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Let f (n; C4) be the smallest integer such that, given any set
of edge disjoint quadrilaterals on n vertices, one can extend it
into a complete quadrilateral decomposition by including at most
f (n; C4) additional vertices. It is known, and it is easy to show,
that

√
n − 1 � f (n; C4). Here we settle the longstanding problem

that f (n; C4) = √
n + o(

√
n ).

Published by Elsevier Inc.

1. H -packings and H -designs

Let H be a simple graph. An H-packing of order n is a set P := {H1, H2, . . . , Hm} of edge disjoint
copies of H whose union forms a graph with n vertices. If this graph is the complete graph Kn , then P
is called an H-decomposition on n vertices, or following the terminology of design theory, it is called
an H-design of order n. In this case

(n
2

)
/e(H) is an integer, where e(H) denotes the number of edges

of H , and we have the obvious congruence properties

e(H)
∣∣∣∣
(

n

2

)
and

gcd(deg(v1),...,deg(vk))
∣∣∣∣
(n−1)

(1)

where H has vertices v1, v2, . . . , vk , and deg(vi) denotes the degree of vi , i = 1, . . . ,k. An integer n
for which there exists an H-design of order n should satisfy the divisibility constraints (1), and is
called H-admissible. Wilson [21] proved that given any graph H , there exists an integer n0(H) such
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that every n > n0(H) satisfying (1) is H-admissible. The case of the complete graph H = Kt is equiv-
alent to the existence of Steiner systems S(n, t,2). Further H-designs and graph decompositions can
be found in [1,2].

Let Λ(n; H) be the least H-admissible integer N0 such that, for every H-admissible integer N � N0,
any H-packing of order n can be extended into an H-design of order N . The existence of Λ(n; H), for
every H , follows from a far more general result of Wilson [20]. The determination of Λ is a difficult
research area with full of problems and results. Let us list a few explicit bounds. Concerning C� , the
cycle of length �, Hoffman, Lindner, Rodger, and Stinson (see [9,16]) showed

Λ(n; C2k) � kn + O
(
k2).

For the quadrilateral Lindner [13] showed

Λ(n; C4) � 2n + 15.

The case Λ(n; D) where D denotes the five-vertex graph consisting of a 4-cycle with a pendant edge
attached was studied by Jenkins [10], he showed

Λ(n; D) � 4n + 22.

For a graph K called a kite, that is a triangle with a pendant edge attached, it was recently showed
by Küçükçifçi, Lindner, and Rodger [12] that

Λ(n; K ) � 8n + 9.

Bryant, Khodkar, and El-Zanati [5] gave explicit upper bounds (linear in n) for an infinite class of
bipartite H .

2. Quadrilateral decompositions

In the case of H = C4, i.e., for quadrilateral decompositions, (1) implies that a C4-admissible integer
n must satisfy n ≡ 1 (mod 8). Furthermore, every such integer n is C4-admissible (see, e.g., in [15]).
Indeed, for n = 9 and V = {0,1,2, . . . ,8}, it is clear that the cycles

(i, i + 2, i + 5, i + 1) (mod 9), i = 0,1, . . . ,8

form a C4-decomposition of K9. Using this construction and the obvious fact that

the complete bipartite graph K2p,2q has a C4-decomposition (2)

we obtain easily that

any C4-decomposition of Kn can be extended into a C4-decomposition of Kn+8. (3)

Indeed, choose an arbitrary vertex v of the C4-decomposition of Kn on V , and add an 8-element
disjoint vertex set B . Taking a C4-decomposition of K9 on B ∪ {v} and using that both a = |V \ {v}|
and b = |B| are even, the complete bipartite graph Ka,b between V \{v} and B has a C4-decomposition
according to (2). Thus we obtain a quadrilateral decomposition of Kn+8 on V ∪ B .

Hilton and Lindner [8] achieved a breakthrough recently by showing that the order of magnitude
of Λ(n; C4) − n is only o(n). They proved

n + n1/2 − 1 � Λ(n; C4) � n + √
12n3/4 + o

(
n3/4). (4)

The aim of this paper is to show that Λ(n; C4) is more like the lower bound which settles a problem
proposed decades ago (cf. [16]).

