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Abstract

The least area α2 of a convex set in the plane large enough to contain

a congruent copy of every closed curve of length two lies between 0.385 and

0.491, as has been known for more than 38 years. We improve these bounds

by showing that 0.386 < α2 < 0.449.

1. Covers in the plane

Let G be a transitive group of motions of the plane and F a family of figures in

the plane (by motion we mean congruence). A set X is a G-cover for F if for each F

in F there is a motion µ in G so that µ(F ) ⊂ X. For given families of figures, interest

lies in covers, usually but not always convex, that are small in some specific sense

(measure, perimeter, width, etc.). Problems of determining such covers, sometimes

of prescribed shapes, are called worm problems for the family. Many such problems

can be found in the literature, but few have been solved.

For example, Besicovitch and Rado [3] and Kinney [11] have constructed

closed plane sets of measure zero containing a circle of every radius. Besicovitch
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c© Akadémiai Kiadó, Budapest Springer, Dordrecht



2 Z. FÜREDI and J. E. WETZEL

[1], [2], constructed a closed plane set of measure zero that is a translation cover

for the family of all unit line segments, and Ward [22], Davies [6], and Marstrand

[14] showed more generally that there is such a cover for the family of unions of all

finite sets of lines. In contrast, Marstrand [15] showed that every set large enough to

contain a congruent copy of every unit arc must have positive measure. Concerning

triangular covers of triangles, see Post [19], Kovalev [12], and the present authors

[9]. One of the nicest results is due to K. Bezdek and Connelly [4], who showed that

each plane convex body of constant width one is a translation cover for the family

of all plane closed curves of length two. The smallest area of these is attained by

the Reuleaux triangle, whose area is about 0.705.

Our interest is in bounds for the least area α2 of convex covers for the family

C of all closed curves in the plane of length at most two, i.e., in bounds for α2 =

inf{area(X): X is convex and contains a congruent copy of every closed curve of

length at most two}. The value of α2 is not known, but the bounds

0.385 31 < α2 < 0.490 95 (1)

have been known for more than 35 years ([5], [20]). In [9] we mentioned in passing

that we can improve these bounds a little to 0.386 67 < α2 < 0.470 16. Here we

improve both of these bounds.

Theorem 1. The value of α2 lies in the interval

0.386 778 < α2 < 0.448 504. (2)

We give three increasing lower bounds for α2 (see (4), (5) and (6)) and five

decreasing upper bounds (see (7), (8), (14), (15), and (18)). We conclude with an

overview for the analogous question in R
d.

2. Lower bounds

We need the following theorem of Fáry and Rédei [7]: Let K and L be centrally

symmetric convex bodies having the same center, and let v be a fixed vector. Then

vol(conv(K ∪ (L + v))) ≥ vol(conv(K ∪ L)). (3)

Any convex cover for the family C of all closed curves in the plane of length

two must contain a circle C0 of radius 1/π and a line segment I of unit length.

It follows from (3) that the arrangement of the circle and the line segment whose

convex hull has least area is the one with the midpoint of I at the center of C0

(Figure 1a). The previous best lower bound is the area of this hull:

α2 ≥ 1

π2

(
π +

√
π2 − 4 − 2 arccos

2

π

)
> 0.385 318. (4)
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1
u

v

a. Good b. Better c. Best

Figure 1. Lower bounds

One can do better by replacing the unit line segment by a u × v rectangle

with u+ v = 1, 0 ≤ v ≤ 1
2 (Figure 1b). Again the hull of least area occurs when the

rectangle and the disk have the same center, and the area of their convex hull is

f(v) =
1

2
v(1 − v) +

1

π

√
2v2 − 2v − 4

π2
+ 1+

+
1

π
− 2

π2

(
arctan

v

1 − v
+ arccos

2

π
√

2v2 − 2v + 1

)
.

The function f(v) on the interval [0, 1
2 ] has a unique maximum greater than 0.386 675

at the point v ≈ 0.052 337 2. Hence

α2 ≥ f(0.052 337 2) > 0.386 675. (5)

A further slight improvement can be achieved as follows. Let γ1 be the

curvilinear rectangle of perimeter two formed by two parallel line segments of equal

length and two symmetrically located circular arcs (Figure 1c). The convex hull

of least area spanned by the disk C0 and this curvilinear rectangle γ1 occurs when

they are concentric.

