

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Note

Tight embeddings of partial quadrilateral packings

Zoltán Füredi ^{a,b,1}, Jenő Lehel ^{c,d,2}

- ^a Alfréd Rényi Institute, Hungarian Academy of Sciences, Budapest, PO Box 127, Hungary, H-1364
- ^b Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- ^c Department of Mathematical Sciences, The University of Memphis, Memphis, TN, USA
- d Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary

ARTICLE INFO

Article history: Received 20 April 2008 Available online 9 July 2009

Keywords: Graphs Packings H-designs Quadrilaterals

ABSTRACT

Let $f(n; C_4)$ be the smallest integer such that, given any set of edge disjoint quadrilaterals on n vertices, one can extend it into a complete quadrilateral decomposition by including at most $f(n; C_4)$ additional vertices. It is known, and it is easy to show, that $\sqrt{n} - 1 \le f(n; C_4)$. Here we settle the longstanding problem that $f(n; C_4) = \sqrt{n} + o(\sqrt{n})$.

Published by Elsevier Inc.

1. H-packings and H-designs

Let H be a simple graph. An H-packing of order n is a set $\mathcal{P} := \{H_1, H_2, \ldots, H_m\}$ of edge disjoint copies of H whose union forms a graph with n vertices. If this graph is the complete graph K_n , then \mathcal{P} is called an H-decomposition on n vertices, or following the terminology of design theory, it is called an H-design of order n. In this case $\binom{n}{2}/e(H)$ is an integer, where e(H) denotes the number of edges of H, and we have the obvious congruence properties

$$e^{(H)} \left| \binom{n}{2} \right|$$
 and $\frac{\gcd(\deg(v_1), \dots, \deg(v_k))}{\binom{n}{2}} \right|_{(n-1)}$ (1)

where H has vertices v_1, v_2, \ldots, v_k , and $\deg(v_i)$ denotes the degree of v_i , $i = 1, \ldots, k$. An integer n for which there exists an H-design of order n should satisfy the divisibility constraints (1), and is called H-admissible. Wilson [21] proved that given any graph H, there exists an integer $n_0(H)$ such

E-mail addresses: furedi@renyi.hu, z-furedi@math.uiuc.edu (Z. Füredi), jlehel@memphis.edu (J. Lehel).

¹ Research supported in part by the Hungarian National Science Foundation under grants OTKA 062321, 060427 and by the National Science Foundation under grant NFS DMS 06-00303.

Research partially supported by the Vernon Wilson endowment 2007 at the Eastern Kentucky University.

that every $n > n_0(H)$ satisfying (1) is H-admissible. The case of the complete graph $H = K_t$ is equivalent to the existence of Steiner systems S(n, t, 2). Further H-designs and graph decompositions can be found in [1,2].

Let $\Lambda(n; H)$ be the least H-admissible integer N_0 such that, for every H-admissible integer $N \geqslant N_0$, any H-packing of order n can be extended into an H-design of order N. The existence of $\Lambda(n; H)$, for every H, follows from a far more general result of Wilson [20]. The determination of Λ is a difficult research area with full of problems and results. Let us list a few explicit bounds. Concerning C_{ℓ} , the cycle of length ℓ , Hoffman, Lindner, Rodger, and Stinson (see [9,16]) showed

$$\Lambda(n; C_{2k}) \leqslant kn + O(k^2).$$

For the quadrilateral Lindner [13] showed

$$\Lambda(n; C_4) \leqslant 2n + 15.$$

The case $\Lambda(n; D)$ where D denotes the five-vertex graph consisting of a 4-cycle with a pendant edge attached was studied by Jenkins [10], he showed

$$\Lambda(n; D) \leqslant 4n + 22.$$

For a graph K called a kite, that is a triangle with a pendant edge attached, it was recently showed by Küçükçifçi, Lindner, and Rodger [12] that

$$\Lambda(n; K) \leq 8n + 9.$$

Bryant, Khodkar, and El-Zanati [5] gave explicit upper bounds (linear in n) for an infinite class of bipartite H.

