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a b s t r a c t

A hypergraph ([n], E) is 3-color critical if it is not 2-colorable, but
for all E ∈ E the hypergraph ([n], E \ {E}) is 2-colorable. Lovász
proved in 1976, that |E | ≤

 n
k−1


if E is k-uniform. Here we give a

new algebraic proof and an ordered version that is a sharpening of
Lovász’ result.

Let E ⊆


[n]
k


be a k-uniform set system on an underlying

set [n] of n elements. Let us fix an ordering E1, E2, . . . Et of E and
a prescribed partition {Ai, Bi} of each Ei (i.e., Ai ∪ Bi = Ei and
Ai ∩ Bi = ∅). Assume that for all i = 1, 2, . . . , t there exists a
partition {Ci,Di} of [n] such that Ei ∩ Ci = Ai and Ei ∩ Di = Bi, but
{Ej ∩ Ci, Ej ∩Di} ≠ {Aj, Bj} for all j < i. That is, the ith partition cuts
the ith set as it was prescribed, but it does not cut any earlier set
properly. Then

t ≤ f (n, k) :=


n − 1
k − 1


+


n − 1
k − 2


+ · · · +


n − 1
0


.

This is sharp for k = 2, 3. We show that this upper bound is almost
the best possible, at least the first three terms are correct; we give
constructions of size f (n, k) − O(nk−4) (for k fixed and n → ∞).
We also give constructions of sizes

 n
k−1


for all n and k.

Furthermore, in the 3-color-critical case (i.e. {Ai, Bi} = {Ei, ∅}

for all i), t ≤
 n
k−1


.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction, color critical hypergraphs

Definition 1. A k-uniform hypergraphH is ℓ-color critical if it is not (ℓ−1)-colorable, but any proper
subhypergraph of H is (ℓ − 1)-colorable.
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Wewill denote by n the number of vertices of graphs and hypergraphs considered and usually identify
their vertex set by [n] := {1, 2, . . . , n}.

The only 3-color critical graphs are the odd cycles. Dirac [7] showed in 1952 that for ℓ ≥ 6 there
exists a c(ℓ) > 0 such that there are infinitelymany ℓ-color critical graphswith at least (c(ℓ)−o(1))n2

edges. Later Toft [18] proved that the same holds for all ℓ ≥ 4, and established that c(4) ≥
1
16 .

Minimal 3-color critical hypergraphs were already considered by Bernstein [6] who definedm(k)
as the minimum number of edges of a 3-color critical k-uniform hypergraph (on any number of
vertices). Erdős and Lovász [9] proved by a random construction that m(k) < 2k22k and Beck [5]
showed m(k) > ck1/3−o(1)2k. The best lower bound up to date was obtained by Radhakrishnan and
Srinivasan [15]m(k) ≥ 0.7

√
k/ ln k × 2k.

There is a similar phenomenon for hypergraphs considering the maximal size of color critical ones
as it was observed for graphs. Toft proved [19] that for k, ℓ > 3 fixed, n → ∞, there exists a k-uniform
ℓ-color critical hypergraph on n vertices of size Ω(nk). He asked:

Problem 2. What is the maximum size tk(n) of a 3-color critical k-uniform hypergraph on n vertices?

Toft showed that Ω(nk−1) ≤ tk(n) ≤ o(nk). Lovász [12] gave a matching upper bound.

Theorem 3.

tk(n) ≤


n

k − 1


.

2. Ordered 3-critical hypergraphs

A3-color critical hypergraph ([n], E)has theproperty that every edge E ∈ E has a partition {CE,DE}

of the vertex set [n] (i.e., C ∪ D = [n], C ∩ D = ∅) such that both CE and DE meet all other edges but E
is disjoint to one of them. We generalize this notion as follows.

Definition 4. A hypergraph H = ([n], E) is called ordered 3-critical if there exists an ordering
E1, E2, . . . , Et of E and a partition {Ci,Di} of [n] for each member of E such that for all i = 1, 2, . . . , t
the restriction of this partition to Ei is the trivial one {Ei, ∅}, but the restriction of {Ci,Di} to Ej is a
proper partition, Ci ∩ Ej ≠ ∅ and Di ∩ Ej ≠ ∅ for all j < i.

