
Reverse-free codes and permutations
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Abstract

Two codewords (a1, . . . , ak) and (b1, . . . , bk) form a reverse-free pair if (ai, aj) �=
(bj , bi) holds whenever 1 ≤ i < j ≤ k are indices such that ai �= aj . In a reverse-free
code, each pair of codewords is reverse-free. The maximum size of a reverse-free
code with codewords of length k and an n-element alphabet is denoted by F (n, k).
Let F (n, k) denote the maximum size of a reverse-free code with all codewords
consisting of distinct entries.

We determine F (n, 3) and F (n, 3) exactly whenever n is a power of 3, and asymp-
totically for other values of n. We prove non-trivial bounds for F (n, k) and F (n, k)
for general k and for other related functions as well. Using VC-dimension of a ma-
trix, we determine the order of magnitude of F (n, k) for n fixed and k tending to
infinity.
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1 Reverse-free permutations and codes

Let k and n be natural numbers, and X an n-element alphabet. The set of all
ordered k-tuples with entries in X will be denoted by Xk. A code C is simply
a subset of Xk. Its members are called codewords, k is its length, and |C| its
size. A typical problem in coding theory is to determine the maximum size of
a code satisfying some local condition. In this paper, the codes are required
to be reverse-free.

Definition 1.1 Let a and b be two distinct integers. The pair {a, b} is a
reversed pair for a pair of k-tuples x = (x1, . . . , xk) and y = (y1, . . . , yk) if
there are two indices i, j ∈ [k] such that (xi, xj) = (yj, yi) = (a, b). If x and y
have no reversed pair, they are reverse-free.

A code F is called reverse-free if any two of its members are reverse-free.
Let F (n, k) be the maximum size of a reverse-free code C ⊆ Xk. If we also
require that each codeword consist of k distinct symbols, the maximum size
of such code is denoted by F (n, k). A natural companion notion is that of a
flip-full code, where every two codewords are required to have a reversed pair.

Given a family F , define an |F|×k matrix M(F) in a natural way, by listing
the the k-tuples in F as its rows. The family F is then reverse-free if M(F) has
distinct rows and does not contain a 2×2 submatrix with rows (a, b) and (b, a),
with a �= b. Similarly, F is flip-full if every two rows contain such submatrix.
Many coding theory problems can be formulated in this way, as determining
the maximum number of rows of a matrix with a forbidden submatrix, or with
certain submatrices required for every pair (triple, quadruple...) of rows (see,
e.g., Körner [4], Vapnik and Chervonenkis [6], or a survey by Anstee [1]).

Similar problems have also been investigated in the information-theoretic
setting, giving rise to the notions of robust capacity [5] and forbiddance [3].

For n = k, we have an extremal problem on permutations. Let us mention
that a similar problem with a different local condition, determining the max-
imum size of a set of t-intersecting permutations for n large compared to t,
was solved recently by Ellis, Friedgut, and Pilpel [2], proving an analogue of
Erdős-Ko-Rado Theorem.
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2 Triples

For every n and k, the set of all increasing k-tuples is reverse-free, hence
F (n, k) ≥ (

n
k

)
. Is this bound tight? For k = 3, the answer is negative, we

have F (n, 3) =
(

5
4

+ o(1)
) (

n
3

)
.

Theorem 2.1 For any n ∈ N, we have

5

24
n3 − 1

2
n2 − O(n log n) ≤ F (n, 3) ≤ 5

24
n3 − 1

2
n2 +

5

8
n.

If n is a power of 3, the upper bound holds with equality.

We also determined F (n, 3) with a small error term O(n log n), and exactly
whenever n is a power of 3.

Proof (Sketch). We provide a recursive construction of a large reverse-free
set F . Partition [n] into three parts, A, B, and C. Find maximum reverse-
free families of triples FA, FB, and FC , on the alphabets A, B, and C re-
spectively. Fix a maximum reverse-free family L of triples from the alphabet
{A, B, C} with allowed repetition of symbols. We have |L| = F (n, 3) = 11. If
X1, X2, X3 ∈ {A, B, C} and (X1, X2, X3) ∈ L, we include in F all the triples
(x1, x2, x3) such that xi ∈ Xi and the triple (x1, x2, x3) has no reversed pairs
with triples in FA ∪FB ∪FC , or with any triples already added. Splitting [n]
as equally as possible in each step, we obtain the lower bound.

