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A family of sets F (and the corresponding family of 0–1 vectors) is called t-cancellative if,

for all distinct t + 2 members A1, . . . , At and B,C ∈ F ,

A1 ∪ · · · ∪ At ∪ B �= A1 ∪ · · · ∪ At ∪ C.

Let ct(n) be the size of the largest t-cancellative family on n elements, and let ct(n, r)

denote the largest r-uniform family. We improve the previous upper bounds, e.g., we show

c2(n) � 20.322n (for n > n0). Using an algebraic construction we show that c2(n, 2k) = Θ(nk)

for each k when n → ∞.

1. Introduction, definitions

There are many instances in coding theory when codewords must be restored from partial

information, such as defective data (error correcting codes) or some superposition of the

strings (these can lead to Sidon sets, sum-free sets, etc.). A family of sets F (and the

corresponding family of 0–1 vectors) is called cancellative if A and A ∪ B determine B

(in the case of A,B ∈ F and A �= A ∪ B). For a precise definition we require that for all

A,B, C ∈ F , A �= B, A �= C ,

A ∪ B = A ∪ C =⇒ B = C.

Let c(n) be the size of the largest cancellative family on n elements, and let c(n, r) denote

the size of the largest r-uniform family on n elements. This definition can be extended

(as in the abstract). In this paper we focus on 2-cancellative r-uniform hypergraphs, i.e.,

families of r-sets, and 2-cancellative codes , where there is no restriction on the sizes of the

hyperedges.
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Speaking about a hypergraph F = (V ,F), we frequently identify the vertex set V = V (F)

with the set of integers [n] := {1, 2, . . . , n}, or some elements of a q-element finite field Fq .

To abbreviate notation we say ‘hypergraph F ’ (or set system F), thus identifying F with

its edge set F . The degree, degF(x), of an element x ∈ V is the number of hyperedges

of F containing x. The hypergraph F is uniform if every edge has the same number

of elements; r-uniform means |F | = r for all F ∈ F . An r-uniform hypergraph (V ,F) is

called r-partite if there exists an r-partition of V , V = V1 ∪ · · · ∪ Vr , such that |F ∩ Vi| = 1

for all F ∈ F , i ∈ [r].

Let f(n, P1, P2, . . .) denote the maximum number of subsets which can be selected from

{1, . . . , n} satisfying all the properties P1, P2, . . . . With this notation ct(n) := f(n, t-CANC),

where t-CANC stands for t-cancellativeness.

A hypergraph is linear if |E ∩ F | � 1 holds for every pair of edges. An (n, r, 2)-packing

is a linear r-uniform hypergraph P on n vertices. Obviously, |P | �
(
n
2

)
/
(
r
2

)
. If equality

holds, then P is called an S(n, r, 2) Steiner system.

2. Cancellative and locally thin families

The asymptotics of the maximum size of a cancellative family was given by Tolhuizen [45]

(construction) and in [19] (upper bound), showing that there exists a γ > 0 such that

γ√
n
1.5n < c(n) < 1.5n.

The problem was proposed by Erdős and Katona [26], who conjectured that c(n) =

Θ(3n/3), which was disproved by an elegant construction by Shearer showing that c(3k) �
k3k−2, leading to c(n) > 1.46n for n > n0. Since a product of two cancellative families is

again cancellative, we have c(n + m) � c(n)c(m). Thus lim c(n)1/n exists. This is not known

for 2-cancellative hypergraphs, so Körner and Sinaimeri [32] introduced

t(4) := lim sup
n→∞

1

n
log2 c2(n)

and proved 0.11 < t(4) � 0.42. As usual all logarithms are to base two. The lower bound

follows from a standard probabilistic argument. We will show that t(4) � log2 5 − 2 =

0.3219 . . . .

Theorem 2.1. c2(n) < 9
√
n
(

5
4

)n
.

The proof is postponed to Section 6. Without loss of generality we can suppose that the

n-element underlying set of F is [n]. We associate to every subset A ∈ F its characteristic

binary vector, x := x(A) = (x1, . . . , xn), with xi = 1 if i ∈ A and xi = 0 otherwise. One

can immediately see that requiring the family F to be t-cancellative is equivalent to

its representation set of binary vectors, satisfying the following: for every (t + 2)-tuple

(x(1), x(2), . . . , x(t+2)) of distinct vectors in the set (considered in an arbitrary but fixed

order), there exist at least t + 1 different values of k ∈ [n], such that the corresponding

ordered (t + 2)-tuples (x(1)
k , x

(2)
k , . . . , x

(t+2)
k ) are all different, while for each of them we have

the sum x
(1)
k + x

(2)
k + · · · + x

(t+2)
k = 1. In hypergraph language, at least t + 1 of the sets
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among the t + 2 have degree-one vertices. This problem can be seen in a more general

context. We can require that for every ordered a-tuple of vectors in the set, there exist at

least b different columns, which sum up to 1. Such a family is called locally (a, b)-thin. Let

t(a, b) := lim sup
n→∞

1

n
log2 f(n, locally (a, b)-thin).

We then have t(a, 1) � t(a, 2) � · · · � t(a, a).

This problem was investigated by Alon, Fachini, Körner and Monti [2, 3, 17]. They

proved that t(4, 1) < 0.4561 . . . and t(a, 1) < 2/a for all even a, and

Ω

(
1

a

)
� t(a, 1) � O

(
log a

a

)
< 0.793

for all a. This is a notoriously hard problem. In particular, we do not even know whether

t(3, 1) < 1 (see Erdős and Szemerédi [16]).