Theorem 1. Λ(n; C4) = n + √
n + o(

√
n ).

In terms of graphs our result shows that every partial quadrilateral packing on n vertices can
be extended into a complete quadrilateral decomposition by the inclusion of at most

√
n + o(

√
n )

additional vertices.
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3. Notations, the chromatic index of graphs

For a graph G the set of its vertices and its edges is respectively denoted by V (G) and E(G).
All graphs here are simple graphs with no loop or multiple edge. The degree of a vertex x ∈ V (G)

is deg(x) = |{v ∈ V (G) | vx ∈ E(G)}|, the minimum and the maximum degrees of G are δ(G) =
min{deg(x) | x ∈ V (G)} and �(G) = max{deg(x) | x ∈ V (G)}. A cycle and a path with k vertices are
denoted by Ck and Pk , respectively. The 4-cycle C4 is also called a quadrilateral. A matching is a set of
pairwise disjoint edges, the size of the largest matching in the graph G is called its matching number
and is denoted by ν(G).

Let C be an arbitrary set of k = |C | colors. A proper edge k-coloring of the graph G is a function
c : E(G) → C , such that any two incident edges e, f ∈ E(G) receive distinct colors, that is c(e) �= c( f ).
The minimum k such that there is a proper edge k-coloring of G is called the chromatic index (or
edge chromatic number) of G and it is denoted by χ ′(G). By Vizing’s theorem (see e.g. [3]) for every
simple graph G one has

�(G) � χ ′(G) � �(G) + 1.

A related parameter, the list chromatic index of a graph G is defined as follows. Given a mapping L
from E(G) into the power set of the underlying color set C , a proper edge list coloring c of G from
the lists L(e) is a proper edge coloring of G with the additional property that c(e) ∈ L(e), for every
e ∈ E(G). The list chromatic index, χ ′

�(G), is the least integer t such that there exists a proper edge list
coloring of G for every list assignment L, provided |L(e)| � t , for all e ∈ E(G).

It is an open problem whether the list chromatic index of a graph equals its edge chromatic
number (see [4]). No tight bound comparable to Vizing’s theorem is known for the list chromatic
index. However, Kahn [11] proved the asymptotic version of the list chromatic index conjecture by
showing that χ ′

� = � + o(�). A more explicit bound (with a polynomial error term) was proved by
Häggkvist and Janssen [7]. The best known upper bound is due to Molloy and Reed [17]: There exists
an absolute constant c0, not depending on �, such that for every simple graph of maximum degree �

one has

χ ′
� < � + c0(log �)4�1/2. (5)

4. Tightest quadrilateral extensions

Let f (n; H) be the smallest integer t such that, any H-packing on n vertices can be extended to
an H-decomposition on at most n + t vertices. By definition,

n + f (n; H) � Λ(n; H).

On the other hand, (3) implies that every C4-packing P on n vertices can be embedded into a
C4-decomposition of order n + f (n; C4), n + f (n; C4) + 8, n + f (n; C4) + 16, etc., hence Λ(n; C4) �
n + f (n; C4). Thus we obtain

Proposition 2. For every integer n, Λ(n; C4) = n + f (n; C4).

Construction 3. Define a C4-packing P on V = {1,2, . . . ,n} with the quadrilaterals of the form
(2i,2 j,2i − 1,2 j − 1), for all 1 � i < j � 	n/2
. Observe that P leaves uncovered the matching
M = {(2i − 1,2i) | 1 � i � 	n/2
}, and if n is odd, then all edges incident with vertex n are also
uncovered.

