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Quadrilaterals

1. H-packings and H-designs

Let H be a simple graph. An H-packing of order n is a set P :={H1, Ha, ..., Hn} of edge disjoint
copies of H whose union forms a graph with n vertices. If this graph is the complete graph K, then P
is called an H-decomposition on n vertices, or following the terminology of design theory, it is called
an H-design of order n. In this case (g)/e(H) is an integer, where e(H) denotes the number of edges
of H, and we have the obvious congruence properties

e(H)| (n ged(deg(vy),...,deg(vy))
( ) and ! ¢ (1)
2 (n—1)
where H has vertices v1, va,..., Vg, and deg(v;) denotes the degree of v;, i =1,...,k. An integer n

for which there exists an H-design of order n should satisfy the divisibility constraints (1), and is
called H-admissible. Wilson [21] proved that given any graph H, there exists an integer no(H) such
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that every n > ng(H) satisfying (1) is H-admissible. The case of the complete graph H = K; is equiv-
alent to the existence of Steiner systems S(n, t, 2). Further H-designs and graph decompositions can
be found in [1,2].

Let A(n; H) be the least H-admissible integer No such that, for every H-admissible integer N > Ny,
any H-packing of order n can be extended into an H-design of order N. The existence of A(n; H), for
every H, follows from a far more general result of Wilson [20]. The determination of A is a difficult
research area with full of problems and results. Let us list a few explicit bounds. Concerning C,, the
cycle of length ¢, Hoffman, Lindner, Rodger, and Stinson (see [9,16]) showed

An; Co) <kn+ 0(K?).
For the quadrilateral Lindner [13] showed
An; Cq) <2n+15.

The case A(n; D) where D denotes the five-vertex graph consisting of a 4-cycle with a pendant edge
attached was studied by Jenkins [10], he showed

A(n; D) < 4n + 22.

For a graph K called a kite, that is a triangle with a pendant edge attached, it was recently showed
by Kictikgifci, Lindner, and Rodger [12] that

Am; K) <8n+9.
Bryant, Khodkar, and El-Zanati [5] gave explicit upper bounds (linear in n) for an infinite class of
bipartite H.

2. Quadrilateral decompositions

In the case of H = Cy4, i.e,, for quadrilateral decompositions, (1) implies that a C4-admissible integer
n must satisfy n=1 (mod 8). Furthermore, every such integer n is C4-admissible (see, e.g., in [15]).
Indeed, forn=9 and V ={0,1, 2, ..., 8}, it is clear that the cycles

(i,i+2,i+5,i+1) (mod9), i=0,1,...,8
form a C4-decomposition of Kg. Using this construction and the obvious fact that

the complete bipartite graph Kzp 24 has a C4-decomposition (2)
we obtain easily that

any C4-decomposition of K, can be extended into a C4-decomposition of Kp4s. 3)

Indeed, choose an arbitrary vertex v of the C4-decomposition of K, on V, and add an 8-element
disjoint vertex set B. Taking a C4-decomposition of K9 on B U {v} and using that both a = |V \ {v}]
and b = |B| are even, the complete bipartite graph K, , between V \{v} and B has a C4-decomposition
according to (2). Thus we obtain a quadrilateral decomposition of K;4g on V U B.

Hilton and Lindner [8] achieved a breakthrough recently by showing that the order of magnitude
of A(n; C4) —n is only o(n). They proved

n+n'? —1< Amn; Cy) <n+ V12034 +0(n/4). (4)
The aim of this paper is to show that A(n; C4) is more like the lower bound which settles a problem
proposed decades ago (cf. [16]).
Theorem 1. A(n; C4) =n+/n+o(/n).

In terms of graphs our result shows that every partial quadrilateral packing on n vertices can
be extended into a complete quadrilateral decomposition by the inclusion of at most +/n + o(4/n)
additional vertices.
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3. Notations, the chromatic index of graphs

For a graph G the set of its vertices and its edges is respectively denoted by V(G) and E(G).
All graphs here are simple graphs with no loop or multiple edge. The degree of a vertex x € V(G)
is deg(x) = |{v € V(G) | vx € E(G)}|, the minimum and the maximum degrees of G are §(G) =
min{deg(x) | x € V(G)} and A(G) = max{deg(x) | x € V(G)}. A cycle and a path with k vertices are
denoted by Cy and Py, respectively. The 4-cycle Cy4 is also called a quadrilateral. A matching is a set of
pairwise disjoint edges, the size of the largest matching in the graph G is called its matching number
and is denoted by v(G).

