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Abstract

We have found a general extension of the celebrated Sauer, Perles and Shelah, Vapnik and Chervo-

nenkis result from 0-1 sequences to k-ary codes still giving a polynomial bound.

Let C ⊆ {0, 1, . . . , k−1}n be a k-ary code of length n. For a subset of coordinates S ⊂ {1, 2, . . . , n}

the projection of C to S is denoted by C|S . We say that C (i, j)-shatters S if C|S contains all the 2|S|

distinct vectors (codewords) with coordinates i and j. Suppose that C does not (i, j)-shatter any

coordinate set of size si,j ≥ 1 for every 0 ≤ i < j ≤ k − 1 and let p =
∑

(si,j − 1). Using a natural

induction we prove that

|C| ≤ O(np)

as n→∞. We give a construction showing that this exponent is the best possible.

Several open problems are mentioned.
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1 Introduction

Let [n] denote the set {1, 2, . . . , n} while let (k) denote {0, 1, . . . , k − 1} and for any set S, let 2S

denote the family of all 2|S|subsets of S and let
(
S
k

)
denote all

(|S|
k

)
subsets of S of size k. Consider

a family F of subsets of [n]. We say that F shatters S if

{E ∩ S : E ∈ F} = 2S .

The following result has a variety of applications including learning theory and applied probability.

Theorem 1 [Sauer[12], Perles, Shelah[13], Vapnik, Chervonenkis[15]] Let F be a family of subsets

of [n] with no shattered set of size s. Then

|F| ≤
(

n

s− 1

)
+

(
n

s− 2

)
+ · · ·+

(
n

0

)
(1)

and this bound is the best possible.

Karpovsky and Milman [10] and independently Steele [14] gave a multivalued generalization of the

result above. Let C ⊆ (k)n be a set of codewords (vectors). A codeword c can also be viewed as a

function from [n] to (k). The code C is said to shatter S ⊆ [n] if

{c|S : c ∈ C} = (k)S ,

the set of all functions from S to (k).

Theorem 2 [Karpovsky and Milman [10] and independently Steele [14] (see also Frankl [5], Alon

[1], Anstee [2])] Let 1 ≤ s ≤ n be an integer and let C ⊆ (k)n be a set of codewords with no shattered

set of size s. Then

|C| ≤
s−1∑
i=0

(k − 1)n−i
(
n

i

)
. (2)

An important difference between the bounds is that (1) is polynomial in n (for fixed s), but (2)

is exponential. The same phenomenon happens when uniform set systems are considered. The

uniform version of Theorem 1 was proven by Frankl and Pach [6] (for a strengthening and algebraic

connections see Anstee et.al. [4]).
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Theorem 3 [Frankl and Pach [6]] Let n ≥ d ≥ s be positive integers. Let F ⊆
([n]
d

)
be a d-uniform

set system that does not shatter an s-element set, then

|F| ≤
(

n

s− 1

)
.

Recently, Hegedűs and Rónyai [9] gave two multivalued generalizations.

Theorem 4 [Hegedűs and Rónyai [9]] Let 0 ≤ d ≤ (k − 1)n and s − 1 ≤ n/2. Let C ⊆ (k)n be a

code with no shattered set of size s and suppose that
∑n

i=1 ci = d for every c ∈ C. Then

|C| ≤
s−1∑
i=0

(k − 1)n−i
((

n

i

)
−
(

n

i− 1

))
.

Note that this bound is exponential in n.

Theorem 5 [Hegedűs and Rónyai [9]] Let 0 ≤ d ≤ n and 0 ≤ d+ s− 1 ≤ n. Let C ⊆ (k)n be a code

with no shattered set of size s and suppose that |{i ∈ [n] : ci 6= 0}| = d for every c ∈ C. Then

|C| ≤
(

n

s− 1

) d∑
i=0

(k − 2)i
(
n− s+ 1

i

)
.

One cannot expect an exponential bound here since the total number of codewords with support of

size d is polynomial.