Concerning one of the most interesting cases, the case a = 4, a locally (4, 1)-thin family

is also weakly union-free (A ∪ B = C ∪ D implies {A,B} = {C,D}). The best upper bound,

log2 f(n, weakly union-free) < (0.4998 · · · + o(1))n,

is due to Coppersmith and Shearer [8]. Nothing non-trivial is known about t(4, 2). Our

Theorem 2.1 implies t(4, 3) � log2 5 − 2 = 0.3219 . . . . One can find more similar problems

in the survey article by Körner [30] and in the more recent paper by Körner and

Monti [31].

3. Cancellative and cover-free families

A family F ⊆ 2[n] is g-cover-free if it is locally (g + 1, g + 1)-thin. In other words, for

arbitrary distinct members A0, A1, . . . , Ag ∈ F ,

A0 �⊆
g⋃

i=1

Ai.

Let Cg(n) (Cg(n, r)) be the maximum size of a g-cover-free n vertex code (r-uniform hyper-

graph, respectively). Clearly, Cg(n) � Cg−1(n) � · · · � C1(n) and Cg(n, r) � Cg−1(n, r) �
· · · � C2(n, r). Note that Ct+1(n) � ct(n) (and Ct+1(n, r) � ct(n, r)) since a t + 1-cover-free

family is t-cancellative as well.

Union-free and cover-free families were introduced by Kautz and Singleton [27]. They

studied binary codes with the property that the disjunctions (bitwise ORs) of distinct at

most g-tuples of codewords are all different. In information theory these codes are usually

called superimposed, and they have been investigated in several papers on multiple access

communication (see, e.g., Nguyen Quang A and Zeisel [34], D’yachkov and Rykov [10]

and Johnson [25]). The same problem has been posed – in different terms – by Erdős,

Frankl and Füredi [12, 13] in combinatorics, by Sós [44] in combinatorial number theory,

and by Hwang and Sós [24] in group testing. For recent generalizations see, e.g., Alon

and Asodi [1], and De Bonis and Vaccaro [9]. D’yachkov and Rykov [10] proved that
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there are positive constants α1 and α2 such that

α1
1

g2
<

logCg(n)

n
< α2

log g

g2
(3.1)

for every g and n > n0(g). One can find short proofs of this upper bound in [22] and in

Ruszinkó [36].

Using induction on t we extend Theorem 2.1 for all t � 2.

Theorem 3.1. There exists an absolute constant α > 0 such that

ct(n) < αn(t−1)/2

(
t + 3

t + 2

)n

holds for all n, t � 2.

The proof is postponed to Section 7. This might give a decent upper bound for small t

but the true order of magnitude of ct(n) for large t is much smaller.

Theorem 3.2. There exist positive constants β1 and β2 and a bound n0(t) depending only

on t such that the following bounds hold for all n > n0(t), t � 2:

β1
1

t2
<

log ct(n)

n
< β2

log t

t2
. (3.2)

Proof. The lower bound follows from (3.1) since Ct+1(n) � ct(n). It can be proved by a

standard random choice. For the upper bound we observe that

ct(n) � 1 +

⌊
t

2

⌋
+ C�t/2
(n). (3.3)

Indeed, if F ⊂ 2[n], where |F | exceeds the right-hand side, then one can find h + 1 distinct

members A0, A1, . . . , Ah ∈ F , where h = �t/2
, such that A0 ⊂ A1 ∪ · · · ∪ Ah. Then, the size

of the family F ′ := F \ {A0, A1, . . . , Ah} still exceeds Ch(n), so there is another set of

distinct members B0, . . . , Bh ∈ F ′ with B0 ⊂ B1 ∪ · · · ∪ Bh. Taking another set D ∈ F ′ if t

is odd, we have selected t + 2 distinct members of F such that the union of t of them,

namely A1, . . . , Ah and B1, . . . , Bh and possibly D, covers the other two, namely A0 and B0.

Hence F cannot be 2-cancellative.

Finally, the upper bound (3.2) is implied by (3.3) and (3.1).

4. Three-uniform cancellative families and sparse hypergraphs

The rest of our results concern r-uniform cancellative families. We are especially interested

in the case when n is large with respect to r.

Frankl and the present author [20] determined asymptotically the maximum size of an

r-uniform g-cover-free family by showing that there exists a positive constant γ := γ(r, t)

such that

Cg(n, r) = (γ + o(1))n�r/g�, (4.1)
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as r and g are fixed and n tends to infinity. A way to determine γ(r, t) was also described.

This and the r-uniform version of (3.3),

Ct+1(n, r) � ct(n, r) � 1 +

⌊
t

2

⌋
+ C�t/2
(n, r),

imply

(γ(r, t + 1) − o(1))nδ1 � ct(n, r) � (γ(r, �t/2
) + o(1))nδ2 , (4.2)

where the exponents are δ1 := �r/(t + 1)� and δ2 := �r/�t/2
�. The next theorem shows

that to obtain the true asymptotic for ct(n, r), like the one in (4.1) for Cg(n, r), is probably

a very difficult problem even in the case r = 3.

Brown, Erdős and Sós [11, 7, 6] introduced the function fr(n, v, e) to denote the

maximum number of edges in an r-uniform hypergraph on n vertices which does not

contain e edges spanned by v vertices. Such hypergraphs are called G(v, e)-sparse (more

precisely Gr(v, e)-sparse). They showed that fr(n, e(r − k) + k, e) = Θ(nk) for every 2 � k <

r and e � 2. The upper bound (e − 1)
(
n
k

)
is easy: no k-set can be contained in e hyperedges.

If we forbid e edges spanned by one more vertex then the problem becomes much more

difficult. Brown, Erdős and Sós conjectured that

fr(n, e(r − k) + k + 1, e) = o(nk).

The (6, 3)-theorem of Ruzsa and Szemerédi [37] deals with the case (e, k, r) = (3, 2, 3), i.e.,

when no six points contain three triples. They showed that there exists an α > 0 such that

n2e−α
√

log n = n2−o(1) < f3(n, 6, 3) = o(n2). (4.3)

Since a G(6, 3)-sparse system is G(7, 4)-sparse, we have

f3(n, 6, 3) � f3(n, 7, 4), (4.4)

and Erdős conjectured that f3(n, 7, 4) = o(n2).