Let C be an arbitrary set of k = |C| colors. A proper edge k-coloring of the graph G is a function
c:E(G) — C, such that any two incident edges e, f € E(G) receive distinct colors, that is c(e) # c(f).
The minimum k such that there is a proper edge k-coloring of G is called the chromatic index (or
edge chromatic number) of G and it is denoted by x’(G). By Vizing's theorem (see e.g. [3]) for every
simple graph G one has

AG) < X' (G) < AG) +1.

A related parameter, the list chromatic index of a graph G is defined as follows. Given a mapping L
from E(G) into the power set of the underlying color set C, a proper edge list coloring ¢ of G from
the lists L(e) is a proper edge coloring of G with the additional property that c(e) € L(e), for every
e € E(G). The list chromatic index, x,(G), is the least integer t such that there exists a proper edge list
coloring of G for every list assignment L, provided |L(e)| > t, for all e € E(G).

It is an open problem whether the list chromatic index of a graph equals its edge chromatic
number (see [4]). No tight bound comparable to Vizing’s theorem is known for the list chromatic
index. However, Kahn [11] proved the asymptotic version of the list chromatic index conjecture by
showing that x;, = A + 0(A). A more explicit bound (with a polynomial error term) was proved by
Hdggkvist and Janssen [7]. The best known upper bound is due to Molloy and Reed [17]: There exists
an absolute constant cg, not depending on A, such that for every simple graph of maximum degree A
one has

X < A+co(log AY* A2, (5)
4. Tightest quadrilateral extensions

Let f(n; H) be the smallest integer t such that, any H-packing on n vertices can be extended to
an H-decomposition on at most n + t vertices. By definition,

n+ f(n; H) < A(n; H).

On the other hand, (3) implies that every C4-packing P on n vertices can be embedded into a
C4-decomposition of order n + f(n; C4), n+ f(n; C4) + 8, n+ f(n; C4) + 16, etc., hence A(n; Cq) <
n+ f(n; C4). Thus we obtain

Proposition 2. For every integer n, A(n; C4) =n + f(n; Cq).

Construction 3. Define a C4-packing P on V ={1,2,...,n} with the quadrilaterals of the form
(2i,2j,2i—1,2j—1), for all 1 <i< j< |n/2]. Observe that P leaves uncovered the matching
M={Qi—1,2i) |1 <i<|n/2]}, and if n is odd, then all edges incident with vertex n are also
uncovered.

Consider any C4-decomposition P* that extends 7 of Construction 3 to the vertex set V U B.
Every edge of M must belong to a quadrilateral of P* with its opposite edge between a pair of
vertices not in the subset of V covered by M. These pairs must be distinct, hence either ('g') >n/2

or ("®F1) > (n — 1)/2. This implies
f:Cy) =Bl = Vn—1,

and the lower bound in (4) follows.
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5. Completing a quadrilateral packing

Given a C4-packing P on the vertex set V, |V | =n, the union of the edge sets of the quadrilaterals
in P define a graph on V, its complement will be called the graph of the uncovered edges and it is
denoted by G(P), or simply by G. We also use the notation f(P) to denote the smallest integer b
such that P can be extended into a C4-decomposition of order n + b.

Lindner [14] proved that if n is odd then P can be completed by adding at most 2|E(G)| new
vertices to it. We include here a short proof of Lindner’s result.

Lemma 4. Let P be a C4-packing of order n and let G be the graph of the uncovered edges. If n is odd, then
f(P)<2|E@G)|. (6)

Proof. We shall define an iterative procedure. In each step a set B of new vertices is added to V (G)
together with quadrilaterals on V U B, thus extending P and reducing the graph of uncovered edges
by at least |B|/2.

If G contains a C4, then include it to P.

If G contains a triangle T = K3, then we add a set B of six new vertices. Include a C4-
decomposition of K9 on the vertex set V(T) UB to P, and add a C4-decomposition of the complete
bipartite graph Kg —3 (see (2)) with parts B and V \ V(T), each of even cardinality. Observe that in
this step |B| =6, |E(G)| reduces by |B|/2 =3, and |V (G) U B| remains odd.