A

B

C

O

D

P

E

Figure 2. Slight improvement

Figure 2 shows one quarter of this convex hull, with P and r the center and

radius of the circular end, respectively. Let x = |OP | and θ = 6 APB. Then

|EB| = x + r cos θ and rθ + |EB| = 1
2 , and it follows that

r =
1
2 − x

θ + cos θ
.
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Then
s= |OB| =

√
x2 + 2xr cos θ + r2,

α = 6 AOB = arctan
r sin θ

x + r cos θ
,

β = 6 BOC = arccos
1

πs
,

ϕ = 6 COD = 1/2π − α − β.

Consequently,
area(ABO) = 1/2rx sin θ + 1/2r2θ,

area(BCO) =
|BC|
2π

=
1

2π

√
s2 − 1

π2
,

area(COD) =
ϕ

2π2
.

Finally, define

f(x, θ) = 4 (area(ABO) + area(BCO) + area(COD)) .

Then

α2 ≥ f(x, θ) > f(0.335, 0.212) > 0.386 778 (6)

(we omit the computational details). Figure 1c shows the region when x = 0.335

and θ = 0.212, about 12.1◦.

One can easily see that if γ in C is centrally symmetric about the center of C0,

then the area of conv(γ ∪ C0) is maximized when γ is the curvilinear rectangle γ1.

3. Upper bounds

We turn next to a series of five decreasing upper bounds.

3.1. The smallest rectangular cover

It follows from Cauchy’s formula that a closed convex curve γ of length ` has

parallel support lines `/π apart (see [5], [20]); and for ` = 2 this implies that an

l × w rectangular region R = conv{A, B, C, D} with

|AB|= |CD| = l =
1

π

√
π2 − 4 ≈ 0.771 178,

|BC| = |DA| = w =
2

π
≈ 0.636 620

(Figure 3) is a cover for the family of all closed convex curves of length two, by

[20, Lemma 1]. Consequently it is a cover for C, because the boundary curve of the
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convex hull of a closed curve is no longer than the curve.

D

A B

C

w

γ

l

Figure 3. The smallest rectangular cover.

No smaller rectangle can be a cover for C because both a circle of diameter 2/π and

a line segment of unit length must be accommodated. The area of this smallest

rectangular cover R,

lw =
2

π2

√
π2 − 4 < 0.490 948, (7)

is the known upper bound (1).

3.2. A covering pentagon

A curve γ that lies in R and gets close to each of the four corners of R must

have length approaching 2l + 2w ≈ 2.815, which suggests that some region near

at least one corner of R is not really needed. Indeed, suppose an isosceles right

triangular region of leg 0.2 is marked in each corner of R.

l

w

0.2

Figure 4. A pentagonal cover

The four 45◦ lines of these isosceles triangles determine a square whose diagonal

is l + w − 0.4, about 1.007 798, and it follows that every path that meets each of

these four corner triangles has length greater than 2.015. Thus every closed curve of

length two must miss the interior of at least one of these four corner triangles, and by

a suitable motion we may arrange for the curve to miss the lower left corner triangle.
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Consequently the pentagonal region formed by removing this corner triangle (shaded

in Figure 4) is a cover for C with area lw − 0.02 < 0.470 948 . So

α2 < 0.470 948. (8)

This is already better than the upper bound in (1).

3.3. Eight-point curves in a u × v rectangle R

We examine more closely how closed curves can fit in a clipped rectangle, and

we begin by setting some notation.

Notation. We write |XY | for the distance between the points X and Y ,

[X, Y ] for the closed segment with endpoints X and Y , (X, Y ) for the open segment

with endpoints X and Y excluded, [X, Y ) for the segment with endpoint X included

and endpoint Y excluded, [X, Y 〉 for the ray with endpoint X (included) through

the point Y , and 〈XY 〉 for the line determined by X and Y . And we write ∂(S) for

the boundary of a plane set S.