A code C and the corresponding matrixM formed by the codewords are called reverse-free ifM

does not have a submatrix of the form

 a b

b a

 for any distinct a and b. How large a reverse-free

code C ⊂ (k)n can be? It was proved in [7] that

max |C| = Θ
(
n(k2)

)
. (3)

This can lead to the following version of multivalued shattering. Let C ⊆ (k)n be a set of

codewords. C (i, j)-shatters S ⊆ [n] if C|S contains all 2|S| functions from S to {i, j}. Let k ≥ 2 be a

fixed integer, ~s = (s0,1, s0,2, . . . sk−2,k−1) be a positive integer vector of length
(
k
2

)
whose entries are

indexed by ordered pairs (i, j) with 0 ≤ i < j ≤ k − 1.

The main result of the present paper is the following theorem.
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Theorem 6 Suppose that C ⊂ (k)n does not (i, j)-shatter any coordinate set of size si,j ≥ 1 for

every 0 ≤ i < j ≤ k − 1. Then

|C| ≤
∑

0≤αi,j≤si,j−1

(
n

α0,1, α0,2, . . . , αk−2,k−1, n−
∑

0≤i<j≤k−1 αi,j

)
= O (np) , (4)

where the sum is taken for all possible choices of αi,j’s and p =
∑

0≤i<j≤k−1(si,j − 1).

On the other hand, when ~s is fixed and n→∞ then there exist codes C ⊂ (k)n such that they do

not (i, j)-shatter any coordinate set of size si,j ≥ 1 for every 0 ≤ i < j ≤ k − 1 and

|C| = Ω (np) . (5)

In other words, if forb(n, k,~s) denotes the maximum number of codewords of a code C of length n

over the alphabet (k) such that C does not (i, j)-shatter any coordinate set of size si,j then

forb(n, k,~s) = Θ(np).

Note that Theorem 1 is a special case of Theorem 6 taking k = 2, while (3) is obtained by taking

si,j = 2 for all 0 ≤ i < j ≤ k − 1.

2 A hierarchy of Vapnik-Chervonenkis type dimensions

The VC-dimension of a set system F ⊆ 2[n] is the maximum d that F shatters a set of size d. Theo-

rem 1 bounds the size of a set system whose VC-dimension is less than s. Vapnik and Chervonenkis

used it for bounds on the sample size necessary to obtain uniformly good empirical estimates for the

expectations of all random variables of a given class. Since then it has found applications in learning

theory, such as concepts with bounded VC-dimensions are effectively learnable.

Theorem 2 allows the definition of another dimension, KM-dimension of codes (systems of mul-

tisets) as follows. The KM-dimension of C ⊆ (k)n is the maximum d that C shatters a set of size d.

Theorem 2 gives a bound on the size of a code of KM-dimension less than s. However, this bound is

exponential function of n.

Haussler and Long [8] introduced other generalizations of VC-dimension, motivated by statistical
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applications. The G-dimension of C ⊆ (k)n is the maximum d that there exists a vector ~y =

(y1, y2, . . . yd) ∈ (k)d and a subset D = {i1, i2, . . . id} ⊆ [n] such that for all subsets I ⊆ D there

exists c = (c1, c2, . . . cn) ∈ C such that cij = yj for ij ∈ I and cit 6= yt for it 6∈ I.

The P-dimension of C is the maximum d that there exists a vector ~y and a subset |D| = d of [n]

such that for all subsets I ⊆ D there exists c ∈ C such that cij ≥ yj for ij ∈ I and cit < yt for it 6∈ I.

The GP-dimension of C is the maximum d that there exists a vector ~y and a subset |D| = d of

[n] such that for all subsets I ⊆ D there exists c ∈ C such that cij = yj for ij ∈ I and cit < yt for

it 6∈ I.

Finally, the N-dimension (or Natarajan-dimension [11]) of C is the maximum d that there exist

vectors ~y and ~z with zi < yi : i = 1, 2, . . . d and a subset |D| = d of [n] such that for all subsets I ⊆ D

there exists c ∈ C such that cij = yj for ij ∈ I and cit = zt for it 6∈ I.