If G contains a (not necessarily induced) path P = (aq, ..., as), then we add B = {bq, b2}. Include
the quadrilaterals

(a1,az,as,by), (a3,a4,as,by), (b1,az, bz, as),

and add a C4-decomposition of the complete bipartite graph K ;s (see (2)) with parts B and V \
V (P), each of even cardinality. In this step we have |B| =2, |E(G)| reduces, and |V (G) U B| remains
odd.

The procedure consists in repeating these steps above in any order as long as any of the three
conditions is satisfied. Since n is odd, the graph of the uncovered edges has only even degrees. Thus,
if G contains no quadrilaterals, neither triangles, nor paths of length four, then G cannot have any
edge. Therefore, when our procedure stops, the quadrilaterals extending P form a C4-decomposition
on a vertex set that is not larger than n+ 2|E(G)|. O

6. Quadrilateral-free graphs, transversals

A set Q C V(G) is called a transversal (or vertex-cover) of G if Q meets all edges of G. The
minimum size of such a Q is called the transversal number and is denoted by 7(G). The complement
of a transversal is an independent set of vertices. The size of a largest independent set is denoted
by a(G).

Lemma 5. Let G be a quadrilateral-free graph with a transversal Q. If deg(v) # 1 forall v € V(G) \ Q, then
IEG)I<IQ - 3lQl.

Proof. Let M be the set of all isolated edges in the subgraph of G induced by Q, clearly |[M| < |Q]/2.
Observe that all edges in E(G) \ M are covered by a path of the form (qq, x, g2) with q1,q2 € Q. This
is clear for the edges lying in Q, and it follows for any edge incident with a vertex v € V(G) \ Q,
since V(G) \ Q is an independent set and deg(v) > 2.

Because G is quadrilateral-free, there are at most ('%‘) paths of the form (qq, x, q2) with q1,q2 € Q.
Therefore we have |E(G) \ M| <2('?)), and |E(G)| = M|+ |E(G)\ M| < }1Q|+2('¢) =102 - LlQ|
follows. O
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Note that the upper bound in Lemma 5 is tight as the following construction shows. Let Q be the
vertex set of a complete graph, with |Q | even, then subdivide each of the ('%‘) edges by a vertex and
add |Q|/2 further edges forming a matching on Q.

Lemma 6. Let P be a C4-packing and let G be the graph of the uncovered edges. If q vertices cover all edges
of G, then P can be completed by the inclusion of at most 2(q + 1)? additional vertices, that is

FP)<2(x(G) +1)°.

Proof. If PP is of even order, then change its parity by adding a further vertex. Consider the (even-
tually extended) graph Gq of the uncovered edges. Clearly, G; has a transversal Q of size at most
g + 1. Remove a maximal set of edge disjoint quadrilaterals from E(G1) and include them to P. The
remaining graph of the uncovered edges, G, is quadrilateral-free. Since |V (G2)| =|V(G1)] is odd, the
degrees of G, are all even. In particular, G, has no vertex of degree 1. By Lemmas 4 and 5, applied
on G, we obtain

f(P) <2|E(G)| <2[|Q|2 - %IQI] 22[(CI+1)2— %(CI+1)] <2(T(G)+1)2- O

7. Quadrilateral-free graphs, minimum degree

A neat double counting argument yields the particular case of a general estimation used in the
Zarankiewicz problems in Ramsey theory, also known as the Johnson’s bound for error correcting
codes in coding theory (see in [3,19]).

Lemma 7. If Eq, ..., Ep are sets satisfying |Ej| > d, fori=1,...,m,and |[E;NE;| <1, for1<i<j<m,
then
15 d*m

“d-14m’

i=1

It is known (see [3]) that if a graph G has n vertices and contains no quadrilateral, then |E(G)| <
(n 4+ n+/4n — 3)/4. An obvious corollary is the bound

8(G) </ 3] (7
(G) < ”—Z+§~ )

In the next lemma we use the transversal number of the graph to obtain a better bound on §(G)
that is independent of the cardinality of V (G).