Fix positive reals u and v. Suppose that R = conv{A, B, C, D} is a u × v

rectangle, with |AB| = |CD| = u and |BC| = |DA| = v. Take reals s and t

with 0 < s < 1
2u, and 0 < t < 1

2v, and mark congruent right triangles with

legs s, t symmetrically placed at each corner of R. Let E, F , G, H, I, J , K, L

be the points on the sides of R so that |AE| = |BF | = |CI| = |DJ | = s and

|DK| = |AL| = |BG| = |CH| = t (Figure 5a). Then right triangles AEL, BFG,

CIH, and DJK are congruent and disjoint. Let O = conv{E, F, G, H, I, J, K, L} be

the closed central octagonal region remaining when the corner triangles are removed

from R.

A B

t
E

L

J

F

G

HK

I

s

C

O

D

v

u

A B

t

s

D C

A B

CD

g

f

e

c

b

a

h

d

E

L

J

F

G

HK

I

a. The octagonal region O b. An eight-point curve c. A minimal curve

Figure 5. Eight-point curves
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Definition. A closed curve γ in the rectangle R with marked corner right

triangles is an eight-point curve if it meets each side, [A, B], [B, C], [C, D], [D, A],

of R and each hypotenuse, [L, E], [F, G], [H, I], and [J, K], of the corner triangles.

Let F be the family of all eight-point curves, and let Fmin be the subfamily of F
formed by the eight-point curves whose length is as small as possible.

Note that an eight-point curve is not assumed to be convex. A typical (albeit

convex) eight-point curve is shown in Figure 5b.

Lemma 2. The family Fmin is not empty, and every minimal eight-point curve

is a convex polygon having at most eight vertices.

Proof. If an eight-point curve is not convex, then the boundary curve of its

convex hull is a shorter eight-point curve. If γ is a minimal eight-point curve, then

there are points a, b, c, d, e, f, g, and h of γ so that a ∈ [A, B], b ∈ [F, G], c ∈ [B, C],

d ∈ [H, I], e ∈ [C, D], f ∈ [J, K], g ∈ [D, A], and h ∈ [L, E]. The polygon γ′ having

these points in their order on γ as vertices is no longer than γ, and γ′′ = ∂ (conv(γ′))

is convex and still shorter than γ, unless γ′′ = γ′. Finally, compactness implies that

among all curves of the form γ′′ there is at least one whose length is as small as

possible, so Fmin 6= ∅.

Note that at this point we know only that the n-gon γ has vertices a, c, e, g

in [A, B], [B, C], [C, D], and [D, A], respectively, but we cannot assume that they

lie in the medial subintervals [E, F ], [G, H], [I, J ], and [K, L] or that they fall in

order along γ. Compare, for example, the eight-point curves in Figures 5b and 5c.

Before investigating the properties of minimal eight-point curves we recall two

useful elementary geometric facts.

Lemma 3. a. (The shortest path property) In the notation of Figure 6a, let

S and T be the orthogonal projections on a line m of points P and Q (not both on

m). The case S = T being trivial, we assume that S 6= T . Let R be the point on

[S, T ] so that

|SR| =
|SP |

|SP | + |TQ| |ST |.

Then

|PX| + |XQ| ≥ |PR| + |RQ| (9)

for every point X on m, with equality precisely when X = R. Moreover, as X moves

on 〈S, T 〉 in the sense of the vector
−→
ST , the sum f(X) = |PX| + |XQ| is strictly

decreasing on the ray 〈S, R] and strictly increasing on the ray [R, T 〉. Further, apart
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from degenerate cases, angles 6 SRP and 6 QRT are equal.

P

Q

RS TX

P'

m

a

b
c

d

p q

a. Shortest path b. Bimedian inequality

Figure 6. Two elementary geometric facts

b. (The bimedian inequality) If a, b, c, d are arbitrary points and p and q are

the midpoints of the segments [a, b] and [c, d] (Figure 6b), then

|pq| ≤ |ad| + |bc|
2

, (10)

with equality precisely when [b, c] and [d, a] are parallel and have opposite orientation.

Lemma 4. Every minimal eight-point curve γ lies entirely in O, and it has

the form

∂(conv{a, b, c, d, e, f, g, h}),

with a ∈ [E, F ], b ∈ [F, G], c ∈ [G, H], d ∈ [H, I], e ∈ [I, J ], f ∈ [J, K], g ∈ [K, L],

and h ∈ [L, E]. (Some of these eight vertices might coincide.)