Consider any C4-decomposition P ∗ that extends P of Construction 3 to the vertex set V ∪ B .
Every edge of M must belong to a quadrilateral of P ∗ with its opposite edge between a pair of
vertices not in the subset of V covered by M . These pairs must be distinct, hence either

(|B|
2

)
� n/2

or
(|B|+1

2

)
� (n − 1)/2. This implies

f (n; C4) � |B| � √
n − 1,

and the lower bound in (4) follows.
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5. Completing a quadrilateral packing

Given a C4-packing P on the vertex set V , |V | = n, the union of the edge sets of the quadrilaterals
in P define a graph on V , its complement will be called the graph of the uncovered edges and it is
denoted by G(P ), or simply by G . We also use the notation f (P ) to denote the smallest integer b
such that P can be extended into a C4-decomposition of order n + b.

Lindner [14] proved that if n is odd then P can be completed by adding at most 2|E(G)| new
vertices to it. We include here a short proof of Lindner’s result.

Lemma 4. Let P be a C4-packing of order n and let G be the graph of the uncovered edges. If n is odd, then

f (P) � 2
∣∣E(G)

∣∣. (6)

Proof. We shall define an iterative procedure. In each step a set B of new vertices is added to V (G)

together with quadrilaterals on V ∪ B , thus extending P and reducing the graph of uncovered edges
by at least |B|/2.

If G contains a C4, then include it to P .
If G contains a triangle T = K3, then we add a set B of six new vertices. Include a C4-

decomposition of K9 on the vertex set V (T ) ∪ B to P , and add a C4-decomposition of the complete
bipartite graph K6,n−3 (see (2)) with parts B and V \ V (T ), each of even cardinality. Observe that in
this step |B| = 6, |E(G)| reduces by |B|/2 = 3, and |V (G) ∪ B| remains odd.

If G contains a (not necessarily induced) path P = (a1, . . . ,a5), then we add B = {b1,b2}. Include
the quadrilaterals

(a1,a2,a3,b1), (a3,a4,a5,b2), (b1,a2,b2,a4),

and add a C4-decomposition of the complete bipartite graph K2,n−5 (see (2)) with parts B and V \
V (P ), each of even cardinality. In this step we have |B| = 2, |E(G)| reduces, and |V (G) ∪ B| remains
odd.

The procedure consists in repeating these steps above in any order as long as any of the three
conditions is satisfied. Since n is odd, the graph of the uncovered edges has only even degrees. Thus,
if G contains no quadrilaterals, neither triangles, nor paths of length four, then G cannot have any
edge. Therefore, when our procedure stops, the quadrilaterals extending P form a C4-decomposition
on a vertex set that is not larger than n + 2|E(G)|. �
6. Quadrilateral-free graphs, transversals

A set Q ⊂ V (G) is called a transversal (or vertex-cover) of G if Q meets all edges of G . The
minimum size of such a Q is called the transversal number and is denoted by τ (G). The complement
of a transversal is an independent set of vertices. The size of a largest independent set is denoted
by α(G).

Lemma 5. Let G be a quadrilateral-free graph with a transversal Q . If deg(v) �= 1 for all v ∈ V (G) \ Q , then
|E(G)| � |Q |2 − 1

2 |Q |.

Proof. Let M be the set of all isolated edges in the subgraph of G induced by Q , clearly |M| � |Q |/2.
Observe that all edges in E(G) \ M are covered by a path of the form (q1, x,q2) with q1,q2 ∈ Q . This
is clear for the edges lying in Q , and it follows for any edge incident with a vertex v ∈ V (G) \ Q ,
since V (G) \ Q is an independent set and deg(v) � 2.

Because G is quadrilateral-free, there are at most
(|Q |

2

)
paths of the form (q1, x,q2) with q1,q2 ∈ Q .

Therefore we have |E(G) \ M| � 2
(|Q |

2

)
, and |E(G)| = |M| + |E(G) \ M| � 1

2 |Q | + 2
(|Q |

2

) = |Q |2 − 1
2 |Q |

follows. �
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Note that the upper bound in Lemma 5 is tight as the following construction shows. Let Q be the
vertex set of a complete graph, with |Q | even, then subdivide each of the

(|Q |
2

)
edges by a vertex and

add |Q |/2 further edges forming a matching on Q .

Lemma 6. Let P be a C4-packing and let G be the graph of the uncovered edges. If q vertices cover all edges
of G, then P can be completed by the inclusion of at most 2(q + 1)2 additional vertices, that is

f (P) � 2
(
τ (G) + 1

)2
.