Theorem 4.1.

f3(n, 7, 4) − 2

5
n � c2(n, 3) � 9

2
f3(n, 7, 4) + n. (4.5)

The proof is presented in Section 8. The (6, 3) theorem was extended by Erdős, Frankl

and Rödl [14] for arbitrary fixed r � 3,

n2−o(1) < fr(n, 3(r − 2) + 3, 3) = o(n2), (4.6)

and then by Alon and Shapira [4], nk−o(1) < fr(n, 3(r − k) + k + 1, 3) = o(nk). Even the case

k = 2, fr(n, e(r − 2) + 3, e) = o(n2), is still open for general e. Nearly tight upper bounds

were established by Sárközy and Selkow [38, 39]: fr(n, e(r − k) + k + �log2 e
, e) = o(nk)

for r > k � 2 and e � 3, and fr(n, 4(r − k) + k + 1, 4) = o(nk) for the case e = 4, r > k � 3.
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5. An upper bound for uniform families

Theorem 5.1. For every k and n we have

c2(n, 2k) �
(
n
k

)
1
2

(
2k
k

) .

Proof of Theorem 5.1. Suppose that F is a 2k-uniform, 2-cancellative family with the

underlying set [n]. We may suppose that |F | > 3, so F is 1-cancellative too.

Define a graph G = (V , E) with vertex set V :=
(
[n]
k

)
, i.e., the family of k-subsets of

[n]. A pair A,B ∈ V forms an edge of G if A ∪ B ∈ F . Such a pair necessarily contains

disjoint sets. Since every F ∈ F has 1
2

(
2k
k

)
partitions into k-sets, we have

|E(G)| =
1

2

(
2k

k

)
|F |.

We claim that |E(G)| � |V | =
(
n
k

)
.

Consider four adjacent edges in G on five (not necessarily distinct) vertices V1, . . . , V5 ∈
V (G) (in fact these are k-sets of [n]) such that {Vi, Vi+1} ∈ E(G) (1 � i � 4) and Vi �= Vi+2.

If these four edges determine four distinct sets Vi ∪ Vi+1 ∈ F , then the identity

(V1 ∪ V2) ∪ (V4 ∪ V5) ∪ (V2 ∪ V3) = (V1 ∪ V2) ∪ (V4 ∪ V5) ∪ (V3 ∪ V4)

yields a contradiction, since F is 2-cancellative. By definition we have (V1 ∪ V2) �= (V2 ∪
V3) �= (V3 ∪ V4) �= (V4 ∪ V5). We also have V1 ∪ V2 �= V3 ∪ V4 (and by symmetry V2 ∪ V3 �=
V4 ∪ V5). Indeed, V3 ⊂ (V1 ∪ V2), V2 ∩ V3 = ∅ leads to V1 = V3, which we have excluded.

The last case to investigate is when V1 ∪ V2 = V4 ∪ V5, and the four edges determine

exactly three sets. This leads to the contradiction

(V1 ∪ V2) ∪ (V2 ∪ V3) = (V1 ∪ V2) ∪ V3 = (V4 ∪ V5) ∪ V3

= (V4 ∪ V5) ∪ (V3 ∪ V4) = (V1 ∪ V2) ∪ (V3 ∪ V4).

We conclude that G does not have such a sequence of four edges. Therefore G contains

no cycles, implying |E(G)| < |V |.

To estimate c2(n, 2k + 1), let us consider a (2k + 1)-uniform family on [n] and join the

element (n + 1) to each hyperedge. If the original family is t-cancellative, then so is the

extended family. We can apply Theorem 5.1 to get

c2(n, 2k + 1) �
(
n+1
k+1

)
1
2

(
2k+2
k+1

) . (5.1)

6. The non-uniform case, the proof of Theorem 2.1

Suppose that F is a 2-cancellative family of maximal size on the underlying set [n]. Split

F according to the sizes of its edges: Fr := {F ∈ F : |F | = r}.
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The sequence
√

2k − 1
(
2k
k

)
4−k is monotone increasing for k = 1, 2, 3 . . . , so we obtain

that
(
2k
k

)−1 � 2
√

2k − 1 × 4−k for all k � 1. Using this upper bound in Theorem 5.1, we

obtain

c2(n, 2k) �
(
n
k

)
1
2

(
2k
k

) �
(
n

k

)
4−k4

√
2k − 1 < 4

√
n ×

(
n

k

)
4−k.

The same inequality and (5.1) give

c2(n, 2k + 1) �
(
n+1
k+1

)
1
2

(
2k+2
k+1

) �
(
n + 1

k + 1

)
4−k−14

√
2k + 1 � 4

√
n ×

(
n + 1

k + 1

)
4−k−1.

Finally,

c2(n) = |F | =
∑
r

|Fr| �
∑
r

c2(n, r) =

(∑
k�0

c2(n, 2k)

)
+

(∑
k�0

c2(n, 2k + 1)

)

<

(∑
k�0

4
√
n ×

(
n

k

)
4−k

)
+

(∑
k�0

4
√
n ×

(
n + 1

k + 1

)
4−k−1

)

= 4
√
n

((
1 +

1

4

)n

+

(
1 +

1

4

)n+1)
= 9

√
n

(
5

4

)n

.