Proof. Suppose γ ∈ Fmin. Then, according to Lemma 2, there are points

a, b, c, d, e, f, g, h with a ∈ [A, B], b ∈ [F, G], c ∈ [B, C], d ∈ [H, I], e ∈ [C, D],

f ∈ [J, K], g ∈ [D, A], and h ∈ [L, E] so that γ = ∂(conv{a, b, c, d, e, f, g, h}). We

show that γ does not meet the interior of any corner right triangle.

Suppose to the contrary that γ enters the triangular region ∆ = conv(AEL)\
[EL]. Then there are two distinct points E1 and L1 in the order L-L1-E1-E on

[L, E] so that the closed convex region conv(γ) meets [L, E] in the segment [L1, E1].

We suppose L 6= L1 and E1 6= E; the cases with L = L1 or E = E1 are similar and

simpler.

Incorporating L1 and E1 as vertices into γ, we see that γ is divided into two

disjoint parts, a subarc γ1 (missing its endpoints L1 and E1) lying in ∆ and an open

subarc γ2 with endpoints E1 and L1 that lies across [E, L] in R \ ∆. There are

three possibilities.

Case 1. If γ1 meets neither [A, E) nor [A, L), then replacing γ1 by the line

segment [L1, E1] produces a curve in F that is strictly shorter than γ (Figure 7a),
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a contradiction.
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a. γ1 interior b. γ1 meets one leg c. γ1 meets both legs

Figure 7. The three possibilities

Case 2. If γ1 meets [A, L) but not (A, E), then g (in [A, L)) is the only vertex

of γ that lies in ∆, and γ1 = (L1, g] ∪ [g, E1) (Figure 7b). According to Lemma 3a,

the shortest curve connecting L1 and E1 and touching (A, L) is γ′
1 = (L1L2]∪[L2E1).

Then the eight-point curve γ′
1 ∪ γ2 cannot be shorter than γ, and it follows that

γ1 = γ′
1 and g = L2. The point L2 is the intersection of [A, L) with the line through

L1 and the reflected image E∗
1 of E1 across 〈AB〉. But then

6 DL2L1 = 6 AL2E1 > 6 ALE = 6 DKJ,

so that the rays [gL1〉 (= [L2L1〉) and [KJ〉 are disjoint. Hence γ does not meet

[KJ ], a contradiction.

A similar argument shows that γ cannot meet [A, E) and miss (A, L).

Case 3. The remaining possibility is that γ1 meets both (A, L), and (A, E).

Then g and a are the only vertices of V in ∆, g ∈ (A, L), a ∈ (A, E) and γ1 =

(L1, g] ∪ [g, a] ∪ [a, E1) (Figure 7c). The line that joins the point E∗
1 symmetric to

E1 in the side [A, E] and the point L∗
1 symmetric to L1 in the side [A, L] meets

those sides at points E2 and L2, respectively, and the path

γ′
1 = (E1E2] ∪ [E2L2] ∪ [L2L1)

is the shortest path that connects E1 to L1 and touches both legs (A, E) and (A, L).

Then the eight-point curve γ′
1 ∪ γ2 cannot be shorter then γ, and it follows that

γ1 = γ′
1 and a = E2, g = L2. Hence the rays [a, E1〉 (= [E2, E1〉) and [g, L1〉

(= [L2, L1〉) are parallel, and either [a, E〉 does not meet [F, G] or [g, L1〉 does not

meet [K, J ]. Thus γ cannot be an eight-point curve, a contradiction.

This completes the proof that the curve γ lies in the octagonal region O.
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Lemma 5. There is a minimal eight-point curve γ2 that is an octagon with

vertices a, b, c, g, e, f, g, h that passes through the midpoint of each of the four

sides of the rectangle R, a, c, e, g (Figure 5c), it is inscribed in O, and it is doubly

symmetric, with axis 〈ae〉 and 〈cg〉.