Proof. If P is of even order, then change its parity by adding a further vertex. Consider the (even-
tually extended) graph G1 of the uncovered edges. Clearly, G1 has a transversal Q of size at most
q + 1. Remove a maximal set of edge disjoint quadrilaterals from E(G1) and include them to P . The
remaining graph of the uncovered edges, G2, is quadrilateral-free. Since |V (G2)| = |V (G1)| is odd, the
degrees of G2 are all even. In particular, G2 has no vertex of degree 1. By Lemmas 4 and 5, applied
on G2, we obtain

f (P) � 2
∣∣E(G2)

∣∣ � 2

[
|Q |2 − 1

2
|Q |

]
= 2

[
(q + 1)2 − 1

2
(q + 1)

]
< 2

(
τ (G) + 1

)2
. �

7. Quadrilateral-free graphs, minimum degree

A neat double counting argument yields the particular case of a general estimation used in the
Zarankiewicz problems in Ramsey theory, also known as the Johnson’s bound for error correcting
codes in coding theory (see in [3,19]).

Lemma 7. If E1, . . . , Em are sets satisfying |Ei | � d, for i = 1, . . . ,m, and |Ei ∩ E j | � 1, for 1 � i < j � m,
then ∣∣∣∣∣

m⋃
i=1

Ei

∣∣∣∣∣ � d2m

d − 1 + m
.

It is known (see [3]) that if a graph G has n vertices and contains no quadrilateral, then |E(G)| �
(n + n

√
4n − 3 )/4. An obvious corollary is the bound

δ(G) �
√

n − 3

4
+ 1

2
. (7)

In the next lemma we use the transversal number of the graph to obtain a better bound on δ(G)

that is independent of the cardinality of V (G).

Lemma 8. If the edges of a quadrilateral-free graph G are covered by q vertices then

δ(G) < q1/2 + 1

2
q1/4 + 1

4
. (8)

Note that this upper bound cannot be improved significantly without any further restriction. This
follows from the fact that the polarity graph Gd is quadrilateral-free, it has d2 + d + 1 vertices, its
minimum degree is δ(Gd) = d, and α(Gd) � d

√
d + 1 + d (see, e.g., [6]). Even more, Mubayi and Willi-

ford [18] recently showed that if Gd is the unitary polarity graph, then α(Gd) = d3/2 + 1. (Such graph
exists if d is an even power of a prime.) Hence we should take q = |V (Gd)| − α(Gd) = d2 − d3/2 + d,
and for these values

d � q1/2 + 1

2
q1/4 − 1

2
.

For the proof of the above lemma we will need the following statement.
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Proposition 9. Let q � 1 be fixed and define the polynomial p(x) := x3 − x2 − (x2 − q)2 . Then p(x) < 0 for
x � q1/2 + 1

2 q1/4 + 1
4 .

Proof. Substitute q := t4 (where t � 1 fixed) and x := t2 + 1
2 t + 1

4 + y, where y � 0. After a little
algebra (using Maple V) one obtains

p(x) = p

(
t2 + 1

2
t + 1

4
+ y

)
= −y4 − y3(4t2 + 2t

) − y2 32t4 + 48t3 + 12t2 + 5

8

− y
32t5 + 16t4 + 4t3 + 10t2 + 5t + 3

8
− 144t4 + 160t3 + 136t2 + 48t + 13

256
.

Here each term is negative, hence p(x) < 0 follows. �
Proof of Lemma 8. Let Q be a set of q vertices covering the edges of G . Let V \ Q = {v1, v2, . . . , vm},
Ei := {y ∈ Q : vi y ∈ E(G)} and d := δ(G). Since G is quadrilateral-free, |Ei ∩ E j | � 1, for 1 � i < j � m.
Since q = |Q | � |⋃m

i=1 Ei |, Lemma 7 implies

(d − 1 + m)q � d2m. (9)

Inequality (7) is equivalent with

m + q = ∣∣V (G)
∣∣ � d2 − d + 1. (10)

If d2 − q � 0, then (8) follows immediately. Otherwise, multiply (10) by (d2 − q) and add it to (9).
After rearrangements we obtain

d3 − d2 − (
d2 − q

)2 = p(d) � 0.