The following is a strengthening of Lovász’ theorem.

Theorem 5. Let E ⊆


[n]
k


be an ordered 3-critical k-uniform hypergraph. Then

|E | ≤


n

k − 1


. (1)

The proof is algebraic, and it is postponed to Section 5. We use the tools andmethods explained in the
book of Babai and Frankl [4], especially some ideas similar to [10].

Unfortunately, using this method one cannot decide if lim sup tk(n)/
 n
k−1


is less than 1 or not,

because one can easily construct an ordered 3-critical hypergraph of size


n−1
k−1


as follows

E = {E : 1 ∈ E ⊂ [n], |E| = k}. (2)

The ordering of the edges can be arbitrary, and the partition belonging to E is {E, [n] \ E}.

3. Partition critical hypergraphs

In this further generalization we only require that each edge has a partition of the vertex set of [n]
which cuts it differently than the earlier edges. More precisely we have the following definition.
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Definition 6. A hypergraph H = ([n], E) is called partition critical if there exists an ordering
E1, E2, . . . , Et of E and a partition {Ai, Bi} of Ei and a partition {Ci,Di} of [n] for all i = 1, 2, . . . , t
such that the restriction {Ci,Di} to Ei is exactly {Ai, Bi}, but the restriction of {Ci,Di} to Ej is not {Aj, Bj}

(i.e., Ci ∩ Ej ≠ Aj and Di ∩ Ej ≠ Aj) for all j < i.
In other words, the ith partition cuts the ith set as it is prescribed, but it does not cut any earlier

set properly.

A 3-color critical hypergraph is certainly partition critical, as well. Indeed, for an arbitrary ordering
of the edges E1, E2, . . . , Et of E , the partition Ai = Ei, Bi = ∅ works for all edges.

Theorem 7. For an arbitrary partition critical k-uniform hypergraph we have

|E | ≤


n − 1
k − 1


+


n − 1
k − 2


+ · · · +


n − 1
0


. (3)

The proof is algebraic, and it is postponed to Section 6.
This theorem improves the earlier upper bound t ≤

 n
k−1


+
 n
k−2


+· · ·+

 n
0


by Anstee, Fleming

and the present authors [3]. The partition critical (multi)hypergraphs there came up in the context of
forbidden configuration theorems for simple 0–1 matrices. For more about this see the survey [2].

Another remarkable result concerning hypergraphs and partitions is Lovász’ k-forest theorem. A
hypergraph (E, [n]) is called a k-forest if each Ei ∈ E has its own k-partition πi = {X i

1, . . . , X
i
k} (here

[n] = X i
1 ∪ · · · ∪ X i

k) such that πi cuts Ei into k singletons, but it does not cut any other Ej this way.

Lovász [13] showed (with an algebraic proof!) that a k-forest on n vertices has at most


n−1
k−1


edges.

This bound is the best possible (see (2)). A new simpler proof was found by Parekh [14].

4. How good is this upper bound?

The bound (3) is sharp for k = 2, 3, see Section 7 below. For all n ≥ 2k − 1 and k ≥ 2 in Section 8
we construct a partition critical k-uniform hypergraphs of size

 n
k−1


.

Let f (n, k) :=


i≤k−1


n−1
i


, i.e., the right hand side of the inequality (3). Let pk(n) be the

maximum of the left hand side of (3)

pk(n) := max

|E | : E ⊂


[n]
k


and it is partition critical


.

Theorem 8. We have pk(n) > f (n, k) − O(nk−4), in other words

pk(n) =


n − 1
k − 1


+


n − 1
k − 2


+


n − 1
k − 3


+ O(nk−4). (4)

We prove this theorem by giving two constructions.
We are convinced that the construction in Section 9 can be developed to an optimal one (for fixed

kwhenever n → ∞) however the construction in Section 10 is more explicit and gives

pk(n) ≥


n − 1
k − 1


+


n − 1
k − 2


+


n − 1
k − 3


− 7


n − 2
k − 4


(5)

for all n ≥ 2k.
We obtain that there exist a partition critical k-uniform hypergraphs whose size is larger than n

k−1


, the bound (1). This implies that the condition of ordered 3-critical is stronger than that of the

partition critical hypergraphs.
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5. Algebraic proof of the upper bound, the case of ordered 3-critical hypergraphs

