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Abstract

Two codewords (a1,...,a;) and (b1,...,b;) form a reverse-free pair if (a;, a;) #
(bj, b;) holds whenever 1 <i < j < k are indices such that a; # a;. In a reverse-free
code, each pair of codewords is reverse-free. The maximum size of a reverse-free
code with codewords of length k and an n-element alphabet is denoted by F(n, k).
Let F(n,k) denote the maximum size of a reverse-free code with all codewords
consisting of distinct entries.

We determine F(n,3) and F(n, 3) exactly whenever n is a power of 3, and asymp-
totically for other values of n. We prove non-trivial bounds for F(n, k) and F(n, k)
for general k and for other related functions as well. Using VC-dimension of a ma-
trix, we determine the order of magnitude of F(n,k) for n fixed and k tending to
infinity.
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1 Reverse-free permutations and codes

Let £ and n be natural numbers, and X an n-element alphabet. The set of all
ordered k-tuples with entries in X will be denoted by X*. A code C is simply
a subset of X*. Its members are called codewords, k is its length, and |C| its
size. A typical problem in coding theory is to determine the maximum size of
a code satisfying some local condition. In this paper, the codes are required
to be reverse-free.

Definition 1.1 Let a and b be two distinct integers. The pair {a,b} is a
reversed pair for a pair of k-tuples x = (z1,...,2%) and y = (y1,...,y) if
there are two indices 4, j € [k] such that (z;,z;) = (y;,¥) = (a,b). If x and y
have no reversed pair, they are reverse-free.

A code F is called reverse-free if any two of its members are reverse-free.
Let F(n, k) be the maximum size of a reverse-free code C C X*. If we also
require that each codeword consist of k distinct symbols, the maximum size
of such code is denoted by F(n, k). A natural companion notion is that of a
flip-full code, where every two codewords are required to have a reversed pair.

Given a family F, define an |F|x k matrix M (F) in a natural way, by listing
the the k-tuples in F as its rows. The family F is then reverse-free if M (F) has
distinct rows and does not contain a 2 x 2 submatrix with rows (a, b) and (b, a),
with a # b. Similarly, F is flip-full if every two rows contain such submatrix.
Many coding theory problems can be formulated in this way, as determining
the maximum number of rows of a matrix with a forbidden submatrix, or with
certain submatrices required for every pair (triple, quadruple...) of rows (see,
e.g., Korner [4], Vapnik and Chervonenkis [6], or a survey by Anstee [1]).

Similar problems have also been investigated in the information-theoretic
setting, giving rise to the notions of robust capacity [5] and forbiddance [3].

For n = k, we have an extremal problem on permutations. Let us mention
that a similar problem with a different local condition, determining the max-
imum size of a set of t-intersecting permutations for n large compared to t,
was solved recently by Ellis, Friedgut, and Pilpel [2], proving an analogue of
Erdés-Ko-Rado Theorem.
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2 Triples

For every n and k, the set of all increasing k-tuples is reverse-free, hence
F(n,k) > (Z) Is this bound tight? For k = 3, the answer is negative, we
have F(n,3) = (24 0(1)) (5).

Theorem 2.1 For any n € N, we have

) 1 ) 1 )
ﬂn?’ - §n2 —O(nlogn) < F(n,3) < ﬁng' - §n2 + 3"

If n is a power of 3, the upper bound holds with equality.

We also determined F'(n, 3) with a small error term O(nlogn), and exactly
whenever n is a power of 3.

Proof (Sketch). We provide a recursive construction of a large reverse-free
set F. Partition [n] into three parts, A, B, and C. Find maximum reverse-
free families of triples F4, Fg, and F¢, on the alphabets A, B, and C re-
spectively. Fix a maximum reverse-free family L of triples from the alphabet
{A, B, C} with allowed repetition of symbols. We have |L| = F(n,3) = 11. If
X1, X0, X3 € {A,B,C} and (X3, Xy, X3) € L, we include in F all the triples
(21,9, z3) such that x; € X; and the triple (1, 22, x3) has no reversed pairs
with triples in F4 U Fp U F¢, or with any triples already added. Splitting [n]
as equally as possible in each step, we obtain the lower bound.