2. Quadrilateral decompositions

In the case of $H = C_4$, i.e., for quadrilateral decompositions, (1) implies that a C_4 -admissible integer n must satisfy $n \equiv 1 \pmod{8}$. Furthermore, every such integer n is C_4 -admissible (see, e.g., in [15]). Indeed, for n = 9 and $V = \{0, 1, 2, ..., 8\}$, it is clear that the cycles

$$(i, i+2, i+5, i+1) \pmod{9}, i=0,1,\ldots,8$$

form a C_4 -decomposition of K_9 . Using this construction and the obvious fact that

the complete bipartite graph
$$K_{2p,2q}$$
 has a C_4 -decomposition (2)

we obtain easily that

any
$$C_4$$
-decomposition of K_n can be extended into a C_4 -decomposition of K_{n+8} . (3)

Indeed, choose an arbitrary vertex v of the C_4 -decomposition of K_n on V, and add an 8-element disjoint vertex set B. Taking a C_4 -decomposition of K_9 on $B \cup \{v\}$ and using that both $a = |V \setminus \{v\}|$ and b = |B| are even, the complete bipartite graph $K_{a,b}$ between $V \setminus \{v\}$ and B has a C_4 -decomposition according to (2). Thus we obtain a quadrilateral decomposition of K_{n+8} on $V \cup B$.

Hilton and Lindner [8] achieved a breakthrough recently by showing that the order of magnitude of $\Lambda(n; C_4) - n$ is only o(n). They proved

$$n + n^{1/2} - 1 \le \Lambda(n; C_4) \le n + \sqrt{12}n^{3/4} + o(n^{3/4}).$$
 (4)

The aim of this paper is to show that $\Lambda(n; C_4)$ is more like the lower bound which settles a problem proposed decades ago (cf. [16]).

Theorem 1.
$$\Lambda(n; C_4) = n + \sqrt{n} + o(\sqrt{n}).$$

In terms of graphs our result shows that every partial quadrilateral packing on n vertices can be extended into a complete quadrilateral decomposition by the inclusion of at most $\sqrt{n} + o(\sqrt{n})$ additional vertices.

3. Notations, the chromatic index of graphs

For a graph G the set of its vertices and its edges is respectively denoted by V(G) and E(G). All graphs here are simple graphs with no loop or multiple edge. The degree of a vertex $x \in V(G)$ is $\deg(x) = |\{v \in V(G) \mid vx \in E(G)\}|$, the minimum and the maximum degrees of G are $\delta(G) = \min\{\deg(x) \mid x \in V(G)\}$ and $\Delta(G) = \max\{\deg(x) \mid x \in V(G)\}$. A cycle and a path with K vertices are denoted by K0 and K1, respectively. The 4-cycle K2 is also called a *quadrilateral*. A *matching* is a set of pairwise disjoint edges, the size of the largest matching in the graph K2 is called its *matching number* and is denoted by K2.

Let C be an arbitrary set of k = |C| colors. A proper edge k-coloring of the graph G is a function $c: E(G) \to C$, such that any two incident edges $e, f \in E(G)$ receive distinct colors, that is $c(e) \neq c(f)$. The minimum k such that there is a proper edge k-coloring of G is called the *chromatic index* (or edge chromatic number) of G and it is denoted by $\chi'(G)$. By Vizing's theorem (see e.g. [3]) for every simple graph G one has

$$\Delta(G) \leqslant \chi'(G) \leqslant \Delta(G) + 1.$$

A related parameter, the list chromatic index of a graph G is defined as follows. Given a mapping L from E(G) into the power set of the underlying color set C, a proper edge list coloring c of G from the lists L(e) is a proper edge coloring of G with the additional property that $c(e) \in L(e)$, for every $e \in E(G)$. The list chromatic index, $\chi_{\ell}'(G)$, is the least integer t such that there exists a proper edge list coloring of G for every list assignment L, provided $|L(e)| \ge t$, for all $e \in E(G)$.

