

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 38 (2011) 101-104

www.elsevier.com/locate/endm

Large B_d -free and union-free subfamilies

János Barát ¹

Department of Computer Science and Systems Technology University of Pannónia Veszprém, Hungary

Zoltán Füredi²

Department of Mathematics University of Illinois at Urbana-Champaign Urbana-Champaign, USA

Ida Kantor³

Institute for Theoretical Computer Science Charles University Prague, Czech Republic

Younjin Kim⁴

Department of Mathematics University of Illinois at Urbana-Champaign Urbana-Champaign, USA

Balázs Patkós⁵

Alfréd Rényi Institute of Mathematics Budapest, Hungary

Abstract

For a property Γ and a family of sets \mathcal{F} , let $f(\mathcal{F},\Gamma)$ be the size of the largest subfamily of \mathcal{F} having property Γ . For a positive integer m, let $f(m,\Gamma)$ be the minimum of $f(\mathcal{F},\Gamma)$ over all families of size m. A family \mathcal{F} is said to be B_d -free if it has no subfamily $\mathcal{F}' = \{F_I : I \subseteq [d]\}$ of 2^d distinct sets such that for every $I,J\subseteq [d]$, both $F_I\cup F_J=F_{I\cup J}$ and $F_I\cap F_J=F_{I\cap J}$ hold. A family \mathcal{F} is a-union free if $F_1\cup\ldots\cup F_a\neq F_{a+1}$ whenever F_1,\ldots,F_{a+1} are distinct sets in \mathcal{F} . We verify a conjecture of Erdős and Shelah that $f(m,B_2$ -free) $=\Theta(m^{2/3})$. We also obtain lower and upper bounds for $f(m,B_d$ -free) and f(m,a-union free).

Keywords: extremal set theory, union-free subfamilies, B_d -free subfamilies

1 Introduction, results

Moser proposed the following problem: Let A_1, A_2, \ldots, A_m be a collection of m sets. A subfamily $A_{i_1}, A_{i_2}, \ldots, A_{i_r}$ is union-free if $A_{i_{j_1}} \cup A_{i_{j_2}} \neq A_{i_{j_3}}$ for every triple of distinct sets $A_{j_1}, A_{j_2}, A_{j_3}$ with $1 \leq j_1 \leq r$, $1 \leq j_2 \leq r$, and $1 \leq j_3 \leq r$. Erdős and Komlós [2] considered the following problem of Moser: what is the size of the largest union-free subfamily A_{i_1}, \ldots, A_{i_r} ?

Put $f(m) = \min r$, where the minimum is taken over all families of m distinct sets. As mentioned in [2], Riddel pointed out that $f(m) > c\sqrt{m}$. Erdős and Komlós [2] showed $\sqrt{m} \le f(m) \le 2\sqrt{2}\sqrt{m}$. Kleitman proved $\sqrt{2m} - 1 < f(m)$; Erdős and Shelah [3] obtained

$$f(m) < 2\sqrt{m} + 1.$$

The latter two conjectured $f(m) = (2 + o(1))\sqrt{m}$.

We define $f(\mathcal{F}, \Gamma)$ as the size of the largest subfamily of \mathcal{F} having property Γ ,

$$f(\mathcal{F}, \Gamma) := \max\{|\mathcal{F}'| : \mathcal{F}' \subseteq \mathcal{F}, \mathcal{F}' \text{ has property } \Gamma\}.$$

¹ Research is supported by OTKA Grant PD-75837 and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Email: baratd@dcs.vein.hu

² Research supported in part by the Hungarian National Science Foundation OTKA, and by the National Science Foundation under grant NFS DMS 09-01276 ARRA. Email: z-furedi@illinois.edu

³ Email: ida@kam.mff.cuni.cz

⁴ Email: ykim36@illinois.edu

⁵ Research supported by Hungarian National Scientific Fund, grant number: OTKA K-69062 and PD-83586. Email:patkos@renyi.hu

In this context, $f(E(K_r^n), \mathcal{H}\text{-free})$ is the Turán number $\exp_r(n, \mathcal{H})$. Let $f(m, \Gamma) = \min\{f(\mathcal{F}, \Gamma) : |\mathcal{F}| = m\}$. Generalizing the union-free property, a family \mathcal{F} is a-union free if there are no distinct sets $F_1, F_2, \ldots, F_{a+1}$ satisfying $F_1 \cup F_2 \cup \ldots \cup F_a = F_{a+1}$.

Erdős and Shelah [3] also considered Γ to be the property that no four distinct sets satisfy $F_1 \cup F_2 = F_3$ and $F_1 \cap F_2 = F_4$. Such families are called B_2 -free. Erdős and Shelah [3] gave an example showing $f(m, B_2$ -free) $\leq (3/2)m^{2/3}$ and they also conjectured $f(m, B_2$ -free) $> c_2 m^{2/3}$.