In this section we prove Theorem 5, i.e., the inequality (1). We define n-variable polynomials
Pi(x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn] for all Ei ∈ E , furthermore QH(x1, x2, . . . xn) ∈ R[x1, x2, . . . , xn]
for all H ⊂ [n] = {1, 2, . . . , n} with |H| ≤ k − 2. Let Pi be defined by

Pi(x1, x2, . . . , xn) =


1≤m≤k−1


v∈Ci

xv


− m


,

where Ci is one side of the partition Ci ∪Di = [n] that belongs to edge Ei according to Definition 4. On
the other hand, QH is defined by

QH(x1, x2, . . . , xn) =


h∈H

xh


n

j=1

xi − k


.

Let Ŷ denote the characteristic vector of subset Y ⊆ [n]. According to Definition 6 Pj(Ei) = 0, if i < j
but Pj(Ej) ≠ 0. Indeed, Pj(Ei) =


1≤m≤k−1(|Cj ∩ Ei| − m). Since the partition Cj ∪ Dj = [n] cuts Ei

in proper nonempty subsets, 1 ≤ |Cj ∩ Ei| ≤ k − 1 for i < j. Similarly, QH(Ŷ ) ≠ 0 iff H ⊆ Y and
|Y | ≠ k. Now let P̃i(x1, x2, . . . , xn) be the polynomial obtained from Pi by expanding the products and
the repeatedly replacing higher order factor x2v by xv for all 1 ≤ v ≤ n. P̃i is multilinear of degree at
most k − 1, furthermore for any subset Y ⊆ [n] we have P̃i(Ŷ ) = Pi(Ŷ ). Let Q̃H be obtained from QH

by the same reduction as above. Q̃H is also multilinear of degree at most k− 1 and Q̃H(Ŷ ) = QH(Ŷ ) for
any subset Y ⊆ [n].

Claim 9. The system of polynomials P = {Q̃H :H ⊂ [n], |H| ≤ k − 2} ∪ {P̃i: 1 ≤ i ≤ t} is linearly
independent in the space of multilinear polynomials of degree at most k − 1 of n variables.

Proof. Order the polynomials as follows. First put Q̃H in decreasing order of the size of H . Then put P̃i
for 1 ≤ i ≤ t . Suppose on the contrary, that there exists a non-trivial linear combination

H⊂[n], |H|≤k−2

λH Q̃H +

t
i=1

βiP̃i = 0 (6)

that results in the zero polynomial. Consider the last non-zero coefficient according to the order
defined above. If that is λH for some H , then evaluate (6) at Ĥ . Since for any Q̃K earlier in the order
than Q̃H we have Q̃K (Ĥ) = 0. The value of (6) at Ĥ is λH Q̃H(Ĥ) ≠ 0, a contradiction. Similarly, if the
last non-zero coefficient is βj for some j, then evaluate (6) at Ej. Q̃H(Ej) = 0, since |Ej| = k. On the
other hand, P̃i(Ej) = 0 for j < i, as it was observed above. Thus, the value of (6) atEj is P̃j(Ej) ≠ 0, a
contradiction again. �

Hence the number of polynomials in P is at most the dimension of the linear space of multilinear
polynomials of degree at most k − 1 of n variables. Thus,

|{Q̃H :H ⊂ [n], |H| ≤ k − 2}| + t = |P | ≤


n

k − 1


+


n

k − 2


+ · · · +

n
0


,

which implies (1). �

6. Algebraic proof of the upper bound, the case of partition critical hypergraphs

In this section we prove Theorem 7, i.e., the inequality (3). Define a polynomial pi(x) ∈

R[x1, x2, . . . , xn] for each Ei as follows.

pi(x1, x2, . . . , xn) =


a∈Ai

(1 − xa)

b∈Bi

xb + (−1)k+1

a∈Ai

xa

b∈Bi

(1 − xb). (7)
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These polynomials are multilinear of degree at most k − 1, since the product


e∈Ei
xe cancels by

the coefficient (−1)k+1. It can be easily checked that pj(Ci) = 0 if j < i and pi(Ci) ≠ 0. Let us
assume without loss of generality that the partitions Ci ∪ Di = [n] are so that n ∈ Di holds for every
i = 1, 2, . . . , t . Let the polynomials qi be defined by

qi(x1, x2, . . . , xn−1) = pi(x1, x2, . . . , xn)|xn=0 ∈ R[x1, x2, . . . , xn−1].