Lemma 8. If the edges of a quadrilateral-free graph G are covered by q vertices then

1 1
8(G) <q1/2+§q1/4+z. (8)

Note that this upper bound cannot be improved significantly without any further restriction. This
follows from the fact that the polarity graph G4 is quadrilateral-free, it has d? +d + 1 vertices, its
minimum degree is §(Gg) =d, and a(Gg) < d+/d+1+d (see, e.g., [6]). Even more, Mubayi and Willi-
ford [18] recently showed that if G4 is the unitary polarity graph, then o« (Gg) =d>/? + 1. (Such graph
exists if d is an even power of a prime.) Hence we should take q = |V (Gg)| — a(Gg) = d* —d3/? +d,

and for these values
1 1
d> 12 La/4_ 1
q’°+ 2q )

For the proof of the above lemma we will need the following statement.
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Proposmon 9. Let q 1 be fixed and define the polynomial p(x) := x> — x*> — (x> — q)2. Then p(x) < O for
x>ql2 41 q1/4

Proof. Substitute g :=t* (where t > 1 fixed) and x :=t? + t + § + y, where y > 0. After a little
algebra (using Maple V) one obtains

1.1 324 +48t3 +12t2 + 5
p(x):p<t2+—t+ Z+y> =-y*—y (4 +2t) — y2

2 8
32t° +16t4 + 43 + 1062 + 5t +3  144t* 4+ 1603 + 13612 + 48t + 13
Y 8 256 '
Here each term is negative, hence p(x) <O follows. O
Proof of Lemma 8. Let Q be a set of q vertices covering the edges of G. Let V\ Q ={v1,va,...,Vvn},

Ei:={ye€Q: viy € E(G)} and d :=§(G). Since G is quadrilateral-free, |[E;NE;| <1, for 1<i<j<m.
Since ¢ =|Q| > | U, Ei|, Lemma 7 implies

(d—1+m)q >d*m. 9
Inequality (7) is equivalent with
m+q=|V(G)|>d*—d+1. (10)

If d> — q <0, then (8) follows immediately. Otherwise, multiply (10) by (d> —q) and add it to (9).
After rearrangements we obtain

B —d®— (—q)’=pd)>0
Thus, by Proposition 9, (8) follows. O

8. Quadrilateral-free graphs, updegree

Let G be a graph with an ordering 7 = (vq, ..., vpy) of its vertices. The updegree of the vertex v;
with respect to 7 is defined by

degg(vi) = |{ve | €> i, vive € B},

and the updegree of G with respect to 7 is defined by
A(G) = max{degc(v )| 1<i<m}.

If G is a graph with d = max{§(H) | H C G}, then K(G) < d, for some . Indeed, to obtain an
appropriate ordering of V(G) in which the updegree of each vertex becomes d or smaller it is enough
to list the vertices by taking greedily the next vertex that has the fewest number of neighbors among
the still unlisted vertices. (In fact, we have d = min, Z(G), for every graph G.) Hence (8) of Lemma 8
has the following consequence.

Proposition 10. If a quadrilateral-free graph G has a transversal of q vertices then
K(G)<q'/?+q'*
with respect to an appropriate ordering of V (G).
9. Packing paths of length two
Lemma 11. If G has updegree d = K(G), then its edge set has a decomposition into a matching M and a set £

of edge disjoint copies of paths of length two such that every vertex appears at most d + 2 times as an end
vertex of a member of L.
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Proof. Let (vq,...,vy) the ordering of V(G) that yields the updegree d = K(G). The path formed by
the two edges v;vy, v¢v; is called a cherry in G if i, j < €. Let Lo be a mi@mal set of pairwise edge
disjoint cherries of G. Observe that each x € V(G) can appear in at most degg(x) < d times as an end
vertex of a cherry in L.

By the maximality of Ly, the set of edges of G not belonging to Lo form a _f)orest T such that the
updegree of T with respect to the reverse order (v, Vjm—1,..., V1) satisfies A(T) < 1. Let F{ be a
maximal set of pairwise edge disjoint cherries in T. Note that these cherries have no common end
vertices, since Z(T) <1

The set of edges of T that are not covered by the cherries in F; form a linear forest L, that
is the connected components of L are paths. Every path can be decomposed into a matching and
copies of P3 with no common end vertices. Let F, be the set of all these copies of P3, and let M
be the matching collected from all components of L. Thus we obtain a decomposition of E(G) into a
matching M and a family of cherries £ = Lo U F{ U F, as required. O

10. Extending a quadrilateral packing

Let P be a C4-packing on the vertex set V, and let G be the graph of the edges uncovered by P.
We describe a procedure that extends P into a packing P’ on V U B which covers all edges of G by
adding a (small) set B to V. Note that we do not require P’ to be a complete C4-decomposition.

Let MU L be an arbitrary decomposition of E(G) into a matching M and a set £ of pairwise edge
disjoint copies of P3. Denote H(L) the graph on vertex set V with xy being an edge of H(L) if and
only if x, y are the end vertices of some P3 belonging to L.

