

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 34 (2009) 515-517

www.elsevier.com/locate/endm

On even-cycle-free subgraphs of the hypercube

Zoltán Fiiredi ^{1,2}

Rényi Institute of the Hungarian Academy Budapest, P.O.Box 127, Hungary, H-1364, and Department of Mathematics University of Illinois at Urbana-Champaign Urbana, IL 61801, USA

Lale Özkahya³

Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Abstract

It is shown that the size of a subgraph of the hypercube Q_n without a cycle of length 4k + 2 for integer $k \geq 3$ is of order $o(|E(Q_n)|)$.

Keywords: Hypercube, generalized Turan problem.

1571-0653/\$ – see front matter, Published by Elsevier B.V. doi:10.1016/j.endm.2009.07.085

¹ Research supported in part by the Hungarian National Science Foundation under grants OTKA 062321, 060427 and by the National Science Foundation under grant NSF DMS 06-00303.

² Email: furedi@renyi.hu, z-furedi@math.uiuc.edu

³ Email: ozkahya@illinois.edu

1 Introduction

For given two graphs, Q and P, let ex(Q, P) denote the generalized Turán number, i.e., the maximum number of edges in a P-free subgraph of Q. The n-dimensional hypercube, Q_n , is the graph with vertex-set $\{0,1\}^n$ and edges assigned between pairs differing in exactly one coordinate. We use N(G, P) for the number of subgraphs of G that are isomorphic to P.

Erdős [5] conjectured that $\exp(Q_n, C_4) = (\frac{1}{2} + o(1))e(Q_n)$. The best upper bound, $(0.6226 + o(1))e(Q_n)$, is due to Thomason and Wagner [9], while Brass, Harborth and Nienborg [2] showed $\frac{1}{2}(n + \sqrt{n})2^{n-1} \le \exp(Q_n, C_4)$, when n is a positive integer power of 4, and $\frac{1}{2}(n + 0.9\sqrt{n})2^{n-1} \le \exp(Q_n, C_4)$ for all $n \ge 9$.

Monotonocity implies that the limit $c_{\ell} := \lim_{n \to \infty} \exp(Q_n, C_{\ell})/e(Q_n)$ exists. It is known that $1/3 \le c_6 < 0.3941$ (Conder [4] and Lu [8], respectively). Chung [3] showed for $k \ge 2$

(1)
$$\operatorname{ex}(Q_n, C_{4k}) = cn^{-\frac{1}{2} + \frac{1}{2k}} e(Q_n) = O(n^{\frac{1}{2} + \frac{1}{2k}} 2^n),$$

i.e. $c_{4k} = 0$. Axenovich and Martin [1] proved $c_{4k+2} \leq 1/\sqrt{2}$ for $k \geq 1$.

We prove the following theorem, which shows $c_{4k+2} = 0$ for $k \geq 3$. This generalizes the result in [7]. The problem for C_{10} is still open.

Theorem 1.1 If G is a subgraph of Q_n containing no cycle of length 4k + 2 and $k \geq 3$, then

$$|E(G)| = O(n^{\frac{6}{7}}2^n).$$

Hence $|E(G)| = o(|E(Q_n)|)$, i.e., $c_{4k+2} = 0$ for $k \ge 3$.

2 Sketch of the proof

Definition 2.1 There is a partition of $E(Q_n)$ into n matchings M_i , $i \in [n]$, what we call *directions*, where M_i is formed of the edges with endpoints differing in the i'th coordinate.

Definition 2.2 For a subgraph F of Q_n , define D(F) to be the set of directions appearing on some edge of F.

In every 2r-cycle C in Q_n , each direction must occur an even number of times, so $|D(C)| \leq r$. The proof of Lemma 2.3 follows from this fact.

Lemma 2.3 Suppose $G \subset Q_n$ with no C_{4k+2} and $b = k-1 \geq 2$. Let C' and C'' be cycles of G sharing an edge, where their lengths are 8 and 4b, respectively. Then $|D(C') \cap D(C'')| \geq 2$.

Let G be a C_{4k+2} -free subgraph of Q_n with $k \geq 3$. By applying a counting argument that uses Lemma 2.3 and (1), we obtain an upper bound for $N(G, C_8)$.

To find a lower bound for $N(G, C_8)$, we use the following lemma, that goes back to Erdős (1962) and was published in Erdős and Simonovits [6] in an asymptotic form. As we use it for arbitrary n and e, we revisit the proof.

Lemma 2.4 Let H be a graph with e edges and n vertices. Then

(2)
$$N(H, C_4) \ge 2\frac{e^3(e-n)}{n^4} - \frac{e^2}{2n} \ge 2\frac{e^4}{n^4} - \frac{3}{4}en.$$

We define a graph $H_x(G)$ for each vertex x in Q_n as it was used by Chung in [3]. In this construction, each 4-cycle in H_x corresponds to an 8-cycle in G, that is represented uniquely. Comparing these bounds give an upper bound on E(G) as $|V(Q_n)|O(n^{6/7})$, which is $o(|E(Q_n)|)$.

References

- [1] M. Axenovich and R. Martin, A note on short cycles in a hypercube, Discrete Mathematics **306** (2006), 2212–2218.
- [2] P. Brass, H. Harborth, and H. Nienborg, On the maximum number of edges in a C_4 -free subgraph of Q_n , Journal of Graph Theory 19 (1995), 17–23.
- [3] F. Chung, Subgraphs of a hypercube containing no small even cycles, Journal of Graph Theory 16 (1992), 273–286.
- [4] M. Conder, *Hexagon-free subgraphs of hypercubes*, Journal of Graph Theory **17** (1993), 477–479.
- [5] P. Erdős, On some problems in graph theory, combinatorial analysis and combinatorial number theory, Graph Theory and Combinatorics (1984), 1–17.
- [6] P. Erdős and M. Simonovits, Some extremal problems in graph theory, Combinatorial Theory and Its Applications, I (Proc. Colloq. Balatonfüred, 1969), 377–390.
- [7] Z. Füredi and L. Özkahya, On 14-cycle-free subgraphs of the hypercube, *Combin.*, *Prob. and Computing* (in press).
- [8] Linyuan Lu, Hexagon-free subgraphs in hypercube Q_n , private communication.
- [9] A. Thomason and P. Wagner, Bounding the size of square-free subgraphs of the hypercube, Discrete Mathematics **309** (2009), 1730–1735.