Let C ′

i = Ci|{1,2,...,n−1}. Then qj(C ′

i ) = pj(Ci) for all j ≤ i. Thus the polynomials qj are linearly
independent in the space ofmultilinear polynomials of degree atmost k−1with variables x1, . . . , xn−1
and (3) follows.

7. Lower bounds. The cases k = 2 and k = 3

In this sectionwe show that inequality (3) is sharp for k = 2, 3. The case k = 2 is trivial, the 3-color
critical (hyper)graphs are the odd cycles and they reach equality in (3).

For k = 3, consider the following hypergraph ([n], E), where E = E1 ∪ E2 ∪ {{2, 4, 5}}. E1 consists
of all triplets that contain 1. E2 = {{2, 3, 4}, {3, 4, 5}, . . . , {n − 2, n − 1, n}, {n − 1, n, 2}, {n, 2, 3}}.
The prescribed partition of E ∈ E1 is {1} ∪ (E \ {1}), while {i, i + 1, i + 2} is decomposed as
{i} ∪ {i+ 1, i+ 2} = {i, i+ 1, i+ 2}, i+ 1 and i+ 2 should be understood cyclically, that is n+ 1 ≡ 2
and n+2 ≡ 3. Finally, {2, 4, 5} is cut as ∅∪{2, 4, 5} = {2, 4, 5}. The ordering of the edges in E is that
edges in E1 are first in arbitrary order, then come edges in E2 also arbitrarily sorted, finally, {2, 4, 5}
is the last edge. The partition of the underlying set for {1, i, j} ∈ E1 is {i, j} ∪ ([n] \ {i, j}). That for
{i, i + 1, i + 2} ∈ E2 is {i} ∪ ([n] \ {i}), finally the last partition (that belongs to {2, 4, 5}) is ∅ ∪ [n]. It
is easy to check that this satisfies the conditions of Definition 6.

The following proposition is an easy exercise. We will need a particular proof of it for the second
construction later.

Proposition 10. Suppose a ≤ b and a + b ≤ m. Then there exists a matching from


[m]

a


to


[m]

b


so

that if A ∈


[m]

a


is matched to B ∈


[m]

b


then A ⊆ B. �

8. Lower bounds. A hypergraph of size
 n
k−1


In this section we construct a k-uniform partition critical hypergraph ([n], E) of size

 n
k−1


for all

n and kwith n ≥ 2k − 1.
The edge set E is a disjoint union E = E1 ∪ E2 ∪ . . . ∪ Ek where Ei is on the underlying set

[n]i = {i, i + 1, . . . , n}. Let Ei consist of the k-sets of [n]i matched by Proposition 10 to the collection
of k − i + 1-sets of [n]i that contain the element i. Thus, |Ei| =


n−i
k−i


. If F ∈ Ei, then there exists

i ∈ GF ⊂ [n]i, such that |GF | = k − i + 1 and GF ⊆ F . Let the partition prescribed to F be
F = (GF \ {i}) ∪ (F \ GF ∪ {i}). The partition of the underlying set [n] that belongs to F ∈ Ei is
[n] = (GF \ {i}) ∪ ([n] \ GF ∪ {i}). The ordering of edges in E is that E ∈ Ei is before F ∈ Ej if i < j,
within the same Ei arbitrary.

Claim 11. The hypergraph ([n], E) defined above is partition critical.