It is an open problem whether the list chromatic index of a graph equals its edge chromatic number (see [4]). No tight bound comparable to Vizing's theorem is known for the list chromatic index. However, Kahn [11] proved the asymptotic version of the list chromatic index conjecture by showing that $\chi'_{\ell} = \Delta + o(\Delta)$. A more explicit bound (with a polynomial error term) was proved by Häggkvist and Janssen [7]. The best known upper bound is due to Molloy and Reed [17]: There exists an absolute constant c_0 , not depending on Δ , such that for every simple graph of maximum degree Δ one has

$$\chi_{\ell}' < \Delta + c_0 (\log \Delta)^4 \Delta^{1/2}. \tag{5}$$

4. Tightest quadrilateral extensions

Let f(n; H) be the smallest integer t such that, any H-packing on n vertices can be extended to an H-decomposition on at most n + t vertices. By definition,

$$n + f(n; H) \leq \Lambda(n; H)$$
.

On the other hand, (3) implies that every C_4 -packing \mathcal{P} on n vertices can be embedded into a C_4 -decomposition of order $n+f(n;C_4)$, $n+f(n;C_4)+8$, $n+f(n;C_4)+16$, etc., hence $\Lambda(n;C_4) \leq n+f(n;C_4)$. Thus we obtain

Proposition 2. For every integer n, $\Lambda(n; C_4) = n + f(n; C_4)$.

Construction 3. Define a C_4 -packing \mathcal{P} on $V = \{1, 2, ..., n\}$ with the quadrilaterals of the form (2i, 2j, 2i - 1, 2j - 1), for all $1 \le i < j \le \lfloor n/2 \rfloor$. Observe that \mathcal{P} leaves uncovered the matching $M = \{(2i - 1, 2i) \mid 1 \le i \le \lfloor n/2 \rfloor\}$, and if n is odd, then all edges incident with vertex n are also uncovered.

Consider any C_4 -decomposition \mathcal{P}^* that extends \mathcal{P} of Construction 3 to the vertex set $V \cup B$. Every edge of M must belong to a quadrilateral of \mathcal{P}^* with its opposite edge between a pair of vertices not in the subset of V covered by M. These pairs must be distinct, hence either $\binom{|B|}{2} \geqslant n/2$ or $\binom{|B|+1}{2} \geqslant (n-1)/2$. This implies

$$f(n; C_4) \geqslant |B| \geqslant \sqrt{n} - 1$$
,

and the lower bound in (4) follows.

5. Completing a quadrilateral packing

Given a C_4 -packing $\mathcal P$ on the vertex set V, |V|=n, the union of the edge sets of the quadrilaterals in $\mathcal P$ define a graph on V, its complement will be called the *graph of the uncovered edges* and it is denoted by $G(\mathcal P)$, or simply by G. We also use the notation $f(\mathcal P)$ to denote the smallest integer b such that $\mathcal P$ can be extended into a C_4 -decomposition of order n+b.

Lindner [14] proved that if n is odd then \mathcal{P} can be completed by adding at most 2|E(G)| new vertices to it. We include here a short proof of Lindner's result.

Lemma 4. Let \mathcal{P} be a C_4 -packing of order n and let G be the graph of the uncovered edges. If n is odd, then

$$f(\mathcal{P}) \leqslant 2|E(G)|. \tag{6}$$

Proof. We shall define an iterative procedure. In each step a set B of new vertices is added to V(G) together with quadrilaterals on $V \cup B$, thus extending \mathcal{P} and reducing the graph of uncovered edges by at least |B|/2.

If G contains a C_4 , then include it to \mathcal{P} .

If G contains a triangle $T=K_3$, then we add a set B of six new vertices. Include a C_4 -decomposition of K_9 on the vertex set $V(T) \cup B$ to \mathcal{P} , and add a C_4 -decomposition of the complete bipartite graph $K_{6,n-3}$ (see (2)) with parts B and $V \setminus V(T)$, each of even cardinality. Observe that in this step |B| = 6, |E(G)| reduces by |B|/2 = 3, and $|V(G) \cup B|$ remains odd.

If G contains a (not necessarily induced) path $P = (a_1, ..., a_5)$, then we add $B = \{b_1, b_2\}$. Include the quadrilaterals

$$(a_1, a_2, a_3, b_1), (a_3, a_4, a_5, b_2), (b_1, a_2, b_2, a_4),$$

and add a C_4 -decomposition of the complete bipartite graph $K_{2,n-5}$ (see (2)) with parts B and $V \setminus V(P)$, each of even cardinality. In this step we have |B| = 2, |E(G)| reduces, and $|V(G) \cup B|$ remains odd.