A family \mathcal{B} of 2^d distinct sets is forming a Boolean algebra of dimension d if the sets can be indexed with the subsets of $[d] = \{1, 2, ..., d\}$ so that $B_I \cap B_J = B_{I \cap J}$ and $B_I \cup B_J = B_{I \cup J}$ hold for any $I, J \subseteq [d]$. If \mathcal{F} does not contain any subfamily forming a Boolean algebra of dimension d, then it is called B_d -free, or we say that \mathcal{F} avoids any Boolean algebra of dimension d. A result by Gunderson, Rödl, and Sidorenko [5] states that $f(2^{[n]}, B_d$ -free) = $\Theta(2^n/n^{2^{-d}})$; here the case d = 1 is the classical Sperner's theorem [6], the case d = 2 is due to Erdős and Kleitman [1]. We were able to prove the aforementioned conjecture by Erdős and Shelah in the following more general form.

Theorem 1.1 For any integer d, $d \ge 2$, there exist constants c_d , $c'_d > 0$, and exponents

$$e_d := \frac{2^d - \lceil \log_2(d+2) \rceil}{2^d - 1}, \quad e'_d := \frac{2^d - 2}{2^d - 1}$$

such that

$$c_d m^{e_d} < f(m, B_d\text{-free}) < c'_d m^{e'_d}$$
.

In particular,

(2)
$$(3 \cdot 2^{-7/3} + o(1))m^{2/3} \le f(m, B_2\text{-free}) \le \frac{3}{2}m^{2/3}.$$

The lower bound in Theorem 1.1 follows from a first moment method argument and a lemma bounding the number of B_d 's that a family of m sets can contain. The construction for the upper bound is a generalization of the construction by Erdős and Shelah. To calculate the bound that this construction gives we consider the following Turán-type problem.

Let $\mathcal{K}(a_1,\ldots,a_d)$ denote the complete, d-partite hypergraph with parts of sizes a_1,\ldots,a_d , i.e., $V(\mathcal{K}):=X_1\cup\ldots\cup X_d$ where X_1,\ldots,X_d are pairwise disjoint sets with $|X_i|=a_i$, and $E(\mathcal{K}):=\{E:|E|=d,\,|X_i\cap E|=1\text{ for all }i\in[d]\}$. For short we use $\mathcal{K}_d^{(k)}$ for $\mathcal{K}(k,k^2,\ldots,k^{2^{d-1}})$ and K_{d*2} for $\mathcal{K}(2,\ldots,2)$. The (generalized) Turán number of the d-uniform hypergraph \mathcal{H} with respect to the other hypergraph \mathcal{G} , denoted by $\operatorname{ex}(\mathcal{G},\mathcal{H})$, is the size of the largest

 \mathcal{H} -free subhypergraph of \mathcal{G} .

Theorem 1.2 For
$$k, d \ge 2$$
, $\exp(\mathcal{K}_d^{(k)}, K_{d*2}) < (2 - \frac{1}{2^{d-1}}) k^{2^d - 2}$.

We also considered a-union free families. We generalize the construction giving (1) and prove the following

Theorem 1.3 For any integer $a, a \ge 2$,

(3)
$$\sqrt{2m} - \frac{1}{2} \le f(m, a\text{-union free}) \le 4a + 4a^{1/4}\sqrt{m}.$$

Since we obtained our results, Fox, Lee, and Sudakov [4] verified the present authors' conjecture and proved a matching lower bound showing that f(m, a-union free) $\geq \max\{a, \frac{1}{3}\sqrt[4]{a}\sqrt{m}\}$. They also gave a sharp bound in (1), namely $f(m) = |\sqrt{4m+1}| - 1$.

References

- P. Erdős and D. Kleitman: On collections of subsets containing no 4-member Boolean algebra, Proc. Amer. Math. Soc. 28 (1971), 87-90.
- [2] P. Erdős and J. Komlós: On a problem of Moser, Combinatorial theory and its applications, I (Proc. Colloq., Balatonfüred, 1969), pp. 365–367. North-Holland, Amsterdam, 1970.
- [3] P. Erdős and S. Shelah: On problems of Moser and Hanson. Graph theory and applications (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1972; dedicated to the memory of J. W. T. Youngs), pp. 75–79. Lecture Notes in Math., Vol. 303, Springer, Berlin, 1972.
- [4] Jacob Fox, Choongbum Lee, and Benny Sudakov: Maximum union-free subfamilies, arXiv:1012.3127v2 [math.CO], Dec. 14-15, 2010.
- [5] D. Gunderson, V. Rödl, and A. Sidorenko: Extremal problems for sets forming boolean algebras and complete partite hypergraphs. J. Combin. Theory Ser. A 88 (1999), 342–367.
- [6] E. Sperner: Ein Satz ber Untermengen einer endlichen Menge. Math. Z. 27 (1928), 544-548.