Proof. Let us first consider edges E and F such that E ∈ Ei and F ∈ Ej with i < j. The prescribed
partition of E is E = (GE \ {i}) ∪ (E \ GE ∪ {i}), while the partition of [n] belonging to F is
[n] = (GF \ {j}) ∪ ([n] \GF ∪ {j}). k− j = |GF \ {j}| < |GE \ {i}| = k− i, hence (GF \ {j}) ∩ E ≠ GE \ {i}.
On the other hand, i ∈ E \ GE ∪ {i} but i ∉ GF \ {j}, thus E \ GE ∪ {i} ≠ E ∩ (GF \ {j}).

On the other hand, if E and F belong to the same Ei, then clearly (GF \ {i}) ∩ E ≠ GE \ {i} since
GF ≠ GE . Furthermore, E \ GE ∪ {i} ≠ E ∩ (GF \ {i}), since i is contained in the left hand side, but not
in the right hand side.

Thus, if E is before F in the ordering of the edges, then the partition of [n] belonging to F does not
cut E properly. �
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The size of E is

|E | =

k
i=1

|Ei| =

k
i=1


n − i
k − i


=


n

k − 1


as claimed.

9. Lower bounds. A construction with error term O(nk−4)

Here we give a construction whose size exceeds
 n
k−1


for fixed k and large enough n, a partition

critical hypergraph of size f (n, k) − O(nk−4).
Let us recall the following elegant symmetric chain decomposition of Bn, the subset lattice of

{1, 2, . . . , n} given by Greene and Kleitman [11]. A chain A1 ⊂ A2 ⊂ · · · At ⊆ {1, 2, . . . , n} is called
symmetric if |Ai| + 1 = |Ai+1| for i = 1, 2, . . . , t − 1 and |A1| + |At | = n. This symmetric chain
decomposition plays an important role in proving Sperner-type theorems for Bn. The interested reader
is referred to the book of Engel [8]. A sequence of left and right parentheses of length n is assigned
to each subset A ⊆ {1, 2, . . . , n}, as follows. There is a right parenthesis on position i if i ∈ A, while
a left parenthesis stands on position i if i ∉ A. These parentheses are matched in the natural way
till there is some unmatched left parenthesis preceding some unmatched right parenthesis. When the
matching process finishes, the sequence of unmatched parentheses consists of some right parentheses
followed by left ones. Setswith the samepairs ofmatched parentheses form a symmetric chain. In fact,
the smallest element of the chain is the set whose unmatched parentheses are all left ones. Then the
other sets of the chain are obtained by successively turning left parentheses to right ones startingwith
the leftmost unmatched parenthesis. As an example, consider n = 8, A = {2, 4, 5}.

1 2
( ) 3 4

( ) 5 6 7 8
) ( ( (.

Thus, the sets in the chain of A are {2, 4}, {2, 4, 5}, {2, 4, 5, 6}, {2, 4, 5, 6, 7}, {2, 4, 5, 6, 7, 8}. Note,
that this symmetric chain partition in particular proves Proposition 10.

We will use this construction on the underlying set {2, 3, . . . , n} instead of {1, 2, . . . , n}. For
A ⊂ {2, 3, . . . , n}, |A| = k − 2 let p(A) denote the 2-element subset of {2, 3, . . . , n} such that
A∪p(A) is the k-element subset in the symmetric chain of A obtained by the parentheses construction.
The edge set E of our partition critical hypergraph is a disjoint union E = Ek−1 ∪ Ek−2 ∪ Ek−3.
Ek−1 = {A ∪ {1}: A ⊂ {2, 3, . . . , n}, |A| = k − 1}, while Ek−2 = {A ∪ p(A): A ⊂ {2, 3, . . . , n}, |A| =

k − 2 and |A ∩ {2, 3, . . . , k + 2}| ≤ 1}. Finally, Ek−3 consists of the k-subsets of {5, 6, . . . , n} that are
matched by Proposition 10 to those k−2-subsets that contain element 5. Thus an edge E ∈ Ek−i has an
own k − i-element subset f (E), namely for E ∈ Ek−1f (E) = E \ {1}, for E = A ∪ p(A) ∈ Ek−2f (E) = A,
while for E ∈ Ek−3 matched to the k− 2-set G, f (E) = G \ {5}. The partition of an edge E ∈ Ek−i is E =

f (E)∪(E \ f (E)) and the partition of the underlying set [n] that belongs to E is [n] = ([n]\ f (E))∪ f (E).
The ordering of the edges is so that E ∈ Ek−i comes before F ∈ Ek−j if i < j. Edges in the same class
are ordered arbitrarily.