It is easy to see that each of the above dimensions coincide with the VC-dimension in the case

of k = 1. We also have

dimKM(C) ≤ dimN(C) ≤ dimGP(C) ≤

 dimG(C)

dimP(C)
(6)

The concept of (i, j)-shattering allows us to define a new dimension which is between KM-dimension

and N-dimension.

The bi-dimension of C ⊆ (k)n is the maximum d that there exist i < j ∈ (k) and a set D ⊆ [n] of

size d that C (i, j)-shatters D. If a set D is KM-shattered by C, then C|D is the set of all functions

from D to (k), in particular it contains all functions from D to {i, j} for any pair i < j ∈ (k), so D

is (i, j)-shattered by C. This shows

dimKM(C) ≤ dimbi(C).

On the other hand, if D is (i, j)-shattered by C, then D satisfies the condition of N-dimension with

vectors ~z = (i, i, . . . , i) and ~y = (j, j, . . . , j), so the N-dimension of C is at least as large as its

bi-dimension.

Let MX(n, s) denote the maximum size of a code of length n and X-dimension not exceeding s
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(X ∈ {KM,bi,N,GP,G,P}). Then (6) and the observations above imply

MG(n, s)

MP(n, s)

 ≤MGP(n, s) ≤MN(n, s) ≤Mbi(n, s) ≤MKM(n, s).

In fact, Haussler and Long [8] proved that

MG(n, s) =MP(n, s) =MGP(n, s) =
∑

0≤i≤s

(
n

i

)
(k − 1)i.

MN(n, s) ≤
∑

0≤i≤s

(
n

i

)(
k

2

)i
.

These bounds are polynomial in n. Theorem 6 implies that Mbi(n, s) is polynomial, as well, since

Mbi(n, s) = forb(n,~s) for the vector ~s whose coordinates are all s + 1. However, MKM(n, s) is

exponential according to Theorem 2. An extremal property of bi-dimension is that it is the weakest

restriction that still results in polynomial bound. Indeed, it is weakest on the following sense. If

there is a pair of symbols i, j such that there is no restriction involving only that pair, then one can

select all codewords C = {i, j}n so that C does not violate any restrictions yet it is of exponential

size.

Since VC-dimension has many of applications in statistics, computer science and combinatorics,

it seems likely that bi-dimension can be applied there, too.

3 Proofs

In this section we give two related but different proofs of the upper bound in Theorem 6. The lower

bound (5) follows from Proposition 7.

Branching proof. Let C ⊂ (k)n be a code avoiding an (i, j)-shattered set of size si,j for all

0 ≤ i < j ≤ k − 1. The following branching process will be applied to C successively n times.

Let B be a set of codewords of length t ≥ 1 over alphabet (k). Let B0 denote the set of suffices

of length t− 1 of codewords in B. Note, that if t = 1, then B0 has one element, the empty string. If
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Figure 1: Branching example

a codeword b ∈ B0 appears with more than one first coordinate in B, say with i1 < i2 < . . . < iw,

then b will be put into the (w − 1) sets Bi1,i2 ,Bi1,i3 , . . . ,Bi1,iw . We get

|B| = |B0|+
∑

0≤i<j≤k−1
|Bi,j |.

Bi,j is said to be obtained by (i, j)-branching at step t from B.

Note that each B has two copies of Bi,j , one from the codewords chosen for B0 with i’s in the

first position and one from the codewords chosen for Bi,j with j’s in the first position. Then if Bi,j

i, j-shatters some set S ⊆ {2, 3, . . . , t} then our original set i, j-shatters 1 ∪ S.