Proposition 12. If B is a set satisfying BNV = @ and

|B| = max{y/2IM| + 1, x;(H(L)) + 2}, (11)
then P can be extended into a C4-packing P’ on V U B that covers all edges in G.

Proof. Since |M| < (“23‘) there is a mapping g: (J{{x, y} | xy € M} — B such that

{gx), g} #{g*). gy} forany two distinct edges xy, x'y’ € M.
Next, assign to every edge uv of H(L) a list L(uv)
L(uv) :=B\ {g), g(v)}.

By (11), we have |L(uv)| > x,(H(L)). Hence by the definition of the list chromatic index, H(£) has a
list edge coloring c: E(H(L)) — B from the lists L(uv). For any path P € £ with end vertices u,v €V,
we have uv € E(L), thus we can define c(P) :=c(uv). Then the list edge coloring ¢ of H(L) yields a
mapping c: £ — B such that c¢(P) # c¢(P’) whenever P, P’ € £ share a common end vertex. Therefore
P can be extended with the quadrilaterals of the form

(x.y.8(y).8x), forxyeM and (u,w,v,c(P)), forP=(u,w,v)eL.
In this way we obtain a packing P’ that covers all edges in M U {P | P € £} thus covering all edges

of G as required. O

Proposition 13. Let P be a C4-packing on V, let G be the graph of the uncovered edges, and let v = v(G).
Then P has an extension into P’ on V U B saturating G such that

b:=|B| <~2v + cov/4(logv)?* + civ/4. (12)

Here co comes from (5) and cq is an absolute constant.

Proof. We may suppose that G is qiadrilateral-free. The transversal number of a graph is at most 2v,
so that Proposition 10 gives d := A(G) < +/2v + (2v)1/4 with respect to an appropriate ordering



Z. Fiiredi, . Lehel / Journal of Combinatorial Theory, Series A 117 (2010) 466-474 473

of V(G). Then Lemma 11 supplies a decomposition of E(G) into a matching M and a set £ of pairwise
edge disjoint copies of P3 such that

A(H(L) <d+2<vV2v+ 0074,

where H(L) is the graph defined by the end vertices of the paths in £ as above. Observe that since G
contains no quadrilateral, H(L) is a simple graph. Thus applying the upper bound (5) we obtain

X (H(D) < (d+2) +co(d +2)*(log(d +2))/* = V2V + cov 4 (log v)* + 0 (v/4).

So there exists a ¢c; > 0 such that if we let

b:=max{[y2IM| ]| +1, x;(H(L)) + 2},
then b satisfies both (12) and (11). Finally, Proposition 12 yields the desired packing P’. O

11. Proof of the theorem

In this section we prove Theorem 1. By Proposition 2, we only have to prove f(P) < (1+o0(1))/n
for every C4-packing on n vertices. Let Py := P be a quadrilateral packing on Vg =V, and let Gg be
the graph of the edges uncovered by Pp. Observe that v(Go) < n/2.

We define the consecutive extensions P, P2, P3 as follows. Given the quadrilateral packing P;_1
on V;_q, let Gj_1 be its graph of uncovered edges. We apply Proposition 13 to obtain 7P; on a set
V (P;_1) U B; that covers all edges of G;_i. Obviously B;j is a transversal set in G;, in particular,
G; has no matching with more than b; := |B;| edges, for i =1, 2, 3. Because v(Gp) < n/2, it follows
successively by (12) that

by < (140(1))+/n,

by < (1+0(1))y/2by = 0(n'/*%),
bs < (1+0(1))y/2by = 0(n"/®). (13)

As the last step of the procedure we apply Lemma 6 to extend P3 into a C4-decomposition P4 by
adding a set B4 to V (P3) with by = |B4| < 2(b3 + 1)

By (13), we have by < 0(n'/#), and thus we obtain an embedding P into a C4-decomposition on
n+bi+by+b3+bs=n+./n+o0(/n) vertices. Hence f(P) < (1 +o(1))+/n follows.

12. Conclusion, conjectures

In the proof of Theorem 1 we determined f(n; C4) asymptotically. It is tempting to conjecture that
the worst example is the one given by Construction 3.

If H is not bipartite, then f(n; H) is very likely linear in n. We conjecture that for every bipartite
graph H one has f(n; H) =o(n).
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