Claim 12. Let |A| = k− 2 and |A∩{2, 3, . . . , k+ 2}| ≤ 1. Then p(A) ⊂ {2, 3, . . . , k+ 2}. Furthermore,
p(A) ∩ {2, 3, 4} ≠ ∅.

Proof. At most one right parenthesis that corresponds to elements of A stands on the first k + 1
positions. Furthermore, atmost k−2 left parentheses arematched to the right parentheses of elements
of A. That takes up at most k−1 parenthesis positions of the first k+1 positions. So there are at least 2
unmatched left parentheses there that can be turned to right ones to form p(A). The second statement
holds if A∩ {2, 3} = ∅, since it is easy to see that the left parenthesis on the first position (element 2)
is not matched, so 2 ∈ p(A). If 2 ∈ A, then clearly 3 ∈ p(A). If 3 ∈ A, then at most the rightmost k − 3
left parentheses corresponding to elements 4, 5, . . . , k + 1 are matched, so 4 ∈ p(A). �

Claim 13. The hypergraph ([n] = {1, 2, . . . , n}, E = Ek−1 ∪ Ek−2 ∪ Ek−3) with the partitions defined
above is partition critical.
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Proof. Let E, F ∈ E such that E comes before F in the ordering. We need to prove that the partition of
the underlying set [n] belonging to F does not cut E properly. If both E and F belong to Ek−1 or to Ek−3,
then the corresponding proof of Claim 11 applies. If both E and F belong to Ek−2, then let E = A∪p(A)
and F = B ∪ p(B). p(A) ⊄ B by definition, so E ∩ f (F) = E ∩ B ≠ p(A). On the other hand, clearly
E ∩ f (F) = E ∩ B ≠ A, thus the partition that belongs to F does not cut E properly. If E ∈ Ek−i and
F ∈ Ek−j with i < j, then |f (E)| > |f (F)|, so E ∩ f (F) ≠ f (E). On the other hand ([n] \ f (F)) ∩ E
contains an element in E \ f (E). Indeed, this element is 1 for i = 1, and it is one of 2,3,4 if i = 2. �

The size of this hypergraph |Ek−1| + |Ek−2| + |Ek−3|, where |Ek−1| =


n−1
k−1


, |Ek−2| =


n−1
k−2


−k−2

l=2


k+1
l

 
n−k−2
k−2−l


, |Ek−3| =


n−5
k−3


. Thus

f (n, k) − |E | =

k−2
l=2


k + 1

l


n − k − 2
k − 2 − l


+


n − 1
k − 3


−


n − 5
k − 3


+

k
j=4


n − 1
k − j


.

Here the right hand side is O(nk−4) for fixed k.
Dániel Soltész [17] gave a 4-uniform partition critical hypergraph of size f (n, 4) − 1 using some

fine tuning of the construction above.

10. Lower bounds. A more explicit construction

Here we give a another partition critical hypergraph of size f (n, k) − O(nk−4).
Similarly as above, the k-uniform family E on the vertex set [n] consists of three parts, E =

Ek−1∪Ek−2∪Ek−3, and Ek−2 again split into three parts. The ordering of the five groups of E is the same
as they are defined, Ek−1 precedes all others, the ordering of themembers inside the group is arbitrary.
The next group is E23

k−2, etc. While defining the edges E of Ek−i we also define a subset f (E) ⊂ E of size
|f (E)| = k − i. Finally the corresponding partition of E is {f (E), E \ f (E)}, |f (E)| = k − i and the
corresponding partition of [n] is {f (E), [n] \ f (E)}.

Ek−1 := {1 ∪ A}, where |A| = k − 1 and A ⊂ {2, . . . , n}. We define f (E) = A.
Ek−2 consists of three parts Ek−2 = E23

k−2 ∪ E2
k−2 ∪ E3

k−2 where
E23
k−2 := {{2, 3} ∪ A}, where |A| = k − 2 and A ⊂ {4, . . . , n}. We define f (E) = A.