Thus, the process starts with B = C and t = n, and continues with t = n − 1, n − 2, . . . , 1. At

step t every set of codewords obtained at step t+ 1 is branched. At the end, there are |C| singleton

sets each containing the empty string. For an example see Figure 1. Every singleton set is a result

of a series of branchings, say αi,j (i, j)-branchings for 0 ≤ i < j ≤ k − 1. If αi,j ≥ si,j for some pair

i, j, and these branchings occur at steps t1, t2, . . . tαi,j , then C (i, j)-shatters the set {t1, t2, . . . tαi,j}

that contradicts the assumptions. The maximum possible number of singleton sets with αi,j (i, j)-

branchings is equal to the number of n-permutations of αi,j objects of type (i, j) for 0 ≤ i < j ≤ k−1

and n−
∑

0≤i<j≤k−1
αi,j objects of “no branching” type, which is exactly the multinomial coefficient

(
n

α0,1, α0,2, . . . , αk−2,k−1, n−
∑

0≤i<j≤k−1 αi,j

)
.

This provides the upper bound (4). �
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Induction proof. For 1 ≤ i < j ≤ n let Cji,j ⊆ C consist of those codewords c that cn = j

and there exists a codeword c′ ∈ C that only differs from c in the last coordinate and c′n = i. If

si,j = 1, then Cji,j is empty. Otherwise, let ~si,j be the vector obtained from ~s by decreasing the (i, j)th

coordinate by one. Then |Cji,j | ≤ forb(n− 1, ~si,j). Let C|[n−1] = {c|[n−1] : c ∈ C} be the set of length

n− 1 prefixes of codewords in C. Then we have C|[n−1] ≤ forb(n− 1, ~s). We obtain

|C| ≤ |C|[n−1]|+
∑

0≤i<j≤k−1
|Cji,j |. (7)

In order to prove (4) using induction we have to give upper bound for the case n = 1, i.e, for forb(1, ~s).

In this case i and j both can be codewords in C iff si,j > 1. Let G~s = ((k), E) be the graph on vertex

set (k) be defined by {i, j} ∈ E ⇐⇒ si,j > 1. Then

forb(1, ~s) = ω(G~s). (8)

The right hand side of (4) is an upper bound for this clique number, establishing the upper bound

for n = 1. The bound (4) for all n follows from (7) and (8) using induction and the well-known

recurrence for the multinomial coefficients. �

4 Forbidden configurations

Another generalization or sharpening of Theorem 1 considers forbidden configurations. We say an

(i, j)-matrix is simple if there are no repeated rows. Given an (i, j)-matrix F , we say a matrix A

has F as a configuration denoted F ∈ A, if there is a submatrix of A which is a row and column

permutation of F . Let |A| denote the number of rows of matrix A. We define

forb(n, F ) = max{|A| : A is a simple (i,j)-matrix without configuration F of n columns}. (9)

A simple (i, j)-matrix A naturally corresponds to a set system FA taking the rows as characteristic

vectors of subsets of [n] using the correspondance i 7→ 0 and j 7→ 1. FA shatters an s-set iff A has

the 2s × s configuration of all distinct rows of size s.

The concept of forbidden configurations can be extended for matrices of entries from (k). A
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(k)-matrix is simple if there are no repeated rows. Given a (k)-matrix F , we say a matrix A has F as

a configuration denoted F ∈ A, if there is a submatrix of A which is a row and column permutation

of F . Theorem 2 gives upper bound on m for an m × n simple (k)-matrix that does not have the

ks × s configuration of all distinct rows of size s.

Definition (9) of forb(n, F ) can be applied to (k)-matrices, as well. However, if polynomial

upper bounds are desired, then more than one configurations must be forbidden simultaneously. Let

F = {F1, F2, . . . , Ft} be a collection of (not necessarily simple) (k)-matrices. Let

forb(n, k,F) = max{m : A is m× n simple (k)-matrix and has no configuration F ∈ F}.

In [7] it was proved that

forb(n, k,F) = Θ
(
n(k2)

)
for F =


 a b

b a

 : 0 ≤ a < b ≤ k − 1

 .

Theorem 6 can also be reformulated in this language. Let Ks(i, j) denote the 2s × s (i, j)-

matrix of all distinct rows of size s. Theorem 6 gives bounds for forb(n, k,F) where F ={
Ksi,j (i, j) : 0 ≤ i < j ≤ k − 1

}
. Here we prove a lower bound.