On the other hand, let F be a reverse-free family of triples. Each 3-element
set can appear up to three times as a triple in F. For 0 <1 < 3, let T; be the
number of 3-element sets that appear ¢ times as triples in F. Define a directed
graph G by putting (z;, ;) € E(G,;) whenever there is a u such that the
triple (21, 2, u) belongs to F. Define graphs G 3 and G5 ; analogously. Define
two additional directed graphs, D and M by putting

E(M) ={uv : uwv € E(G;) N E(Gj) for some pair 7,5 € {1,2,3}}
E(D) = {uv:uv e E(G1)NE(Gy) N E(Gs)}.

If a 3-element set appears at least twice as a triple in F, the three vertices
form a directed triangle in M. Hence |T| + |T3] is bounded by the number of
directed triangles in M, which is at most (n® —n)/24.

The set T} contains all sets {u, v, w} such that uv € E(D) and vw € E(D).
It also contains all sets {u,v,w} such that vu € E(D) and wu € E(D). If
d*(u) and d~(u) are the outdegree and indegree of a vertex u in D, we have

Tl 2 3 gy [(59) + ()]
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Also, each set in T3 corresponds to a directed triangle in D, so |T3] <
LS e dF(w) - d (w). Tt follows that

- 1nl < Y [zare-a@-5(T1) - 3(T1)] < &

u€n]

The upper bound then follows from the above by observing that |F]|
| T1| + 2|T3| + 3|Ts], and |Ty| + [T| + | Ta| + | T3] = (3)- O

3 Small alphabets

If n is fixed and the length of the codewords k tends to oo, the true order of
magnitude of the maximum size is polynomial in k.

Theorem 3.1 Letn > 2, k> 2. Then

)
(%) < Fln,k) < (S r 1) (S * 2) (;1) ~ 0 ().

where (Ské) stands for 3 o iy (5.

Proof of the upper bound (Sketch). We use induction on n and k. Let F
be a reverse-free code of length k, with n-element alphabet. For x € F, define
its i-support supp,(x) as the set of indices ¢ such that x, =i. Any set A can
appear at most F(n — 1,k — |A|) times as an i-support. Also, there are not
too many sets that appear as i-supports. Let F; be the family of i-supports.

Then ) L L
| < .. )
A () () e (o)

To prove this, let M be the matrix whose rows are the indicator vectors of the
sets in F;. We say that the VC-dimension of a (0, 1)-matrix is at least s if one
can find s columns such that the matrix restricted to these columns contains
all the 2° possible rows. It is known that if the VC-dimension is at most s,

then .
m < . 1
<> () )

0<i<s
We claim that the VC-dimension of F; is at most n — 1. If this is not
the case, then there are indices s1,...,s, such that M restricted to these

columns contains the complement of the identity matrix. Then, by pigeonhole
principle, we find a reversed pair in F. O
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4 Further results and open problems

When £ is fixed and n tends to infinity, we do not even know whether the
trivial lower bound F(n,k) > (}) is asymptotically tight. Our best upper
bound is F(n, k) < k!(})/(1.686--- + o(1))*. Similar results can be proved
for F(n, k) as well. Another interesting open problem for which we only have
partial results is to determine F'(n,n).

Define a graph P, on the vertex set consisting of all the k-tuples with
non-repeating entries in [n] by making two k-tuples adjacent if and only if they
have a reversed pair. The independence number of P,y is equal to F(n,k).
Similarly, the clique number of P, j is equal to the cardinality of the maximum
flip-full code of non-repeating k-tuples, denoted by G(n, k). The quantity

G(n, k) is interesting for its own sake. But moreover, via the clique-coclique
bound

F(n, k)G(n, k) < k! (Z)

a lower bound on G(n,k) provides an upper bound on F(n,k). The case
k = n, i.e., permutations, is especially interesting. We have

n2n!

1
S(1515...) < L L —
g(1815...)" < Glnn) < Fgee—0
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