,nd—l> P2 |:1<Zi<d 2 151’52%1( i ):| )
Define
1
f@xi, .0, x0) = Z EX,Z + Z XiXit1-
1<i<d 1<i<d—1
Lemma 1. Let x4, ..., Xg > 0 be real numbers, Zi Xi =S, M = Maxq<j<q(Xi—1 + X; + Xi+1). Then
1 2 1 2
fX) < -m* 4+ (s —m)~, (8)
2 2
and
3
fx) < ™ 9)

Proof. Suppose that m = x;_1 + xx + Xk+1, then x;_ < X1 and xy_1 > Xy12. We have

1

2 1
fx) < 3 ((Z Xi) — (X1 +x + Xk+1)) + E(Xk—l + X + Xi1)? F Xem2Xeo 1+ X1 Xir2 — Xk—1Xkr1 — Xk—2Xkt2

1 1
= 5(5 —-m)? + Emz + (Xk—2 — Xe1) Ke—1 — Xie42)-

Here the last term is non-positive and we get (8).
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To show (9) consider
HO+Y x5 =X+ +x)+E %+ K XK+

+ (a2 +Xa1 +Xa)” + (a1 +Xa)” X — 2 ) xiiga
< mx;+ X +x2) + -+ Ko F X+ X)) + -+ (Xgo1 + Xa) +Xg)
=3ms. O

We will use this lemma to bound in the following form

m + (nmm—1)=f(xl,...,xd)+E—X1—Xa (10)
2 2

wherex; :=n—1(1<i<d),s=> x=n—d—1.

5. Proof of the upper bound for Theorem 1

From now on, we suppose that 3 < d < n — c logn, where c is a sufficiently large constant. We put the terms of the right
hand side of (6) into four groups according to the relation of s :== n — d — 1 and m := maxy<j<4(i—1 + n; + Niy1 — 3).

- Case 1: m < 0.6s,
- Case2:06s<m<s—1,
- Case3:m=s—1.
This means that for some 1 < i < done hasn;_1 + n; + nj;1 = s+ 2, thereisann, =2 (t #i— 1,i,i+ 1) and all
other n; = 1. We consider three subcases
— Case3.1:t#i—2,i+2,
— Case32:t=i—2,n41 > 2,
— Case33:t=i+2,n_1 >3,
- Case4:m =s.
We have n;_; + n; + niy1 = s + 3, all other n; = 1. Again we handle three subcases separately
— Case4.1:nj_1 > 2,nj41 > 2,
— Cased2:ng=ny=--nNgo,=1,n431+n;=s+2,
— Case4.3:n_1+n=s+2,1<i<d,allothern; = 1.

These exhaust all possibilities. We will show that the sum in each of the above groups is o(h(n, d)), except in Case 4.3. We
denote by X', X5, X731, ... the sum of the right hand side of (5) corresponding to the above cases.

Case 1. To get an upper bound we use (7), rearrange, and then apply (10) and finally (9). We have

npy 41
X = Z < n Tld) 22"d=1( 2) H(Z”i — 1)ttt

nq+ny+--+ng=n—1 l’ n, My, .oy
ny,ny,..ng=1
m<0.6s

n—d-—1 n
= M+ m;65(<n1 —1,ny—1,...,n4— 1) X XDz [Z<2> +Z(nm"ﬂ B D])
n—d-—1 n;
< N —
= ey (Z<n1—l,n2—1,...,nd—l>> X &Py [mrgg?és{Z(2>+Z(n,n,+1 1)}:|

n—d—1 35S
< n@+nd X exp, | max f(x) + —
m<0.6s 2
= N d" 4" exp,[(3/4)(0.65)s 4 55/2]. (11)
This implies
log, ¥ < log(n+1)) + slogd + 0.45s% + 2.5s.

On the other hand (2) gives

s+2
log, hi(n, d) = —1+ log(d — 2) + log(ng-1y) + (s + 2) log 3 + < 5 ) . (12)
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Alittle algebra gives log h;(n, d) —log X7 > s?/20 —slogd (forn—d—1 > 100) and this goes to infinity ass — oo because
d <n—41lognimpliesn —d — 1 > 40logn > 40logd. Thus in this range Xy = o(h(n, d)).