Proposition 7 Let F i,j : 0 ≤ i < j ≤ k−1 be simple (i, j)-matrices such that none of them contains

a constant column. Then

forb(n, k, {F i,j(i, j) : 0 ≤ i < j ≤ k − 1}) ≥
∏

0≤i<j≤k−1
forb

(
n(
k
2

) , F i,j) . (10)

Proof: We apply the product construction introduced in [3]. Let Ai,j be a simple (i, j)-matrix with

n

(k2)
columns and forb

(
n

(k2)
, F i,j

)
rows without configuration F i,j . Let

A = A0,1 ×A0,2 × . . .×Ak−2,k−1

be the matrix with n columns and |A0,1| · |A0,2| · . . . · |Ak−2,k−1| rows obtained by choosing one row

from each of the matrices and putting them side by side in every possible way. We claim that this

product matrix A avoids all configurations F i,j : 0 ≤ i < j ≤ k−1. Indeed, since each column of F i,j
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contains both symbols i and j, columns of a configuration F i,j should come from columns of Ai,j in

the product. Suppose F i,j has p columns. Since F i,j is simple and Ai,j does not have configuration

F i,j , for each p-tuple of columns of Ai,j there must be a row of F i,j that is missing on those columns.

This will be missing in the product matrix, as well. �

Lower bound (5) follows by taking F i,j = Ksi,j : 0 ≤ i < j ≤ k − 1 and applying Theorem 1.

5 Open problems

There are more questions than answers known in connection with (i, j)-shattering. The principal

problem is that Theorem 6 does not give sharp bounds, in contrast with Theorem 1 and Theorem 2.

We can give an exact bound only if most of the si,j ’s are ones.

Proposition 8 Assume that si,j = 1 if 0 ≤ i < j < k − 1. Then

forb(n, k,~s) = max∑k−2
i=0 ni=n

k−2∏
i=0

((
ni

si,k−1 − 1

)
+

(
ni

si,k−1 − 2

)
+ . . .+

(
ni
0

))

Proof: Suppose that A is a (k)-matrix without configurations Ksi,j (i, j). si,j = 1 means that

symbols i and j cannot occur in the same column of A. Thus columns of A can be partitioned into

k − 1 parts, part Ci containing only symbols i and k − 1 for 0 ≤ i < k − 1. The number of different

projections onto column set Ci is
(

ni
si,k−1−1

)
+
(

ni
si,k−1−2

)
+ . . .+

(
ni
0

)
for ni = |Ci| by Theorem 1. Thus

the maximum number of different rows of A is at most
∏k−2
i=0

((
ni

si,k−1−1
)

+
(

ni
si,k−1−2

)
+ . . .+

(
ni
0

))
.

On the other hand the product construction (10) provides a matching lower bound. �

It would be interesting to find exact bounds for other special cases, as well.

Another question whether containing no constant column or simplicity of the forbidden configura-

tions is necessary condition in Proposition 7. Also, Proposition 7 and Theorem 6 give asymptotically

tight bounds if forb(n, F i,j) = Θ(nsi,j−1) where si,j is the number of columns of F i,j . Does Proposi-

tion 7 give the correct order of magnitude of forb(n, k,F) for other lists F of forbidden configurations?

9



References

[1] N. Alon, On the density of sets of vectors, Discrete Math. 46 (1983), 199–202.

[2] R. P. Anstee, A forbidden configuration theorem of Alon, J. Combin. Th. A 47 (1988), 16–27.

[3] R. P. Anstee, J. R. Griggs, A. Sali, Small forbidden configurations, Graphs and Combinatorics

13 (1997), 97–118.

[4] R. P. Anstee, L. Rónyai and A. Sali, Shattering news, Graphs and Combin. 18 (2002), 59–73.

[5] P. Frankl, On the trace of finite sets, Journal of Combinatorial Theory, Ser. A 34 (1983), 41–45.

[6] P. Frankl and J. Pach, On disjointly representable sets, Combinatorica 4 (1984), 39–45.
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