Proof. Let γ = [abcdefgha] be a curve in Fmin (Figure 8). Its reflection

γ′ = [a′b′c′d′e′f ′g′h′a′] in the vertical axis of symmetry of R also lies in Fmin. Note

the labeling of the vertices of γ′. According to Lemma 3b, the length of the bimedian

that connects the sides [a′, a] and [b′, b] of the quadrilateral aa′b′b is 1
2 (|ab| + |a′b′|)

at most, and similarly all around the figure.

a

b

c

d

e

f

g

h
a'

b'

c'

d'

e'

g'

h'

f ' γ
γ

1

Figure 8. The symmetrization of γ

Summing, we see that the closed curve γ1 formed by the successive bimedians

(dashed in Figure 8) is a minimal eight-point curve, and it passes through the

midpoints of the sides [A, B] and [C, D] of the u × v rectangle R. Now reflect γ1

through the horizontal axis of symmetry of R and apply the same argument. The

resulting eight-point curve (dashed in Figure 8) is minimal and passes through the

midpoints of the top and bottom sides and the midpoints of the left and right sides

of R, and it is symmetric about the perpendicular bisectors of the sides of R.

3.4. Pentagonal cover for eight-point curves in R

We have established that each eight-point curve of minimal length in the u×v

rectangle R lies in the central octahedron O. We have shown further that every

eight-point curve γ in R has length

`(γ) ≥ 4f
(u

2
,
v

2
, s, t

)
, (11)

where f( 1
2u, 1

2v, s, t) is the length of each of the four congruent shortest polygonal

paths that join the midpoints of two adjacent sides of R and touch the hypotenuse
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of the corresponding corner right triangle. Consider, for example, the shortest path

[ahg] pictured in Figure 5c, which joins the midpoint a of [AB] to the midpoint g

of [DA], and meets the hypotenuse [EL] at the point h for which |ah| + |hg| is as

small as possible. The determination of f(u
2 , v

2 , s, t) is elementary; there are just

three possibilities: the minimal path meets the segment [EL] at the endpoint E,

at the endpoint L, or at an inner point of [EL] , as described in Lemma 3a.

Hence we have the following corollary:

Corollary 6. Let R be a u × v rectangle, and let s and t be given, with

0 ≤ s < u/2 and 0 ≤ t < v/2. Let P be the pentagon obtained by removing an

s × t corner triangle from the u × v rectangle R (for example, in Figure 5a let

P = conv{B, C, D, L, E}). If γ is an eight-point curve in R whose length is at most

4f(u
2 , v

2 , s, t), then P contains a congruent copy of γ.

Proof. Every closed curve in R of length at most 4f(u/2, v/2, s, t) must miss

the interior of at least one of the four corner triangles, and by a suitable motion we

may arrange for it to miss the lower left corner triangle.

We pause to establish a formula for f(u/2, v/2, s, s) we shall need in the next

section. In Figure 9, a and g are the midpoints of the sides of lengths u and v,

respectively, g∗ is symmetric to g in the hypotenuse 〈EL〉, and 〈ag∗〉 meets the line

〈EL〉 at h.

A

g

a

E

Lg*
h

ss

T

Figure 9 The case s = t

Then h ∈ [EL], |Tg∗| = s, and because |TA| = |g∗L| = |Lg| = 1/2v − s and

|Ta| = |TA| + |Aa| = 1/2v − s + 1/2u, it follows that

f
(1

2
u,

1

2
v, s, s

)
= |ah| + |hg| = |ag∗| =

√(1

2
(u + v) − s

)2

+ s2. (12)

An analogous but more complicated formula for the case s 6= t can be proved in a

similar manner.
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3.5. A smaller pentagonal cover

In Section 3.2 we described a pentagon with area about 0.471 that is a cover

for the family C of all closed curves of length two. Here we use the results of the

previous section to produce a smaller pentagonal cover for this family. Throughout

we are content to take t = s.

Place the best rectangle R (Section 3.1) in the coordinate plane with A at

the origin and C at (l, w) . Suppose 0 ≤ s < 1
2w, and take E and L on [AB] and

[AD], respectively, with |AE| = |AL| = s. For x with 0 ≤ x ≤ s, let u = l − x,

and take Au on [AB] and Du on [DC] with |AAu| = |DDu| = x. Suppose [AuDu]

meets [EL] at Lu, let Ru = conv{Au, B, C, Du} and Pu = conv{B, C, Du, Lu, E}
(See Figure 10.)