7. The case of t-cancellative codes, the proof of Theorem 3.1

We will define a monotone sequence 0 < α2 � α3 � · · · αt � · · · , which is bounded above

(by α), such that we have

ct(n) < αtn
(t−1)/2

(
t + 3

t + 2

)n

(7.1)

for every n, t � 2. By Theorem 2.1 this holds for t = 2 with α2 := 9. Suppose that t � 3

and (7.1) holds for t − 1. We use the upper bound

ct(n, r) � ct−1(n − r). (7.2)

Indeed, if F is an r-uniform t-cancellative family on [n], then for any F0 ∈ F the family

{F \ F0 : F ∈ F , F �= F0} is (t − 1)-cancellative. Use the inequality(
r(t + 2)

r

)
>

1

3
√
r

(
(t + 2)t+2

(t + 1)t+1

)r

,

which holds for all integers r � 1, t � 0, and substitute n = r(t + 2) into (7.2). We obtain

ct(r(t + 2), r)(
r(t+2)

r

) < αt−1n
(t−2)/2

(
t + 2

t + 1

)r(t+1)

× 3
√
r
(t + 1)r(t+1)

(t + 2)r(t+2)
=

3αt−1√
t + 2

n(t−1)/2(t + 2)−r.

For n � m we have ct(n, r)
(
n
r

)−1 � ct(m, r)
(
m
r

)−1
. We obtain that the right-hand side is an

upper bound for ct(n, r)/
(
n
r

)
for every n � r(t + 2). For any given n and t this gives

∑
r�n/(t+2)

ct(n, r) �
∑ (

n

r

)
3αt−1√
t + 2

n(t−1)/2(t + 2)−r � 3αt−1√
t + 2

n(t−1)/2

(
1 +

1

t + 2

)n

.
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We estimate the case n < r(t + 2) using (7.2) again:

∑
n/(t+2)<r�n

ct(n, r) �
∑

r>n/(t+2)

ct−1(n − r) <
∑

n−r<(t+1)n/(t+2)

αt−1n
(t−2)/2

(
t + 2

t + 1

)n−r

< αt−1n
(t−2)/2(t + 2)

(
t + 2

t + 1

)n(t+1)/(t+2)

.

Here ( t+2
t+1

)(t+1)/(t+2) < (t + 3)/(t + 2), so the sum of the above two displayed formulas gives

ct(n) � αt−1

(
3√
t + 2

+
t + 2√

n

)
n(t−1)/2

(
t + 3

t + 2

)n

.

The rest is a little calculation (e.g., we may suppose that n > 2(t + 2)2, otherwise our

upper bound (7.1) for ct(n) exceeds the same upper bound for ct−1(n)).

8. Three-partite hypergraphs

In this section we prove Theorem 4.1 on 3-uniform 2-cancellative families.

Lemma 8.1 (Erdős and Kleitman [15]). Let F be an r-uniform hypergraph. Then there

exists an r-partite F∗ ⊂ F with |F∗| � r!
rr

|F |.

Proof of Theorem 4.1. Suppose that H is a 3-uniform G(7, 4)-sparse family with vertex

set [n]. We claim that there exists a subfamily H′′ ⊂ H such that

|H′′| � |H| − 2

5
n and H′′ is linear.

First, note that if the hyperedge F ∈ H has two other edges F1, F2 with |F ∩ Fi| = 2, then

these three edges form a separate connected component of H on 5 vertices. Let H′ be the

hypergraph obtained from H after deleting two edges from each such 5-vertex component.

If F1 ∈ H′ and there exists an F2 ∈ H′ with |F1 ∩ F2| = 2 then this F2 is unique. Moreover,

if |F1 ∩ F2| = 2 and |F3 ∩ F4| = 2 hold for four distinct sets, then F1 ∪ F2 is disjoint to

F3 ∪ F4. Remove an edge from each such pair to obtain H′′, which is a linear hypergraph

by definition, and we have left out at most (2/5)n edges of H.

Second, observe that a linear, 3-uniform, G(7, 4)-sparse family H′′ is 2-cancellative.

Indeed, if X := C \ (A ∪ B) = D \ (A ∪ B) for four distinct members {A,B, C, D} ⊂ H′′,

then X ⊂ C ∩ D, so |X| � 1, and |A ∪ B| � 6, so they form a G(7, 4) family, a contradiction.

If we take |H| as large as possible, then we complete the proof of the first inequality of

(4.5) as follows:

c2(n, 3) � |H′′| � |H| − 2

5
n = f3(n, 7, 4) − 2

5
n.

Next, let F be a 3-uniform, 2-cancellative family on n vertices. We claim that there

exists a subfamily F ′ ⊂ F such that

|F ′| � |F | − n and F ′ is linear.

Indeed, leave out a hyperedge from F if it has a vertex of degree one. Repeat this until

we get F ′ ⊂ F for which every degree is either 0 or at least 2. We claim that F ′ is
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linear (in the case of |F ′| � 4). Suppose not, that is, |F1 ∩ F2| = 2, F1, F2 ∈ F ′, xi is the

unique element of Fi \ (F1 ∩ F2) when i = 1, 2. By our degree condition there exist Ai ∈ F ′,

xi ∈ Ai, Ai �= F1 and Ai �= F2. This leads to the contradiction A1 ∪ A2 ∪ F1 = A1 ∪ A2 ∪ F2.

(The case |F ′| = 3 is left to the reader.)

Apply Lemma 8.1 to F ′ to obtain a 3-partite F∗ of size |F∗| � (2/9)|F ′|. We claim

it is G(7, 4)-sparse, because every 3-partite, 2-cancellative, linear family F∗ is G(7, 4)-

sparse. Indeed, take any four distinct members {A,B, C, D} ⊂ F∗. If A ∩ B = ∅ then

C \ (A ∪ B) �= ∅ (by linearity) and it is not equal to D \ (A ∪ B) (by 2-cancellativeness),

so the union of the four of them has at least 8 vertices. Otherwise, pairwise they have

a one-element intersection. If there is a degree-three vertex, say A ∩ B ∩ C = {x}, then

linearity and 3-partiteness imply that D is not covered by A ∪ B ∪ C , so again their union

has eight vertices (at least). If these four triples meet pairwise but their maximum degree

is two, then C ∪ D covers (A ∪ B) \ (A ∩ B), and they have a single common vertex outside

A ∪ B, yielding the contradiction A ∪ B ∪ C = A ∪ B ∪ D.