The procedure consists in repeating these steps above in any order as long as any of the three conditions is satisfied. Since n is odd, the graph of the uncovered edges has only even degrees. Thus, if G contains no quadrilaterals, neither triangles, nor paths of length four, then G cannot have any edge. Therefore, when our procedure stops, the quadrilaterals extending \mathcal{P} form a C_4 -decomposition on a vertex set that is not larger than n+2|E(G)|. \square

6. Quadrilateral-free graphs, transversals

A set $Q \subset V(G)$ is called a *transversal* (or vertex-cover) of G if Q meets all edges of G. The minimum size of such a Q is called the transversal number and is denoted by $\tau(G)$. The complement of a transversal is an *independent set* of vertices. The size of a largest independent set is denoted by $\alpha(G)$.

Lemma 5. Let G be a quadrilateral-free graph with a transversal Q. If $\deg(v) \neq 1$ for all $v \in V(G) \setminus Q$, then $|E(G)| \leq |Q|^2 - \frac{1}{2}|Q|$.

Proof. Let M be the set of all isolated edges in the subgraph of G induced by Q, clearly $|M| \le |Q|/2$. Observe that all edges in $E(G) \setminus M$ are covered by a path of the form (q_1, x, q_2) with $q_1, q_2 \in Q$. This is clear for the edges lying in Q, and it follows for any edge incident with a vertex $v \in V(G) \setminus Q$, since $V(G) \setminus Q$ is an independent set and $\deg(v) \ge 2$.

Because G is quadrilateral-free, there are at most $\binom{|Q|}{2}$ paths of the form (q_1, x, q_2) with $q_1, q_2 \in Q$. Therefore we have $|E(G) \setminus M| \le 2\binom{|Q|}{2}$, and $|E(G)| = |M| + |E(G) \setminus M| \le \frac{1}{2}|Q| + 2\binom{|Q|}{2} = |Q|^2 - \frac{1}{2}|Q|$ follows. \square

Note that the upper bound in Lemma 5 is tight as the following construction shows. Let Q be the vertex set of a complete graph, with |Q| even, then subdivide each of the $\binom{|Q|}{2}$ edges by a vertex and add |Q|/2 further edges forming a matching on Q.

Lemma 6. Let \mathcal{P} be a C_4 -packing and let G be the graph of the uncovered edges. If q vertices cover all edges of G, then \mathcal{P} can be completed by the inclusion of at most $2(q+1)^2$ additional vertices, that is

$$f(\mathcal{P}) \leqslant 2(\tau(G) + 1)^2$$
.

Proof. If \mathcal{P} is of even order, then change its parity by adding a further vertex. Consider the (eventually extended) graph G_1 of the uncovered edges. Clearly, G_1 has a transversal Q of size at most q+1. Remove a maximal set of edge disjoint quadrilaterals from $E(G_1)$ and include them to \mathcal{P} . The remaining graph of the uncovered edges, G_2 , is quadrilateral-free. Since $|V(G_2)| = |V(G_1)|$ is odd, the degrees of G_2 are all even. In particular, G_2 has no vertex of degree 1. By Lemmas 4 and 5, applied on G_2 , we obtain

$$f(\mathcal{P}) \le 2|E(G_2)| \le 2\left[|Q|^2 - \frac{1}{2}|Q|\right] = 2\left[(q+1)^2 - \frac{1}{2}(q+1)\right] < 2(\tau(G) + 1)^2.$$

7. Quadrilateral-free graphs, minimum degree

A neat double counting argument yields the particular case of a general estimation used in the Zarankiewicz problems in Ramsey theory, also known as the Johnson's bound for error correcting codes in coding theory (see in [3,19]).

Lemma 7. If E_1, \ldots, E_m are sets satisfying $|E_i| \ge d$, for $i = 1, \ldots, m$, and $|E_i \cap E_j| \le 1$, for $1 \le i < j \le m$, then

$$\left|\bigcup_{i=1}^m E_i\right| \geqslant \frac{d^2m}{d-1+m}.$$

It is known (see [3]) that if a graph G has n vertices and contains no quadrilateral, then $|E(G)| \le (n + n\sqrt{4n - 3})/4$. An obvious corollary is the bound

$$\delta(G) \leqslant \sqrt{n - \frac{3}{4}} + \frac{1}{2}.\tag{7}$$

In the next lemma we use the transversal number of the graph to obtain a better bound on $\delta(G)$ that is independent of the cardinality of V(G).