On the other hand, let F be a reverse-free family of triples. Each 3-element
set can appear up to three times as a triple in F . For 0 ≤ i ≤ 3, let Ti be the
number of 3-element sets that appear i times as triples in F . Define a directed
graph G1,2 by putting (xi, xj) ∈ E(Gij) whenever there is a u such that the
triple (x1, x2, u) belongs to F . Define graphs G2,3 and G3,1 analogously. Define
two additional directed graphs, D and M by putting

E(M) = {uv : uv ∈ E(Gi) ∩ E(Gj) for some pair i, j ∈ {1, 2, 3}}
E(D) = {uv : uv ∈ E(G1) ∩ E(G2) ∩ E(G3)}.

If a 3-element set appears at least twice as a triple in F , the three vertices
form a directed triangle in M. Hence |T2|+ |T3| is bounded by the number of
directed triangles in M, which is at most (n3 − n)/24.

The set T0 contains all sets {u, v, w} such that uv ∈ E(D) and uw ∈ E(D).
It also contains all sets {u, v, w} such that vu ∈ E(D) and wu ∈ E(D). If
d+(u) and d−(u) are the outdegree and indegree of a vertex u in D, we have

|T0| ≥ 1
2

∑
u∈[n]

[(
d+(u)

2

)
+

(
d−(u)

2

)]
.
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Also, each set in T3 corresponds to a directed triangle in D, so |T3| ≤
1
3

∑
u∈[n] d

+(u) · d−(u). It follows that

|T3| − |T0| ≤
∑
u∈[n]

[
1

3
d+(u) · d−(u) − 1

2

(
d+(u)

2

)
− 1

2

(
d−(u)

2

)]
≤ n

3
.

The upper bound then follows from the above by observing that |F| =
|T1| + 2|T2| + 3|T3|, and |T0| + |T1| + |T2| + |T3| =

(
n
3

)
. �

3 Small alphabets

If n is fixed and the length of the codewords k tends to ∞, the true order of
magnitude of the maximum size is polynomial in k.

Theorem 3.1 Let n ≥ 2, k ≥ 2. Then

(
k(
n
2

)
)(n

2)

≤ F (n, k) ≤
(

k

≤ n − 1

)(
k

≤ n − 2

)
. . .

(
k

≤ 1

)
= O

(
k(n

2)
)

,

where
(

k
≤�

)
stands for

∑
0≤i≤�

(
k
i

)
.

Proof of the upper bound (Sketch). We use induction on n and k. Let F
be a reverse-free code of length k, with n-element alphabet. For x ∈ F , define
its i-support suppi(x) as the set of indices � such that x� = i. Any set A can
appear at most F (n − 1, k − |A|) times as an i-support. Also, there are not
too many sets that appear as i-supports. Let Fi be the family of i-supports.
Then

|Fi| ≤
(

k

n − 1

)
+

(
k

n − 2

)
+ · · · +

(
k

0

)
.

To prove this, let M be the matrix whose rows are the indicator vectors of the
sets in Fi. We say that the VC-dimension of a (0, 1)-matrix is at least s if one
can find s columns such that the matrix restricted to these columns contains
all the 2s possible rows. It is known that if the VC-dimension is at most s,
then

m ≤
∑

0≤i≤s

(
k

i

)
. (1)

We claim that the VC-dimension of F1 is at most n − 1. If this is not
the case, then there are indices s1, . . . , sn such that M restricted to these
columns contains the complement of the identity matrix. Then, by pigeonhole
principle, we find a reversed pair in F . �
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4 Further results and open problems

When k is fixed and n tends to infinity, we do not even know whether the
trivial lower bound F (n, k) ≥ (

n
k

)
is asymptotically tight. Our best upper

bound is F (n, k) ≤ k!
(

n
k

)
/(1.686 · · · + o(1))k. Similar results can be proved

for F (n, k) as well. Another interesting open problem for which we only have
partial results is to determine F (n, n).

Define a graph Pn,k on the vertex set consisting of all the k-tuples with
non-repeating entries in [n] by making two k-tuples adjacent if and only if they
have a reversed pair. The independence number of Pn,k is equal to F (n, k).
Similarly, the clique number of Pn,k is equal to the cardinality of the maximum
flip-full code of non-repeating k-tuples, denoted by G(n, k). The quantity
G(n, k) is interesting for its own sake. But moreover, via the clique-coclique
bound

F (n, k)G(n, k) ≤ k!

(
n

k

)
,

a lower bound on G(n, k) provides an upper bound on F (n, k). The case
k = n, i.e., permutations, is especially interesting. We have

1

8
(1.515 . . . )n ≤ G(n, n) ≤ n2n!

(1.898 . . . )n
.
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