Finally, if we take |F | as large as possible, then we complete the proof of the second

inequality of (4.5) as follows:

f3(n, 7, 4) � |F∗| � 2

9
|F ′| � 2

9
(|F | − n) =

2

9
(c2(n, 3) − n).

Define the hypergraphs G6 and G7 as follows on 6 and 7 vertices:

E(G6) := {123, 156, 426, 453},
E(G7) := {123, 456, 726, 753}.

Note that both are three-partite and the 3-partition of their vertices is unique.

Proposition 8.2. Suppose that F is a three-partite, linear hypergraph. It is 2-cancellative if

and only if it avoids G6 and G7. It is G(7, 4)-sparse if and only if it avoids G6 and G7.

9. A construction by induced packings

According to the upper bounds in Theorem 5.1 we have

c2(n, 2) � n, c2(n, 3) � 1

6
n(n + 1), c2(n, 4) � 1

6
n(n − 1).

Obviously, c2(n, 2) = n − 1 for n > 3. The second inequality, although it is close to the

true order of magnitude, is not sharp if Erdős’s conjecture is true: see (4.3), (4.4) and

(4.5). Any 4-uniform Steiner system S(n, 4, 2) is 2-cancellative, yielding the lower bound

c2(n, 4) � 1
12
n(n − 1) − O(n) for all n.

Theorem 9.1. c2(n, 4) = 1
6
n2 − o(n2).

Theorem 9.2. c2(n, 2k) � nk

(2k)k
− o(nk).

The proof of Theorem 9.2 is postponed to Section 10.3. For the construction giving

Theorem 9.1 we use induced packings of graphs.
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A set of graphs P := {G1 = (V1, E1), G2 = (V2, E2) . . .} is called a packing if they are

edge-disjoint subgraphs of G = (V , E) (by definition Vi ⊂ V for each i). The packing P
is called an induced packing if G restricted to Vi is exactly Gi (for all i). The induced

packing P is called an almost disjoint induced packing into the graph G if |Vi ∩ Vj | � 2

(for all i �= j). It follows that whenever F = Vi ∩ Vj , |F | = 2, then F is not an edge of

G. In other words, any two induced graphs G[Vi] and G[Vj] are either vertex-disjoint, or

share one vertex, or meet in a non-edge. For example, if V is an n-element set, n is even,

V = A1 ∪ A2 ∪ · · · ∪ An/2 where each |Ai| = 2, and G is the complete graph on V minus

the n/2 edges of the perfect matching {A1, A2, . . .}, then E(G) can be decomposed into

n(n − 2)/8 almost disjoint, induced four-cycles, namely those induced by Ai ∪ Aj .

Let H be a graph of e edges and let i(n,H) denote the maximum number of almost

disjoint induced copies of H that can be packed into any n-vertex graph. It was proved

by Frankl and the present author that

i(n,H) =
1

e(H)

(
n

2

)
− o(n2).

In other words we have the following.

Lemma 9.3 ([20]). For any fixed graph H with e edges, one can delete o(n2) edges of the

graph Kn such that the rest of the edges, the graph Ln = Ln(H), can be decomposed into

(1 − o(1))
(
n
2

)
/e almost disjoint induced copies of H .

Proof of Theorem 9.1. The graph Hk , for k � 3, is defined as a complete graph Kk and(
k
3

)
vertices of degree three, each of those connected to a different triple of V (Kk). We

have that Hk has k +
(
k
3

)
vertices,

(
k
2

)
+ 3

(
k
3

)
edges, and it contains

(
k
3

)
special K4s, those

having a vertex of degree three in Hk . Take any almost disjoint packing of copies of Hk ,

P := {H1
k , H

2
k , . . .}, and define a 4-uniform family F(P) as the vertex sets of the special

K4s. Obviously |F(P)| =
(
k
3

)
|P |.

We claim that F(P) is a 2-cancellative family.

Suppose, on the contrary, that there are four distinct members A,B, C, D ∈ F with

A ∪ B ∪ C = A ∪ B ∪ D. Note that |F ∩ F ′| � 2 for F, F ′ ∈ F . Furthermore, in the case of

equality F and F ′ are generated by the same Hi
k .

Consider first the case when C and D are generated by the same copy of Hi
k , that is,

C = {c, x1, x2, x3} and D = {d, y1, y2, y3}, where c and d are distinct degree-three vertices

of Hi
k . The element c is covered by A ∪ B, say c ∈ A. By definition, the pairs cx1, cx2,

cx3 are only covered by C among the members of F , and since there is no edge (of

any H
j
k ) from c to D \ C , those pairs are not covered by any member of F ∈ F . Hence

A ∩ (C ∪ D) = {c}. Similarly, B ∩ (C ∪ D) = {d}. Hence (A ∪ B) ∩ (C ∪ D) = {c, d}. Since

the symmetric difference CΔD is contained in A ∪ B, we obtain that it is {c, d}. This leads

to the contradiction |C ∩ D| = 3.

Now consider the other case, that i �= j and C = {c, x1, x2, x3} is generated by Hi
k ,

where c is a degree-three vertex of Hi
k , and D = {d, y1, y2, y3} is generated by H

j
k , where

d is a degree-three vertex of H
j
k . Since they come from different copies of Hk , we have

|C ∩ D| � 1. This implies that either A or B meets C in two vertices, say |A ∩ C| = 2.