Lemma 8. If the edges of a quadrilateral-free graph G are covered by a vertices then

$$\delta(G) < q^{1/2} + \frac{1}{2}q^{1/4} + \frac{1}{4}.$$
(8)

Note that this upper bound cannot be improved significantly without any further restriction. This follows from the fact that the polarity graph G_d is quadrilateral-free, it has d^2+d+1 vertices, its minimum degree is $\delta(G_d)=d$, and $\alpha(G_d)\leqslant d\sqrt{d+1}+d$ (see, e.g., [6]). Even more, Mubayi and Williford [18] recently showed that if G_d is the unitary polarity graph, then $\alpha(G_d)=d^{3/2}+1$. (Such graph exists if d is an even power of a prime.) Hence we should take $q=|V(G_d)|-\alpha(G_d)=d^2-d^{3/2}+d$, and for these values

$$d \geqslant q^{1/2} + \frac{1}{2}q^{1/4} - \frac{1}{2}.$$

For the proof of the above lemma we will need the following statement.

Proposition 9. Let $q \ge 1$ be fixed and define the polynomial $p(x) := x^3 - x^2 - (x^2 - q)^2$. Then p(x) < 0 for $x \ge q^{1/2} + \frac{1}{2}q^{1/4} + \frac{1}{4}$.

Proof. Substitute $q := t^4$ (where $t \ge 1$ fixed) and $x := t^2 + \frac{1}{2}t + \frac{1}{4} + y$, where $y \ge 0$. After a little algebra (using Maple V) one obtains

$$p(x) = p\left(t^2 + \frac{1}{2}t + \frac{1}{4} + y\right) = -y^4 - y^3\left(4t^2 + 2t\right) - y^2\frac{32t^4 + 48t^3 + 12t^2 + 5}{8}$$
$$-y\frac{32t^5 + 16t^4 + 4t^3 + 10t^2 + 5t + 3}{8} - \frac{144t^4 + 160t^3 + 136t^2 + 48t + 13}{256}.$$

Here each term is negative, hence p(x) < 0 follows. \square

Proof of Lemma 8. Let Q be a set of q vertices covering the edges of G. Let $V \setminus Q = \{v_1, v_2, \dots, v_m\}$, $E_i := \{y \in Q : v_i y \in E(G)\}$ and $d := \delta(G)$. Since G is quadrilateral-free, $|E_i \cap E_j| \leq 1$, for $1 \leq i < j \leq m$. Since $q = |Q| \geqslant |\bigcup_{i=1}^m E_i|$, Lemma 7 implies

$$(d-1+m)q \geqslant d^2m. \tag{9}$$

Inequality (7) is equivalent with

$$m+q = |V(G)| \ge d^2 - d + 1.$$
 (10)

If $d^2 - q \le 0$, then (8) follows immediately. Otherwise, multiply (10) by $(d^2 - q)$ and add it to (9). After rearrangements we obtain

$$d^3 - d^2 - (d^2 - q)^2 = p(d) \ge 0.$$

Thus, by Proposition 9, (8) follows. \square

8. Quadrilateral-free graphs, updegree

Let G be a graph with an ordering $\pi = (v_1, \dots, v_m)$ of its vertices. The *updegree* of the vertex v_i with respect to π is defined by

$$\overrightarrow{\deg}_G(v_i) = |\{v_\ell \mid \ell > i, \ v_i v_\ell \in E(G)\}|,$$

and the *updegree* of G with respect to π is defined by

$$\overrightarrow{\Delta}(G) = \max \{ \overrightarrow{\deg}_G(v_i) \mid 1 \leqslant i \leqslant m \}.$$

If G is a graph with $d=\max\{\delta(H)\mid H\subseteq G\}$, then $\overrightarrow{\Delta}(G)\leqslant d$, for some π . Indeed, to obtain an appropriate ordering of V(G) in which the updegree of each vertex becomes d or smaller it is enough to list the vertices by taking greedily the next vertex that has the fewest number of neighbors among the still unlisted vertices. (In fact, we have $d=\min_{\pi}\overrightarrow{\Delta}(G)$, for every graph G.) Hence (8) of Lemma 8 has the following consequence.