E2
k−2 := {{2, 4, 5} ∪ A}, where |A| = k − 3 and A ⊂ {6, . . . , n}. We define f (E) = A ∪ {2}.

E3
k−2 := {{3, 4, 5} ∪ A}, where |A| = k − 3 and A ⊂ {6, . . . , n}. We define f (E) = A ∪ {3}.

Ek−3 := {{4, 5, 6} ∪ A}, where |A| = k − 3 and A ⊂ {7, . . . , n}. We define f (E) = A.
It is easy the check, that the family is indeed partition critical. We have

|E | =


n − 1
k − 1


+


n − 3
k − 2


+ 2


n − 5
k − 3


+


n − 6
k − 3


=


n − 1
k − 1


+


n − 1
k − 2


+


n − 1
k − 3


−


n − 2
k − 4


− 2


n − 3
k − 4


− 3


n − 4
k − 4


− 3


n − 5
k − 4


−


n − 6
k − 4


. �

If one is going to use Proposition 10 then one can further improve this lower bound for n ≥ 2k as
follows.

The first two groups Ek−1 and E23
k−2 are unchanged. The next three aremodified as follows. Let qs(A)

denote the s-subset of {5, . . . , n} matched to A using Proposition 10 for a subset A ⊂ {5, . . . , n}.
E2
k−2 := {{2, 4} ∪ qk−2(A)}, where |A| = k − 3 and A ⊂ {5, . . . , n}. We define f (E) = A ∪ {2}.

E3
k−2 := {{3, 4} ∪ qk−2(A)}, where |A| = k − 3 and A ⊂ {5, . . . , n}. We define f (E) = A ∪ {3}.

Ek−3 := {{4} ∪ qk−1(A)}, where |A| = k − 3 and A ⊂ {5, . . . , n}. We define f (E) = A.
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We have

|E | =


n − 1
k − 1


+


n − 3
k − 2


+ 3


n − 4
k − 3


=


n − 1
k − 1


+


n − 1
k − 2


+


n − 1
k − 3


−


n − 2
k − 4


− 2


n − 3
k − 4


− 3


n − 4
k − 4


. �

We can prove that f (n, k) − |E | ≥ Ω(nk−4) if the ordering of E starts with Ek−1. Based on this we
suggest

Conjecture 14. For fixed k as n → ∞

f (k, n) − pk(n) = Ω(nk−4).

11. Further generalizations. Multihypergraphs and smaller edges

Let p≤k(n) denote the maximum size of an n-vertex partition critical hypergraph with edge sizes
at most k. The same proof as in Section 6 gives

p≤k(n) ≤ f (n, k),

the only change one needs is that in (7) in the definition of pi(x) the term (−1)k+1 has to be replaced
by (−1)|Ei|+1. In this case it is sharp for all k, as the following construction shows. E =

k
i=1 Ei, where

Ei is the collection of i-element subsets of [n] that contain element 1. The ordering of the edges is so
that for E ∈ Ei and F ∈ EjE is before F iff j < i, while within the same Ei the ordering is arbitrary. The
prescribed partition of E ∈ E is {1} ∪ (E \ {1}). The partition of the underlying set [n] that belongs to
E is (E \ {1}) ∪ [n] \ (E \ {1}) = [n].

Let pmulti
k (n)denote themaximumsize of an n-vertex, k-uniformpartition criticalmultihypergraph.

The same proof as in Section 6 gives

pmulti
k (n) ≤ f (n, k).

This is sharp again for all n ≥ 2k. One just has to use Proposition 10 for the previous construction and
to match the smaller sets to k-sets containing the element 1.

There are many more interesting classes of color critical hypergraphs. For example, recently, Rödl
and Siggers [16] extended the results of Toft (s = k − 1) and Abbott and Liu [1] (s = 1) showing that
there exists a c = c(ℓ, k, s) (where k > s ≥ 2, ℓ ≥ 3) such that for large enough n one can construct
an ℓ-color critical k-uniform system H on n vertices of size at least |H | > cns, such that no s-set of
vertices occurs in more than one edge. Obviously, |H | ≤

 n
s


/


k
s


holds for every such packing.
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