Thus, by Proposition 9, (8) follows. �
8. Quadrilateral-free graphs, updegree

Let G be a graph with an ordering π = (v1, . . . , vm) of its vertices. The updegree of the vertex vi
with respect to π is defined by

−−→
degG(vi) = ∣∣{v�

∣∣ � > i, vi v� ∈ E(G)
}∣∣,

and the updegree of G with respect to π is defined by
−→
�(G) = max

{−−→
degG(vi)

∣∣ 1 � i � m
}
.

If G is a graph with d = max{δ(H) | H ⊆ G}, then
−→
�(G) � d, for some π . Indeed, to obtain an

appropriate ordering of V (G) in which the updegree of each vertex becomes d or smaller it is enough
to list the vertices by taking greedily the next vertex that has the fewest number of neighbors among
the still unlisted vertices. (In fact, we have d = minπ

−→
�(G), for every graph G .) Hence (8) of Lemma 8

has the following consequence.

Proposition 10. If a quadrilateral-free graph G has a transversal of q vertices then
−→
�(G) � q1/2 + q1/4

with respect to an appropriate ordering of V (G).

9. Packing paths of length two

Lemma 11. If G has updegree d = −→
�(G), then its edge set has a decomposition into a matching M and a set L

of edge disjoint copies of paths of length two such that every vertex appears at most d + 2 times as an end
vertex of a member of L.
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Proof. Let (v1, . . . , vm) the ordering of V (G) that yields the updegree d = −→
�(G). The path formed by

the two edges vi v� , v�v j is called a cherry in G if i, j < �. Let L0 be a maximal set of pairwise edge
disjoint cherries of G . Observe that each x ∈ V (G) can appear in at most

−−→
degG(x) � d times as an end

vertex of a cherry in L0.
By the maximality of L0, the set of edges of G not belonging to L0 form a forest T such that the

updegree of T with respect to the reverse order (vm, vm−1, . . . , v1) satisfies
−→
�(T ) � 1. Let F1 be a

maximal set of pairwise edge disjoint cherries in T . Note that these cherries have no common end
vertices, since

−→
�(T ) � 1.

The set of edges of T that are not covered by the cherries in F1 form a linear forest L, that
is the connected components of L are paths. Every path can be decomposed into a matching and
copies of P3 with no common end vertices. Let F2 be the set of all these copies of P3, and let M
be the matching collected from all components of L. Thus we obtain a decomposition of E(G) into a
matching M and a family of cherries L = L0 ∪ F1 ∪ F2 as required. �
10. Extending a quadrilateral packing

Let P be a C4-packing on the vertex set V , and let G be the graph of the edges uncovered by P .
We describe a procedure that extends P into a packing P ′ on V ∪ B which covers all edges of G by
adding a (small) set B to V . Note that we do not require P ′ to be a complete C4-decomposition.

Let M ∪ L be an arbitrary decomposition of E(G) into a matching M and a set L of pairwise edge
disjoint copies of P3. Denote H(L) the graph on vertex set V with xy being an edge of H(L) if and
only if x, y are the end vertices of some P3 belonging to L.

Proposition 12. If B is a set satisfying B ∩ V = ∅ and

|B| � max
{√

2|M| + 1,χ ′
�

(
H(L)

) + 2
}
, (11)

then P can be extended into a C4-packing P ′ on V ∪ B that covers all edges in G.

Proof. Since |M| � (|B|
2

)
there is a mapping g :

⋃{{x, y} | xy ∈ M} → B such that{
g(x), g(y)

} �= {
g(x′), g(y′)

}
for any two distinct edges xy, x′ y′ ∈ M.

Next, assign to every edge uv of H(L) a list L(uv)

L(uv) := B \ {
g(u), g(v)

}
.