Proposition 10. If a quadrilateral-free graph G has a transversal of q vertices then

$$\overrightarrow{\Delta}(G) \leqslant q^{1/2} + q^{1/4}$$

with respect to an appropriate ordering of V(G).

9. Packing paths of length two

Lemma 11. If G has updegree $d = \overrightarrow{\Delta}(G)$, then its edge set has a decomposition into a matching M and a set \mathcal{L} of edge disjoint copies of paths of length two such that every vertex appears at most d+2 times as an end vertex of a member of \mathcal{L} .

Proof. Let (v_1, \ldots, v_m) the ordering of V(G) that yields the updegree $d = \overrightarrow{\Delta}(G)$. The path formed by the two edges $v_i v_\ell$, $v_\ell v_j$ is called a *cherry* in G if $i, j < \ell$. Let \mathcal{L}_0 be a maximal set of pairwise edge disjoint cherries of G. Observe that each $x \in V(G)$ can appear in at most $\overrightarrow{\deg}_G(x) \leq d$ times as an end vertex of a cherry in \mathcal{L}_0 .

By the maximality of \mathcal{L}_0 , the set of edges of G not belonging to \mathcal{L}_0 form a forest T such that the updegree of T with respect to the reverse order $(v_m, v_{m-1}, \ldots, v_1)$ satisfies $\overrightarrow{\Delta}(T) \leqslant 1$. Let F_1 be a maximal set of pairwise edge disjoint cherries in T. Note that these cherries have no common end vertices, since $\overrightarrow{\Delta}(T) \leqslant 1$.

The set of edges of T that are not covered by the cherries in F_1 form a linear forest L, that is the connected components of L are paths. Every path can be decomposed into a matching and copies of P_3 with no common end vertices. Let F_2 be the set of all these copies of P_3 , and let M be the matching collected from all components of L. Thus we obtain a decomposition of E(G) into a matching M and a family of cherries $\mathcal{L} = \mathcal{L}_0 \cup F_1 \cup F_2$ as required. \square

10. Extending a quadrilateral packing

Let $\mathcal P$ be a C_4 -packing on the vertex set V, and let G be the graph of the edges uncovered by $\mathcal P$. We describe a procedure that extends $\mathcal P$ into a packing $\mathcal P'$ on $V\cup B$ which covers all edges of G by adding a (small) set B to V. Note that we do not require $\mathcal P'$ to be a complete C_4 -decomposition.

Let $M \cup \mathcal{L}$ be an arbitrary decomposition of E(G) into a matching M and a set \mathcal{L} of pairwise edge disjoint copies of P_3 . Denote $H(\mathcal{L})$ the graph on vertex set V with xy being an edge of $H(\mathcal{L})$ if and only if x, y are the end vertices of some P_3 belonging to \mathcal{L} .

Proposition 12. *If B is a set satisfying B* \cap *V* = \emptyset *and*

$$|B| \geqslant \max\{\sqrt{2|M|} + 1, \chi'_{\ell}(H(\mathcal{L})) + 2\},\tag{11}$$

then \mathcal{P} can be extended into a C_4 -packing \mathcal{P}' on $V \cup B$ that covers all edges in G.

Proof. Since $|M| \leq {|B| \choose 2}$ there is a mapping $g: \bigcup \{\{x, y\} \mid xy \in M\} \to B$ such that

$$\{g(x), g(y)\} \neq \{g(x'), g(y')\}$$
 for any two distinct edges $xy, x'y' \in M$.