γ

D

A

B

CDu

u

R

Au

x

0

u

(     )l,w

E

L
g

a

D

A

B

CD

A

x

0

(     )l,w

E

L
g

a

u

Pu

Lu

u

u

w

a. Ru ⊂ R b. Pu ⊂ P

Figure 10. R and P

Then Ru is (l − x) × w, |AuE| = |AuLu| = s − x, and Pu = Pu(l − x, w, s −
x, s − x); observe that s − x < min{ 1

2w, 1
2 (l − x)}. Formula (12) asserts that

f
(1

2
u,

1

2
w, s, s

)
=

√(1

2
(l + w − x) − (s − x)

)2

+ (s − x)2, (13)

and it follows from Corollary 6 that every eight-point curve γ of at most this length

fits in Pu.

Now take

s0 = l + w − 1/2
√

5 ≈ 0.289 764,

and note that s0 < 1
2w (the reason for this choice of s will appear shortly), We

claim that P = conv{B, C, D, L, E} is a cover for the family C of all closed curves

of length two.

Theorem 7. The pentagon P with |AE| = |AL| = s0 is a cover for the family

C of all closed curves of length two.
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Proof. Let γ be a convex curve in C. As in Section 3.1, γ has two parallel

support lines at distance w apart. Place γ in R touching the top, bottom, and

right edge of R, and suppose the support line of γ parallel to and not containing

[BC] meets [AB] at Au and [CD] at Du (Figure 10a). Let x = |AAu| = |DDu|,
u = l − x, and Ru and Pu as above. Since Ru surely fits in P when u < l − s0, we

suppose from now on that l − s0 ≤ u ≤ l, i.e., 0 ≤ x ≤ s0. The intersection of P

and Ru is the pentagonal region Pu = P(u, w, s, s), with s = s0 − x. According to

Corollary 6 and equation (13), Pu is a cover for every closed curve of length two in

Ru when 4f(1/2u, 1/2w, s0, s0) ≥ 2, i.e., when

(1

2
(l + w − x) − (s0 − x)

)2

+ (s0 − x)2 ≥ 1

4
.

It is a calculus exercise to show that the minimum of this parabolic arc on the

interval [0, s0] is 1/4, and it occurs at

x =
1

π
(2 +

√
π2 − 4) − 3

5

√
5 ≈ 0.066 157.

It follows as claimed that P is a cover for the family C of all closed curves of

length two.

Computing the area of P, we find the upper bound

α2 < area(P) = lw − 1/2(l + w − 1/2
√

5)2 < 0.448 966. (14)

3.6. A slight improvement

With a similar argument but a more involved calculation one can see that the

pentagon P(l, w, s, t) is a cover for C if s = 0.284 044 and t = 0.296 300. Hence

α2 ≤ lw − 1

2
(0.284 044) (0.296 300) < 0.448 866, (15)

which is a slight improvement over (14).

3.7. A covering hexagon having one elliptic arc boundary

Position the l × w rectangle R as in Section 3.5, and for 1 − w ≤ u ≤ l let

x = l − u. (Observe that the u × v rectangle contains the convex curve γ, hence

has perimeter at least 2.) Take Ru and Pu as pictured in Figure 10. We seek the

locus of the corner Lu of Pu when s = s(x) is chosen (less than min{ 1
2u, 1

2v}) so as

to make 4f( 1
2u, 1

2w, s, s) = 2.

The point Lu has coordinates (x, y) with y = s(x) − x, and we see from

equation (13) that the locus of Lu lies on the ellipse ε whose equation is
√(1

2
(l + w − x) − y

)2

+ y2 =
1

2
, (16)
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i.e.,

x2 + 4xy + 8y2 − 2(l + w)x − 4(l + w)y + 2lw = 0, (17)

as pictured in part in Figure 11.