Then A is generated by Hi
k as C is, say A = {a, x2, x3, x4}. It follows that |A ∩ D| � 1, so
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|B ∩ D| = 2, and D is generated by H
j
k as well. The pair {x1, c} = C \ A is covered by

B ∪ D, thus it is covered by V (Hj
k ). This leads to the contradiction that V (Hi

k) ∩ V (Hj
k )

contains an edge of Hi
k . This completes the proof that F is 2-cancellative.

For given n, taking a large induced packing of Hks Lemma 9.3 implies that

c2(n, 4) � i(n,Hk)

(
k

3

)
� (1 − o(1))

(
k
3

)
(
k
2

)
+ 3

(
k
3

)(
n

2

)
(9.1)

when k is fixed and n → ∞. Let π4 := lim infn→∞{c2(n, 4)/
(
n
2

)
}. The lower bound (9.1) gives

that

π4 � 1(
k
2

)
/
(
k
3

)
+ 3

.

Since this holds for each k we obtain π4 � 1/3. Finally, π4 � 1/3 was proved in

Theorem 5.1, completing the proof of π4 = 1/3.

10. The lower bound for the 2k-uniform case

10.1. Non-vanishing polynomials

For a set of variables X = {x1, . . . , xs} and 0 � i � s, the symmetric polynomial σi(X)

is defined as
∑

I⊂X,|I |=i

∏
α∈I xα, σ0(X) = 1. For convenience, σi(X) is defined to be 0

for |X| < i (and for i < 0). Suppose that X1, X2, . . . , X� are disjoint sets of variables,

|Xj | = tj , 0 < tj < k,
∑

j(k − tj) = k. The entries of a row of the k × k matrix M(X1, . . . , X�)

consists of a block with the symmetric polynomials {σ0(Xj), σ1(Xj), . . . , σtj (Xj)} and zeros

otherwise. The rows are distinct, so these blocks are shifted in all possible k − tj ways,

that is,

M(X1, . . . , X�) :=⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 σ1(X1) σ2(X1) · · · · · · σt1 (X1) 0 · · · 0

0 1 σ1(X1) σ2(X1) · · · · · · σt1 (X1) 0
...

...
...

. . .
. . .

. . . 0

0 0 0 1 σ1(X1) σ2(X1) · · · · · · σt1 (X1)

1 σ1(X2) σ2(X2) · · · · · · σt2 (X2) 0 · · · 0

0
. . .

. . .
. . .

. . . 0

0

0 0 0 1 σ1(X2) σ2(X2) · · · · · · σt2 (X2)
...

...
...

1 σ1(X�) σ2(X�) · · · · · · σt� (X�) · · · 0
...

. . .
. . .

. . .
. . . 0

0 · · · 1 σ1(X�) σ2(X�) · · · σt� (X�)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Fact 10.1. The polynomial detM(X1, . . . , X�) of
∑

|Xj | variables is non-vanishing.

Proof. Over any field we can substitute only ones and zeros such that the matrix M

becomes a lower triangular matrix, having only ones in the main diagonal and zeros

above. Namely, let x = 0 for each x ∈ X1. In the second block of M, in rows (k − t1) + 1

to (k − t1) + (k − t2) only σi(X2) stands in the main diagonal, where i = k − t1. Define

k − t1 variables of X2 to be 1, the rest 0.

In general, in the jth block, in rows (k − t1) + · · · + (k − tj−1) + 1 to
∑

1�s�j(k − ts) we

define the variables of Xj in such a way that (k − t1) + · · · + (k − tj−1) of them are ones

and the rest are zeros. This can be done, since (k − t1) + · · · + (k − tj−1) � tj .

One can define the matrix in a more general setting when the blocks consist of

rows of the form (σm+1(Xj), σm+2(Xj), . . . , σm+k(Xj)). We can obtain, for example, that the

determinant of the k × k matrix M with Mi,j := σm+i+j−2(X) is non-vanishing if m � 0,

|X| � m + k − 1.

Let q > 1 be a power of a prime, F := Fq , the finite field of size q. For a polynomial

p(x1, . . . , xs) over this field the zero set Z(p) is defined by

Z(p) = {(x1, . . . , xs) ∈ Fs
q : p(x1, . . . , xs) = 0}.

The following fact is well known [33] and easy to prove by induction on s + h.

Fact 10.2. If the degree of p(x1, . . . , xs) is h > 0, then

|Z(p(x1, . . . , xs))| � hqs−1.

10.2. A lemma on independent polynomials

Let k be a positive integer, let P := P<k[F, x] be the ring of polynomials of degree at

most k − 1:

P<k := {a0 + a1x + · · · + ak−1x
k−1 : ai ∈ F}.

The number of such polynomials is qk and they form a linear space of dimension k over F.

A set of polynomials p1(x), . . . , p�(x) ∈ P is called (k1, . . . , k�)-independent , where k1, . . . , k�
are positive integers if

f1(x)p1(x) + · · · + f�(x)p�(x) ≡ 0,

and deg(fi) < ki for all i imply that each fi(x) is the 0 polynomial. Equivalently, all the

q
∑

ki polynomials of the form
∑

fipi (with deg(fi) < ki) are distinct. The case when every

ki = 1 corresponds to the usual linear independence. To stay in the space P<k we also

suppose that deg(pi) + ki < k. Then necessarily
∑

i ki � k.

For Z ⊂ F there is a unique polynomial with leading coefficient 1 and roots Z , namely

pZ (x) :=
∏
z∈Z

(x − z).

Suppose that � � 2, k1, . . . , k� are positive integers with k1 + · · · + k� = k, and let x1, . . . ,

x(�−1)k be a sequence of elements of Fq . Define the (multi)sets Xi of size k − ki as intervals
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of this sequence, X1 := {xs : 1 � s � k − k1}, in general

Xj :=

{
xs :

∑
i<j

(k − ki) < s �
∑
i�j

(k − ki)

}
.