Next, assign to every edge uv of $H(\mathcal{L})$ a list L(uv)

$$L(uv) := B \setminus \{g(u), g(v)\}.$$

By (11), we have $|L(uv)| \ge \chi'_\ell(H(\mathcal{L}))$. Hence by the definition of the list chromatic index, $H(\mathcal{L})$ has a list edge coloring $c: E(H(\mathcal{L})) \to B$ from the lists L(uv). For any path $P \in \mathcal{L}$ with end vertices $u, v \in V$, we have $uv \in E(\mathcal{L})$, thus we can define c(P) := c(uv). Then the list edge coloring c of $H(\mathcal{L})$ yields a mapping $c: \mathcal{L} \to B$ such that $c(P) \ne c(P')$ whenever $P, P' \in \mathcal{L}$ share a common end vertex. Therefore \mathcal{P} can be extended with the quadrilaterals of the form

$$(x, y, g(y), g(x)), \text{ for } xy \in M \text{ and } (u, w, v, c(P)), \text{ for } P = (u, w, v) \in \mathcal{L}.$$

In this way we obtain a packing \mathcal{P}' that covers all edges in $M \cup \{P \mid P \in \mathcal{L}\}$ thus covering all edges of G as required. \square

Proposition 13. Let \mathcal{P} be a C_4 -packing on V, let G be the graph of the uncovered edges, and let $\nu = \nu(G)$. Then \mathcal{P} has an extension into \mathcal{P}' on $V \cup B$ saturating G such that

$$b := |B| \le \sqrt{2\nu} + c_0 \nu^{1/4} (\log \nu)^4 + c_1 \nu^{1/4}. \tag{12}$$

Here c_0 comes from (5) and c_1 is an absolute constant.

Proof. We may suppose that G is quadrilateral-free. The transversal number of a graph is at most 2ν , so that Proposition 10 gives $d := \vec{\Delta}(G) \leqslant \sqrt{2\nu} + (2\nu)^{1/4}$ with respect to an appropriate ordering

of V(G). Then Lemma 11 supplies a decomposition of E(G) into a matching M and a set \mathcal{L} of pairwise edge disjoint copies of P_3 such that

$$\Delta(H(\mathcal{L})) \leqslant d + 2 \leqslant \sqrt{2\nu} + O(\nu^{1/4}),$$

where $H(\mathcal{L})$ is the graph defined by the end vertices of the paths in \mathcal{L} as above. Observe that since G contains no quadrilateral, $H(\mathcal{L})$ is a simple graph. Thus applying the upper bound (5) we obtain

$$\chi'_{\ell}(H(\mathcal{L})) \leq (d+2) + c_0(d+2)^{1/4} (\log(d+2))^{1/4} = \sqrt{2\nu} + c_0 \nu^{1/4} (\log \nu)^4 + O(\nu^{1/4}).$$

So there exists a $c_1 > 0$ such that if we let

$$b := \max\{\lceil \sqrt{2|M|} \rceil + 1, \chi'_{\ell}(H(\mathcal{L})) + 2\},\$$

then b satisfies both (12) and (11). Finally, Proposition 12 yields the desired packing \mathcal{P}' . \square

11. Proof of the theorem

In this section we prove Theorem 1. By Proposition 2, we only have to prove $f(\mathcal{P}) \leq (1 + o(1))\sqrt{n}$ for every C_4 -packing on n vertices. Let $\mathcal{P}_0 := \mathcal{P}$ be a quadrilateral packing on $V_0 = V$, and let G_0 be the graph of the edges uncovered by \mathcal{P}_0 . Observe that $\nu(G_0) \leq n/2$.

We define the consecutive extensions $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$ as follows. Given the quadrilateral packing \mathcal{P}_{i-1} on V_{i-1} , let G_{i-1} be its graph of uncovered edges. We apply Proposition 13 to obtain \mathcal{P}_i on a set $V(\mathcal{P}_{i-1}) \cup B_i$ that covers all edges of G_{i-1} . Obviously B_i is a transversal set in G_i , in particular, G_i has no matching with more than $b_i := |B_i|$ edges, for i = 1, 2, 3. Because $v(G_0) \leqslant n/2$, it follows successively by (12) that

$$b_{1} \leq (1 + o(1))\sqrt{n},$$

$$b_{2} \leq (1 + o(1))\sqrt{2b_{1}} = O(n^{1/4}),$$

$$b_{3} \leq (1 + o(1))\sqrt{2b_{2}} = O(n^{1/8}).$$
(13)

As the last step of the procedure we apply Lemma 6 to extend \mathcal{P}_3 into a C_4 -decomposition \mathcal{P}_4 by adding a set B_4 to $V(\mathcal{P}_3)$ with $b_4 = |B_4| \leq 2(b_3 + 1)^2$.