Case 2. To get an upper bound we use (7) but rearrange more carefully. We have

n = (%) o ,
= > 2==\z) T — e
nq+ny+--ng=n—1 15 ny,ny,...,Nyg i=1

ny,ny,...ng=1
0.6s<m<s—2

—d-1 i
e Z ((m—l,nr;—l,...,nd—l) x expa [Z<Z)+Z(nini+l_1)]>

0.6s<m<s—2

n—d-—1
wr ¥ (2 )
0.6s<m<s—2 m is fixed m _1’n2_]""’nd_ 1
n;
o[ [ £ (3) + Zowms—}])

The total sum of all of the d-nomial coefficients of order s is d*, the number of d-colorings of an s-element set. In the sum
(13) we add up only those wherem = n;_1 —1+n; — 14+n;;; — 1 forsome 2 < i < d— 1. Choose first an i, then m elements
from the s-set, then color those with 3 colors (namely colors i — 1,iand i + 1), and color the rest by the remaining d — 3
colors. We obtain

IA

IA

—d—1
% , =@-2)() )3"@=3 " < @= 2=
miTmed N1 — 1L =1, ng — 1 m

Using again (10) and then (8) we have

ni 5 1 , 1 , 5s
2l < 55 _ 1 1 55
2 A (5) + Xm0 < max 60+ 5 < g Sm =97+ 2
So (13) gives
2y = Nt Z (d—2)s""3%(d — 3)* " exp, 1m2 + 1(m — 52+ oS )
B 2 2 2

0.6s<m<s—2

Hence
X s+1D(s+2 _
2 < ( )( )25 Z (S(d _ 3)2,m)5 m )
hl (n’ d) 9 0.6s<m<s—2
One can see that in the given range this sum is dominated by the term m = s — 2, when it is 0(s?d%)2~%%4, hence

¥, = 0(s*d?27%) = o(hy(n, d)) follows.

Case3.1.ni_1+nj+np =s+2, (1 <i<d),n =2wheret #i—2,i+2,andnj = 1for0 <j <d,j&{i—1,i,i+1,¢}.
There are d — 2 ways to choose i then at most d — 3 possibilities were left to t, then n_3) possibilities to fix N;, j #

i—1,i,i+ 1, t. Then one can select N; in (s;‘l) ways and distribute the remaining s + 2 elements among N;_1, N; and N .
Then (5) gives
S 4 S 2 a b c 2
Ty < yd—2d-3(°F > T2 50+ ()HE+(3) 20— 1p2b — 120 — 1122 — 1)!
2 a+b+c=s+2 a, b’ ¢
a,b,cgl
d—2 s+4 s+2 s+2 s+2—a
o () (L0 3 (1) (T
2 2 a+b;rcis]+2 a ¢

Using standard binomial identities we get

= ()0

a+b+c=s+2
a,b,c>1

s+ 2 s+ 1 s+ 2 s+2—a
_ Z (+)<+>+Z<+> Z <+ >(2,a+1)c
1 c a c
a=1, 1<c<s+1 a>2 1<c<s+2—a
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<G+ + ) (5 " 2) (14 270+
a

a>2

<G+22T+ ) (s Z 2) B/ = (s +2)27 + (5/2)"% (15)

a>2

This is 0(3*/d) so (14) gives X'3; = o(hy(n, d)).
The rest of the cases are quite similar.

Case32.ni_1+ni+np1=s+2,n,=2, 2<i<d),nig >2andnj=1for0<j<d,j&{i—2,i—1,i,i+ 1}.
There are d — 3 ways to choose i, then n¢_s3) possibilities to fix Nj, j # i — 2,i— 1,i, i+ 1. Then (5) gives

s+ 4 2 a b c
232 < Tl(d_?,)(d — 3) X Z (2 +b ) 2(2)+(2)+(2)+(2)(22 _ 1)“(2“ _ 1)b(2b _ l)C(ZC _ 1)
a+b+c=s+2 »a, D, €
a,b>1,c>2
s+ 4 s+2 s+2 s+2—a
< 2043 (d — 3)( + >2< ¥) > ( + ) ( + )3“2*““. (16)
2 a+5+1c:s+zz a ¢

We have

Z <S+2> <s+2_a>3a2—ac+c
a+b+c=s+2 a ¢

a,b>1,c>2

< (s + 2) (S 2= a) 30p-20+2 _ Z (S + 2) 2st2-agay—2a+2
a c a
a>1,2<c<s+2—a a>1
s+ 2
=23 ( + ) (3/8)" < 2°t4(11/8)°2. (17)
a>1 a

This is 0(3°) so (16) gives X3, = o(h{(n, d)).