Lemma 10.3. The polynomials pX1
(x), . . . , pX�

(x) are (k1, . . . , k�)-independent for all but at

most (
�k

2

)
q(�−1)k−1

sequences.

Proof. There are at most
(
(�−1)k

2

)
q(�−1)k−1 sequences with repeated entries. Let B be

the set of sequences x1, . . . , x(�−1)k with distinct elements such that pX1
(x), . . . , pX�

(x) are

(k1, . . . , k�)-dependent. Next we give an upper bound for |B|.
The polynomials p1, . . . , p� are (k1, . . . , k�)-dependent if and only if the set of polynomials

{xipj(x) : 0 � j < kj} are linearly dependent. These k polynomials are linearly dependent

if and only if their coefficient matrix is singular. The coefficients of pXj
are the values of

the symmetric polynomials σs(−Xj), so the coefficient matrix is exactly M(−X1, . . . ,−X�)

defined in the previous subsection. According to Fact 10.1 its determinant is a non-zero

polynomial f(x1, . . . , x(�−1)k). We have B ⊆ Z(f).

Each entry of the k × k matrix M is a symmetric polynomial of degree at most k − 1,

and thus the degree of the polynomial f is at most k(k − 1). Then Fact 10.2 gives an upper

bound k(k − 1)q(�−1)k−1 for |Z(f)|. So the number of sequences x1, . . . , x(�−1)k such that

pX1
(x), . . . , pX�

(x) are (k1, . . . , k�)-dependent is at most (k(k − 1) + ( (�−1)k)
2

)q(�−1)k−1.

Corollary 10.4. For every k there exists a q0(k) such that, if q > q0(k), then there exists a

2k-element set S ⊂ Fq such that the polynomials

pX(x), pY (x), pW (x) are (k − |X|, k − |Y |, k − |W |)-independent

for every partition of S = X ∪ Y ∪ W , |X| + |Y | + |W | = 2k, 1 � |X|, |Y |, |W | < k.

In fact, applying the previous lemma with � = 3, we can see that almost all 2k-sets, all

but at most O(q2k−1) of them, have this total independence property.

10.3. The algebraic construction yielding Theorem 9.2

Let q be the largest prime power not exceeding n/(2k). Since there are no large gaps

among primes we have q > n/(2k) − O(n5/8). We also suppose that q > q0(k), as used in

Corollary 10.4. We are going to define a 2-cancellative, 2k-uniform family F of size qk .

Take a set S ⊂ Fq of size 2k satisfying the conclusion of Corollary 10.4. Our hypergraph

F := F(q, S) consists of the graphs of the polynomials P<k restricted to S . V (F) :=

S × F = {(s, y) : s ∈ S, y ∈ F}, every p ∈ P defines a set F(p) := {(s, p(s)) : s ∈ S} and let

F := {F(p) : p ∈ P}.
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To show that F is 2-cancellative suppose, on the contrary, that A,B, C and D are four

distinct members of F with A ∪ B ∪ C = A ∪ B ∪ D. There are four distinct polynomials

a(x), b(x), c(x) and d(x) ∈ P generating these sets, A = F(a), B = F(b), etc.

Let W ⊂ S be the set of coordinates where C and D meet, W := {s ∈ S : c(s) = d(s)}.
Let X := {x ∈ S \ W : c(x) = a(x)}, and let Y := S \ (X ∪ W ). For x ∈ X (x, d(x)) is not

covered by C or A, so it must belong to B, b(x) = d(x). For y ∈ Y we have c(y) �= d(y),

c(y) �= a(y), so (y, c(y)) must be in B, c(y) = b(y). Considering the same y ∈ Y , the element

(y, d(y)) is not covered by C or B so it must belong to A, a(y) = d(y). Let us summarize:

there exists a partition of S = W ∪ X ∪ Y such that

c(w) = d(w) for w ∈ W, (10.1)

c(x) �= d(x) for x ∈ X, but c(x) = a(x) and d(x) = b(x), (10.2)

c(y) �= d(y) for y ∈ Y , but d(y) = a(y) and c(y) = b(y). (10.3)

Since c and d are distinct polynomials of degree at most k − 1, we have |W | < k. Similarly

|X|, |Y | < k. These also imply that |X|, |Y |, |W | � 2 (and thus k � 3).

By (10.1), c − d is divisible by pW , and there exists a polynomial c1(x) ∈ P such that

c = d + c1pW where c1 ∈ P , and deg(c1) < k − |W |.

The first halves of (10.2) and (10.3) similarly imply that

a = c + a1pX where a1 ∈ P , and deg(a1) < k − |X|,
d = a + a2pY where a2 ∈ P , and deg(a2) < k − |Y |.

Adding these three equations we obtain

0 = c1pW + a1pX + a2pY .

Then the independence of pX , pY and pW implies c1 = a1 = a2 = 0, a contradiction.

One might think that if we use the second halves of (10.2) and (10.3) then we have more

constraints, and maybe we do not really need independence and Corollary 10.4. In fact,

independence is essential. The second halves only imply that b = d − a1pX = c + a2pY , so

F can have many non-2-cancellative fourtuples if S is not chosen properly.

11. A remark on 1-cancellative uniform families

An r-partite hypergraph is cancellative if it contains no three distinct edges with A ∪ B =

A ∪ C . Considering the complete r-partite hypergraph on n vertices with almost equal

parts, we get

c(n, r) �
⌊
n

r

⌋
×

⌊
n + 1

r

⌋
× · · · ×

⌊
n + r − 1

r

⌋
=: p(n, r). (11.1)

The right-hand side is exactly nr/rr when r divides n. An old result of Mantel on

the maximum size of triangle-free graphs gives c(n, 2) = p(n, 2) = �n2/4
. Katona [26]

conjectured and Bollobás [5] proved that c(n, 3) = p(n, 3). Bollobás also conjectured that

equality holds in (11.1) for all n � r � 4 as well. This was established for 2r � n � r in [19].
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Sidorenko [41] proved Bollobás’s conjecture for r = 4. (There is a recent refinement of

this by Pikhurko [35].) However, Shearer [40] gave a counterexample. His result implies

that there exist an ε > 0 and n0(r) such that c(n, 3) > (1 + ε)r(n/r)r for n > n0(r), r � 11.

