
Journal of Combinatorial Theory, Series A 119 (2012) 1388–1390
Contents lists available at SciVerse ScienceDirect

Journal of Combinatorial Theory,
Series A

www.elsevier.com/locate/jcta

A new short proof of the EKR theorem ✩

Peter Frankl a, Zoltán Füredi b

a Shibuya-ku, Shibuya 3–12–25, Tokyo, Japan
b Dept. of Mathematics, University of Illinois, Urbana, IL 61801, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 August 2011
Available online 30 March 2012

Keywords:
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A family F is intersecting if F ∩ F ′ �= ∅ whenever F , F ′ ∈ F . Erdős,
Ko, and Rado (1961) [6] showed that

|F | �
(

n − 1

k − 1

)
(1)

holds for an intersecting family of k-subsets of [n] := {1,2,3, . . . ,n},
n � 2k. For n > 2k the only extremal family consists of all k-subsets
containing a fixed element. Here a new proof is presented by using
the Katona’s shadow theorem for t-intersecting families.

Published by Elsevier Inc.

1. Definitions: shadows, b-intersecting families

(X
k

)
denotes the family of k-element subsets of X . For a family of sets A its s-shadow ∂sA denotes

the family of s-subsets of its members ∂sA := {S: |S| = s, ∃A ∈A, S ⊆ A}. E.g., ∂1A= ⋃
A. Suppose

that A is a family of a-sets such that |A ∩ A′| � b � 0 for all A, A′ ∈A. Katona [10] showed that then

|A|� |∂a−bA|. (2)

We show that this inequality quickly implies the EKR theorem. This way it is even shorter than the
classical proof of Katona [11] using cyclic permutations, or the one found by Daykin [2] applying the
Kruskal–Katona theorem.

2. The proof

Let F ⊂ ([n]
k

)
be intersecting. Define a partition F0 := {F ∈ F : 1 /∈ F }, F1 := {F ∈ F : 1 ∈ F } and

define G1 := {F \ {1}: 1 ∈ F ∈ F}. Consider F0 as a family on [2,n]. Its complementary family G0 :=
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{[2,n] \ F : F ∈ F0} is (n − 1 − k)-uniform. The intersection property of F implies that any member
of G1 is not contained in any member of G0. We obtain

G1 ∩ ∂k−1G0 = ∅.

Since both G1 and ∂k−1G0 are subfamilies of
([2,n]

k−1

)
we obtain that |G1| + |∂k−1G0| �

(n−1
k−1

)
. The inter-

section size |G ∩ G ′| of G, G ′ ∈ G0 is at least n − 2k, since∣∣G ∩ G ′∣∣ = ∣∣([2,n] \ F
) ∩ ([2,n] \ F ′)∣∣ = (n − 1) − 2k + ∣∣F ∩ F ′∣∣.

Then (2) gives (with a = n − k − 1, b = n − 2k � 0) that |G0| � |∂k−1G0|. Summarizing

|F | = |F1| + |F0| = |G1| + |G0|� |G1| + |∂k−1G0| �
(

n − 1

k − 1

)
. � (3)

Extremal families. Equality holds in (2) if and only if a = b, or A = ∅, or A ≡ ([2a−b]
a

)
. Thus, for

n > 2k, equality in (3) implies either G0 = ∅ and 1 ∈ ⋂
F , or G0 ≡ ([2,n−1]

n−1−k

)
and n ∈ ⋂

F .

3. Two algebraic reformulations

Given two families of sets A and B, the inclusion matrix I(A,B) is a 0-1 matrix of dimension
|A| × |B|, its rows and columns are labeled by the members of A and B, respectively, the element
I A,B = 1 if and only if A ⊇ B . In the case F ⊆ 2[n] the matrix I(F ,

([n]
1

)
) is the usual incidence matrix

of F , and I(F ,
([n]

s

)
) is the generalized incidence matrix of order s.

Suppose that L is a set of non-negative integers, |L| = s, and for any two distinct members A, A′
of the family A one has |A ∩ A′| ∈ L. The Frankl, Ray-Chaudhuri, and Wilson [8,13] theorem states
that in the case of A ⊆ ([n]

k

)
, s � k the row vectors of the generalized incidence matrix I(A,

([n]
s

)
) are

linearly independent. Here the rows are taken as real vectors (in [13]) or as vectors over certain finite
fields (in [8]). Note that this statement generalizes (2) with L = {b,b + 1, . . . ,a − 1}, s = a − b.

Matrices and the EKR theorem. Instead of using (2) one can prove directly that the row vectors of
the inclusion matrix I(G0 ∪ G1,

([2,n]
k−1

)
) are linearly independent. For more details see [8,13].

Linearly independent polynomials. One can define homogeneous, multilinear polynomials p(F ,x) of
rank k − 1 with variables x2, . . . , xn

p(F ,x) =
{∑{xS : S ⊂ [2,n] \ F , |S| = k − 1} for 1 /∈ F ∈ F,

xF\{1} for 1 ∈ F ∈ F,

where xS := ∏
i∈S xi . To prove (1) one can show that these polynomials are linearly independent. For

more details see [9].

4. Remarks

The idea of considering the shadows of the complements (one of the main steps of Daykin’s
proof [2]) first appeared in Katona [10] (p. 334) in 1964. He applied a more advanced version of
his intersecting shadow theorem (2), namely an estimate using ∂a−b+1A.

Linear algebraic proofs are common in combinatorics, see the book [1]. For recent successes of
the method concerning intersecting families see Dinur and Friedgut [4,5]. There is a relatively short
proof of the EKR theorem in [9] using linearly independent polynomials. In fact, our proof here can
be considered as a greatly simplified version of that one.

Since the algebraic methods are frequently insensitive to the structure of the hypergraphs in ques-
tion it is much easier to give an upper bound

( n
k−1

)
which holds for all n and k (see [3]). To decrease

this formula to
(n−1

k−1

)
requires further insight. Our methods resemble to those of Parekh [12] and

Snevily [14] who succeeded to handle this for various related intersection problems.
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Generalized incidence matrices proved to be extremely useful, see, e.g., the ingenious proof of
Wilson [15] for another Frankl–Wilson theorem, namely the exact form of the classical Erdős–Ko–
Rado theorem concerning the maximum size of a k-uniform, t-intersecting family on n vertices. They
proved [7,15] that the maximum size is exactly

(n−t
k−t

)
if and only if n � (t + 1)(k − t + 1).
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