Case33.ni_1+n+np=s+2,n0=2, (I1<i<d-—1),n_1>3,andnj=1for0 <j<d,j&{i—1,i,i+1,i+2}
There are d — 3 ways to choose i, then n(y_3) possibilities to fix Nj, j # i — 1,i,i+ 1, i + 2. Then (5) gives

S 4 a b c 2
Ty <neyd-Hx Y ( N )z<z>+(z)+(z>+(z><za S PR - 1T — 122 - 1)
a+b+c=s+2 a,b,c, 2
a>3,b,c>1
s+4 s+2 s+2 s+2—a
< 6n(d_3)(d— 3)( + >2< 2 ) Z ( + ) ( + )2706+25. (18)
2 a+b+c=s+2 a ¢
a>3,b,c>1
We have
Z (s—l—z) <s+2—a>27ac+2c _ Z<S+2> ( Z (s+2—a) (2a+2)c>
a+b+c=s+2 a ¢ a>3 a 1<c<s+2—a ¢
a>3,b,c>1
< Z <S + 2) (] + 2—a+2)s+2—a
a>3 a
s+2
< Z( Z )(3/2)”2*” < (5/2)*. (19)
a>3

This is 0(3°) so (18) gives X33 = o(h{(n, d)).

Case4.1.ni_1+n+np=s+3,n_1>2,n41 >2,andn;=1for0 <j<d,j&{i—1,i,i+ 1}.
There are d — 2 ways to choose i, then n(y_,) possibilities to fix Nj, j # i — 1, i, i+ 1. Then (5) gives

Xy < n(d_z)(d — 2) xS, (20)
where
3 a b c
S = Z <S+ >2(2)+<2>+(2)(2a_‘1)b(2b_])C(ZC_ 1).
a+b+c=s+3 a, b’ ¢
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We separate the case a = 2 and use obvious upper bounds

S < Z ($+3> (S+1>21+(§)+(§)3b2bc+c+ Z <5+3)2(3)+(3)+(§)+ab+bc+c
b+c=s+1

- 2 ¢ a+b+c=s+3 a, b’ ¢
2<c<s a>3,b>1,c>2
s+3 (S+1) s+1 _
=2 2\ 2 3FHl=c)e 21
( 2 ) Z;s ¢ ( )
513 s+3 s+3—-b
2( 2) i I 22
* 2 ( b ) 2 < a ) =
1<b<s—-2 ati_as:rjz b

In the row (22), for a given b, the terms in the last sum form a unimodal sequence, the two terms at the ends are the largest
ones. More precisely, for a, c > 2 integers
(atc) 2—ac+c _ (a + 1)2—a

a+C\ 5 —(a+1)(c—D+(c—1) —c
(a+1)2 (a+D(c=D+(c—1) c2

>l a<c.

Thus we can upper estimate these terms by the (sum of the) extreme ends, when (a, c) = (3,s — b) and when (a, c) =
(s—b+1,2).

Z (5+3 - b) 270+ < (51— b) (<5+ 3 - b) 9-2542b 4 <5+ 3 - b) 22$+2b)
a+c=s+3—b a 3 2

a=3,c>2
< 54475+b-
In the row (21) the sum is at most (3 + 2)**'. We obtain
s+1 543 s 3
S<(s+3)(s+ 2)2( ) gt + 2 () g5 > ( ’; ) 4b
1<b<s—-2

< 025,

s+2
This is 0(2( 2 )35) so (20) gives X4; = o(hy(n, d)).

Case4.2.nqg_1+ng=s+2,andnj=1for0 <j<d-—2.
There are n¢—1) possibilities to fix N;,j = 0, 1, ..., d — 2. Then (5) gives

2g = n@-1 Z (S—ZZ) 2(§)+(§)(2a — 1)

a+b=s+2
< N@-1y Z <s —Z 2) 2(S¥2> = n(d71)2(5452)23+2 = o(hy(n, d)).

Case43.ni_1+n=s+2,1<i<dandn =1for0 <j<d,j&{i—1,i}.
There are d — 2 choices for i and n_1) possibilities to fix N;, j =0, 1, ...,d, j # i — 1, i. Then (5) gives

Ty < ng-1y(d — 2) Z (S —Z 2) 2(§)+(3)(za —DbEb-1)
a+b=s+2

<ngy@-2)Y (S . 2) 20)2 = ny - 220732 = oy, a),

Adding up the above eight cases, we get that the right hand side of (6) is at most (2 + 0(1))h;(n, d), completing the proof
of the upper bound. Together with the lower bound (2) we have the asymptotic.

We also obtained that almost all members of ¢ (n, diam = d) belong to the group of Case 4.3. One can see that almost all
members of the group 4.3 belong to #(n, d), thus finishing the proof of Theorem 1.