The cases 5 � r � 10 are still undecided.

It was observed in [19] that c(n, r) = 2n−r for 2r � n � r. Moreover, if F is a cancellative

family of r-sets from an n-set and n � 2r, then

|F | � 2r(
2r
r

)(
n

r

)
.

Here we show an almost matching lower bound.

Theorem 11.1. For every n � r � 2,

c(n, r) >
γ0

2r

(
n

r

)
,

where γ0 :=
∏

k�1
2k−1
2k

= 0.2887 . . .

This result immediately follows from a construction of Tolhuizen [45], although he was

not interested in r-uniform hypergraphs and wrote that ‘the rate of a cancellative code is
log 3
log 2

− 1 = 0.5849 . . . .’ His publication is not even reviewed in MathSciNet, so we briefly

describe his work.

Proof (Tolhuizen [45]). If M is a random m × m matrix with entries from the two-

element field F2 = {0, 1}, then

Prob(M is non-singular) =
2m − 1

2m
× 2m − 2

2m
× · · · × 2m − 2m−2

2m
× 2m − 2m−1

2m
> γ0.

Considering (n − r) × n random matrices we obtain an (n − r) × n matrix A (over F2)

containing at least γ0

(
n

n−r

)
non-singular (n − r) × (n − r) submatrices. Let F be the set of

those r-sets F ⊂ [n] where the columns of A labelled by the elements of [n] \ F have full

rank. We have |F | > γ0

(
n
r

)
.

Let S be the (n − r)-dimensional subspace generated by the rows of A in Fn
2 and let

R be a subspace of dimension r such that S + R is the whole space. Decompose the

n-dimensional space into 2r disjoint affine subspaces:

Fn
2 =

⋃
v∈R

(S + v).

For any set F ⊂ [n], let F̂ be a 0–1 vector with support F . For each v ∈ R let

F(v) := {F : F ∈ F , F̂ ∈ (S + v)}.

We have partitioned F into 2r pairwise disjoint r-uniform families. Given any F ∈ F , the

vectors of (S + v) truncated to ([n] \ F) are all distinct. Hence each F(v) is a cancellative

family.
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There are Θ(r2) non-isomorphic hypergraphs consisting of three edges {A,B, C} with

A ∪ B = A ∪ C . The Turán number of the class of r-uniform hypergraphs H := {H1,H2, . . .}
is denoted by ex(n,H). It is the size of the largest r-graph on n vertices avoiding every H ∈
H as a subgraph. The sequence ex(n,H)

(
n
r

)−1
is monotone decreasing; its limit is denoted

by π(H). When we consider the determination of c(n, r) as a Turán-type problem, then

there is a score of forbidden hypergraphs. Take only one of them, namely G
3
r defined by

three sets on 2r − 1 elements [r] := {1, 2, . . . , r}, [r − 1] ∪ {r + 1} and {r, r + 1, . . . , 2r − 1}.
It was proved in [21] that((

r

2

)
e1+1/(r−1)

)−1

� π(G3
r ) �

(
e

(
r − 1

2

))−1

.

Concerning another case, for an even r when Tr is a blown-up triangle, its three edges are

X ∪ Y , Y ∪ Z , and Z ∪ X where |X| = |Y | = |Z | = r/2. Frankl [18] and Sidorenko [42,

43] showed independently that π(Tr) = 1/2. For more on this see [29].

12. Conclusion, problems

One of our main results is to give a better upper bound for the size of 2-cancellative

codes. We conjecture that the upper bounds of Theorems 2.1 and 3.2 are much closer to

the truth than the simple probabilistic lower bounds we have. This is probably also true

for the uniform case (see (5.1)).

Conjecture 12.1. nk+1−o(1) < c2(n, 2k + 1) = o(nk+1) as n → ∞ and k is fixed.

Call a code F t∗-cancellative if

A1 ∪ · · · ∪ At ∪ B = A1 ∪ · · · ∪ At ∪ C =⇒ B = C or {B,C} ⊂ {Ai, . . . , At}

for every t + 2 member sequence from F , and let c∗
t (n) be the maximum size of such a

code F ⊂ 2[n]. Obviously Ct(n) � c∗
t (n) � Ct+1(n) � ct(n). One wonders if equality holds in

some of these, and what other relations these functions can have.

Using the Erdős, Frankl and Rödl [14] estimate (see (4.6)), we have

n2e−αr
√

log n � fr(n, 3(r − 2) + 3, 3) � cr−1(n, r).

The general upper bound (4.2) for ct(n, r) here only gives O(n3), but in this case, leaving

out those r-sets having an own pair, one can easily prove

cr−1(n, r) �
(
n

2

)
.

For more of these types of problems, see, e.g., [23].

In Section 10.3 the 2k-partite hypergraph F (with partite sets V1, . . . , V2k) has an

interesting property. For every three members A,B, C there exists a class Vi such that

A ∩ Vi, B ∩ Vi and C ∩ Vi are distinct. It is natural to ask what other small substructures

can be avoided this way.
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The proof of Theorem 3.1 concerning ct(n) presented in Section 7 actually gives a

slightly better upper bound. A little more calculation yields an explicit bound κt for t � 3

such that

lim sup
n

(ct(n))
1/n � κt <

t + 3

t + 2
.

Many problems remain open.
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