By (13), we have $b_4 \le O(n^{1/4})$, and thus we obtain an embedding \mathcal{P} into a C_4 -decomposition on $n + b_1 + b_2 + b_3 + b_4 = n + \sqrt{n} + o(\sqrt{n})$ vertices. Hence $f(\mathcal{P}) \le (1 + o(1))\sqrt{n}$ follows.

12. Conclusion, conjectures

In the proof of Theorem 1 we determined $f(n; C_4)$ asymptotically. It is tempting to conjecture that the worst example is the one given by Construction 3.

If H is not bipartite, then f(n; H) is very likely linear in n. We conjecture that for every bipartite graph H one has f(n; H) = o(n).

References

- [1] N. Alon, Y. Caro, R. Yuster, Packing and covering dense graphs, J. Combin. Des. 6 (1998) 451-472.
- [2] J.-C. Bermond, D. Sotteau, Graph decompositions and *G*-designs, in: Proceedings of the Fifth British Combinatorial Conference, Univ. Aberdeen, Aberdeen, 1975, in: Congr. Numer., vol. XV, Utilitas Math., Winnipeg, MB, 1976, pp. 53–72.
- [3] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.
- [4] B. Bollobás, A.J. Harris, List colorings of graphs, Graphs Combin. 1 (1985) 115-127.
- [5] D.E. Bryant, A. Khodkar, S.I. El-Zanati, Small embeddings for partial *G*-designs when *G* is bipartite, Bull. Inst. Combin. Appl. 26 (1999) 86–90.
- [6] Z. Füredi, J. Kahn, Dimension versus size, Order 5 (1988) 17-20.
- [7] R. Häggkvist, J. Janssen, New bounds on the list chromatic index of the complete graph and other simple graphs, Combin. Probab. Comput. 6 (1997) 295–313.
- [8] A.J.W. Hilton, C.C. Lindner, Embedding partial 4-cycle systems, manuscript.
- [9] D.G. Hoffman, C.C. Lindner, C.A. Rodger, A partial 2k-cycle system of order n can be embedded in a 2k-cycle system of order kn + c(k), $k \ge 3$, where c(k) is a quadratic function of k, Discrete Math. 261 (2003) 325–336.

- [10] P. Jenkins, Embedding partial G-designs where G is a 4-cycle with a pendant edge, Discrete Math. 292 (2005) 83-93.
- [11] J. Kahn, Asymptotically good list colorings, J. Combin. Theory Ser. A 73 (1996) 1-59.
- [12] S. Küçükçifçi, C. Lindner, C. Rodger, A partial kite system of order *n* can be embedded in a kite system of order 8*n* + 9, Ars Combin. 79 (2006) 257–268.
- [13] C.C. Lindner, A partial 4-cycle system of order *n* can be embedded in a 4-cycle system of order at most 2*n* + 15, Bull. Inst. Combin. Appl. 37 (2003) 88–93.
- [14] C.C. Lindner, A small embedding for partial 4-cycle systems when the leave is small, J. Autom. Lang. Comb. 8 (2003) 659–662.
- [15] C.C. Lindner, C.A. Rodger, Decomposition into cycles II: Cycle systems, in: J.H. Dinitz, D.R. Stinson (Eds.), Contemporary Design Theory: A Collection of Surveys, John Wiley and Sons, 1992, pp. 325–369.
- [16] C.C. Lindner, C.A. Rodger, D.R. Stinson, Embedding cycle systems of even length, J. Combin. Math. Combin. Comput. 3 (1988) 65–69.
- [17] M. Molloy, B. Reed, Near-optimal list colorings, Random Structures Algorithms 17 (2000) 376-402.
- [18] D. Mubayi, J. Williford, On the independence number of the Erdős–Rényi and projective norm graphs and a related hypergraph, J. Graph Theory 56 (2007) 113–127.
- [19] J. Van Lindt, Introduction to Coding Theory, Grad. Texts in Math., vol. 86, Springer-Verlag, 1982.
- [20] R.M. Wilson, Constructions and uses of pairwise balanced designs, in: M. Hall Jr., J.H. van Lint (Eds.), Combinatorics, in: Math. Centre Tracts, vol. 55, 1974, pp. 18–41.
- [21] R.M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Congr. Numer. 15 (1975) 647–659.