6. Upper bound for Theorem 2

In this section we suppose that n — clogn < d, where c is a sufficiently small constant. Again we are going to use (6).
We put the terms of the right hand side of (6) into four groups according to t, the number of non-singleton classes

t:=|{i:|N;j|] > 1}].

Wehavet <n—d— 1.Ift =n —d — 1, then we have t pairs and d + 1 — t singletons, i.e., all n; < 2.
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Casel:t<n—d-—1,

Case2:t = n—d — 1and max{nq, ny, ng_o, Ng_1, g} = 2.
Case3:t =n—d—1,ny = 1but there is ani with n; = nj;; = 2,
- Case 4: the graphs in #,(n, d).

These exhaust all possibilities. We will show that the sum (6) in each of the above cases is o(h,(n, d)), except in Case 4.
Recall that 2hy(n, d) = nggy1)d*3°.

Casel.t <n—d—1:=s.
Every graph in this class can be obtained by the following five-step procedure.

(1) Take a path P := vg, vy, ..., vy, there are ng1) ways to do it. We will have v; € N;.
(2) Choose d — t indices from [d], the corresponding classes and vg are the singletons, there are <f) < d'/t! ways to do

this.
(3) Put a second element to the non-singleton classes from the s vertices outside the path, there are

so = () = S ) n < st
(t) ¢ . s—t [ !

ways to proceed.

(4) Distribute the remaining s — t vertices arbitrarily among the non-singleton classes, there are t5~¢ ways of this. We now
have a partition (N, Ny, ..., Ng) together with a path P.

(5) Finally, call a pair xy open if either it is contained in some N; or x € N;, y € N;11 with |[N;| > 1 and it is not an edge of P.
There are

E = Z (’;l) + Z niniq — 1 (23)
ni>1

open pairs. With given P and a partition (N, N1, . .., Ng) we can select at most 2F subsets of open pairs to create a graph
from G (xp, Ny, ..., Ng).

Define x; := n; — 1 and use (10) and then (9) from Lemma 1. Note that m < s — (t — 3), since there are t positive x;'s. We
obtain that the right hand side of (23) is at most

55 3 5s
fOO+— =26 —t43)s+ o <s(s—0) +5s.

So the number of graphs counted in Case 1 is at most

., 32\’ st25\*
= —tg) s—t s(s—t)+5s _ e
1Zn(d+1)xﬂxs tIx 7" x 2 _2h2(n,d)(3> Z(d) .
<t<s s—t>1
This is o(h,(n, d)) since the base of the geometric series is 0((32/3) %) ifs=n—d — 1 < (log, n)/6.
Case 2.n; < 2forall 1 <j < d, and max{ny, ny, Ng_z, Ng—1, Ng} = 2.

We consider the case n; = 2 only, the other cases can be handled in the same way. In this case (5) gives at most 2°9°
d—1
s—1

graphs. Furthermore there are ( ) < sd*~'/s! ways to select the s indices of the 2-element blocks. So the number of

partitions with ng = 2 is

sds! n\ /n—2 n—2(s—1)
s! X(z)( 2 )( 2 >(n_23)!'

So the number of graphs in this case is at most

sd*~ 1 n! s3°
2°3% x ——— — = 2hy(n, d)—-.
sl 28 d
Case3.n; < 2,forall1 <j<d, ng = 1and thereis aniwithn; = nj; = 2.
Inequality (5) gives at most 2°9° graphs. Furthermore, there are

(d—l) (d—s) (d—2> (d—l) s> d
- =6-1 <s < ==
S s s—1 s—1 ds!

ways to select the s indices of the 2-element blocks from {1, 2, ..., d — 1} such a way that two are next to each other. So
the number of graphs in this case is at most

s S2d my (n—2 n—2(s—1) $23°
2535><——( )( )( )(n—Zs)!:th(n,d)

ds! \2 2 2 d’

Adding up the above three cases, we get that the number of graphs of §(n, diam = d) \ #,(n, d) is at most o(h,(n, d)),
completing the proof of the upper bound in Theorem 2.
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7. Eccentricity

The eccentricity of a vertex x in the graph G is the maximum over all vertices of the length of a shortest path from x to that
vertex. Actually, in both theorems above, we proved asymptotic formulas for the number of n-vertex graphs of eccentricity d.
The error terms in the asymptotics are exponentially small. For 3 < d < n — c; logn we have

g.(n, diam = d)| 5 a (11’
ha(n, d) _HO(‘“ <12>)’ (24

and for d > n — ¢, logn we have

|6(n, diam = d)| —140 <52(64/3)5> '
hZ(ns d) d

8. Phase transition

It would be interesting to investigate the phase transition, i.e., the case of n — d = © (logn).
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