A

g

D C
D

L
T

B

ε

U E

u

u

Pu

Figure 11. The ellipse ε

The center of ε is the point (l + w, 0), marked in the figure. The ellipse ε meets the

x-axis at the points (l + w ± 1, 0) and the y-axis at the midpoint g of [AD] and at

the point (0, 1
2 l), which lies between g and D. Observe that for 0 ≤ x ≤ l + w − 1

(17) has two solutions y1(x) < y2(x), but {(x, y2(x)) | 0 ≤ x ≤ l + w − 1} lies above

the chord [(0, 1
2 l), (l + w − 1, 1

2 )] of ε, so Lu = (x, y1(x)).

It is a calculus exercise to show that the line m with slope −1 that is tangent

to the lower half of ε touches it at the point T with coordinates (l+w− 3
5

√
5, 1

10

√
5)

and has the equation

x + y = l + w − 1/2
√

5.

This line cuts from R an isosceles right triangle with legs

l + w − 1/2
√

5 = s0,

leaving the region P described in Section 3.5. Note that the foot U of the perpen-

dicular from T to the x-axis has coordinates (l + w − 3
5

√
5, 0), and

|UE| = l + w − 1

2

√
5 −

(
l + w − 3

5

√
5
)

=
1

10

√
5.

Finally, let

Q =
⋃

1−w ≤ u ≤ l

Pu.

The region Q is a curvilinear hexagonal region bounded by five line segments and

the arc ĝT of the ellipse ε. Clearly Q is a cover for C, because each curve γ in C lies
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in Ru for some u and consequently fits in the corresponding Pu.

A

g

E

D

B

C

T
Q

U

g

E

Figure 12. The regions Q and R \Q

The area of the region R \Q is given by

area(R \Q) =

∫ l+w− 3

5

√
5

0

y(x)dx + area (UET )

> 0.017 443 078 + 0.025 = 0.042 443 078.

Consequently

α2 ≤ lw − area (R \Q) < 0.448 504. (18)

Some numerical experimentation suggests that improvements when s 6= t are

tiny.

4. Higher dimensions

Little is known about the analogous problem in E
d for d ≥ 3. Write αd for

the least content (volume) of a convex cover for all closed curves of length two in

E
d. Then we have the following quite weak bounds:

2d

d!
√

dd(d + 1)d+1
≤ αd ≤ 1

dd/2
. (19)

The lower bound is the largest volume of a d-simplex in R
d that has a Hamiltonian

cycle of length 2, a consequence of a recent inequality of Fiedler [8, Th. 2.5, p. 67].

The upper bound follows from the fact that every closed curve of length two in R
d

lies in some hypercube of edge 1/
√

d (see [20, Theorem 3]).

For d = 3, 4, and 5, for example, (19) gives the feeble bounds

0.016 037 < α3 < 0.193 450,

0.000 745 < α4 < 0.062 500,

0.000 022 < α5 < 0.017 886.
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4.1. Leo Moser’s worm problem

Let Cd
1 the family of continuous rectifiable arcs of unit length in E

d. A region

C is a cover if it contains a directly congruent copy of each member of Cd
1 (only

translations and rotations are allowed, no reflection). Let βd denote the minimum

(infimum) of the volumes of the convex covers. The determination of β2 is a version

of the “worm” problem of Leo Moser [16]. An overview of more general problems

can be found in [21] (See especially page 316).

There is a series of papers constructing increasingly better upper bounds, e.g.,

β2 < 0.275 237 (Norwood, Poole and Laidacker [18], 1992), β2 < 0.260 437 (Nor-

wood and Poole [17], 2003), β3 < 0.159 530 (Lindström [13], 1997), β3 < 0.075 803

(H̊astad, Linusson, and Wästlund [10], 2001).

For general d H̊astad et al. [10] showed βd < (c
√

log d)d/d3d/2. Since αd ≤
2dβd, this significantly improves the upper bound in (19).
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[10] J. H̊aSTAD, S. LINUSSON and J. WÄSTLUND, A smaller sleeping bag for a baby snake,

Discrete Comput. Geom., 26 (2001), 173–181.



COVERS FOR CLOSED CURVES OF LENGTH TWO 17

[11] J. R. KINNEY, A thin set of circles, Amer. Math. Monthly, 75 (1968), 1077–1081.

[12] M. D. KOVALEV, A minimal convex covering for triangles, Ukrain. Geom Sb., 26

(1983), 63–68 (in Russian).
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