By (11), we have |L(uv)| � χ ′
�(H(L)). Hence by the definition of the list chromatic index, H(L) has a

list edge coloring c : E(H(L)) → B from the lists L(uv). For any path P ∈ L with end vertices u, v ∈ V ,
we have uv ∈ E(L), thus we can define c(P ) := c(uv). Then the list edge coloring c of H(L) yields a
mapping c : L → B such that c(P ) �= c(P ′) whenever P , P ′ ∈ L share a common end vertex. Therefore
P can be extended with the quadrilaterals of the form(

x, y, g(y), g(x)
)
, for xy ∈ M and

(
u, w, v, c(P )

)
, for P = (u, w, v) ∈ L.

In this way we obtain a packing P ′ that covers all edges in M ∪ {P | P ∈ L} thus covering all edges
of G as required. �
Proposition 13. Let P be a C4-packing on V , let G be the graph of the uncovered edges, and let ν = ν(G).
Then P has an extension into P ′ on V ∪ B saturating G such that

b := |B| � √
2ν + c0ν

1/4(logν)4 + c1ν
1/4. (12)

Here c0 comes from (5) and c1 is an absolute constant.

Proof. We may suppose that G is quadrilateral-free. The transversal number of a graph is at most 2ν ,
so that Proposition 10 gives d := −→

�(G) �
√

2ν + (2ν)1/4 with respect to an appropriate ordering
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of V (G). Then Lemma 11 supplies a decomposition of E(G) into a matching M and a set L of pairwise
edge disjoint copies of P3 such that

�
(

H(L)
)
� d + 2 �

√
2ν + O

(
ν1/4),

where H(L) is the graph defined by the end vertices of the paths in L as above. Observe that since G
contains no quadrilateral, H(L) is a simple graph. Thus applying the upper bound (5) we obtain

χ ′
�

(
H(L)

)
� (d + 2) + c0(d + 2)1/4(log(d + 2)

)1/4 = √
2ν + c0ν

1/4(logν)4 + O
(
ν1/4).

So there exists a c1 > 0 such that if we let

b := max
{⌈√

2|M|⌉ + 1,χ ′
�

(
H(L)

) + 2
}
,

then b satisfies both (12) and (11). Finally, Proposition 12 yields the desired packing P ′ . �
11. Proof of the theorem

In this section we prove Theorem 1. By Proposition 2, we only have to prove f (P ) � (1 + o(1))
√

n
for every C4-packing on n vertices. Let P0 := P be a quadrilateral packing on V 0 = V , and let G0 be
the graph of the edges uncovered by P0. Observe that ν(G0) � n/2.

We define the consecutive extensions P1, P2, P3 as follows. Given the quadrilateral packing Pi−1
on V i−1, let Gi−1 be its graph of uncovered edges. We apply Proposition 13 to obtain Pi on a set
V (Pi−1) ∪ Bi that covers all edges of Gi−1. Obviously Bi is a transversal set in Gi , in particular,
Gi has no matching with more than bi := |Bi | edges, for i = 1,2,3. Because ν(G0) � n/2, it follows
successively by (12) that

b1 �
(
1 + o(1)

)√
n,

b2 �
(
1 + o(1)

)√
2b1 = O

(
n1/4),

b3 �
(
1 + o(1)

)√
2b2 = O

(
n1/8). (13)

As the last step of the procedure we apply Lemma 6 to extend P3 into a C4-decomposition P4 by
adding a set B4 to V (P3) with b4 = |B4| � 2(b3 + 1)2.

By (13), we have b4 � O (n1/4), and thus we obtain an embedding P into a C4-decomposition on
n + b1 + b2 + b3 + b4 = n + √

n + o(
√

n ) vertices. Hence f (P ) � (1 + o(1))
√

n follows.

12. Conclusion, conjectures

In the proof of Theorem 1 we determined f (n; C4) asymptotically. It is tempting to conjecture that
the worst example is the one given by Construction 3.

If H is not bipartite, then f (n; H) is very likely linear in n. We conjecture that for every bipartite
graph H one has f (n; H) = o(n).
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