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hypercube Q n , k � 3, is o(e(Q n)).
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The n-dimensional hypercube, Q n , is the graph whose vertex set is {0,1}n and whose edge set
is the set of pairs that differ in exactly one coordinate. For graphs Q and P , let ex(Q , P ) denote
the generalized Turán number, i.e., the maximum number of edges in a P -free subgraph of Q . For a
graph G , we use n(G) and e(G) to denote the number of vertices and the number of edges of G ,
respectively.

Let c�(n) = ex(Q n, C�)/e(Q n) and c� = limn→∞ c�(n). Note that c� exists, because c�(n) is a non-
increasing and bounded function of n. The following conjecture of Erdős is still open.

Conjecture 1. (See [7].) c4 = 1
2 .

Erdős [7] also asked whether o(n)2n edges in a subgraph of Q n would imply the existence of a
cycle C2l for l > 2.

The best upper bound c4 � 0.6226 was obtained by Thomason and Wagner [11], slightly improving
the result of Chung [4]. Brass, Harborth and Nienborg [3] showed that the lower bound for c4(n) is
1
2 (1 + 1/

√
n), when n = 4r for integer r, and 1

2 (1 + 0.9/
√

n), when n � 9. The problem of deciding
the values of c6 and c10 is open as well. The question of Erdős was answered negatively for c6
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by Chung [4], showing that c6 � 1/4. The best known results for c6 are 1/3 � c6 < 0.3941 due to
Conder [5] and Lu [10], respectively. Chung [4] proved for k � 2 that

c4k(n) � cn− 1
2 + 1

2k . (1)

Axenovich and Martin [2] gave c4k+2 � 1/
√

2 for k � 1. The present authors [9] recently showed that
c14 = 0. Here, we extend this result to all c4k+2 for k � 3 by using similar but simpler methods.

Theorem 2. For k � 3,

c4k+2(n) =
{

O (n− 1
2k+1 ), k ∈ {3,5,7},

O (n− 1
16 + 1

16(k−1) ), otherwise,

i.e., c4k+2 = 0.

Recently, Conlon [6] generalized our result by showing ex(Q n, H) = o(e(Q n)) for all H that admit
a k-partite representation, also satisfied by each H = C2� except � ∈ {2,3,5}.

In the rest of the paper, G is assumed to be a C4k+2-free subgraph of Q n . We fix a,b � 2 such
that 4a + 4b = 4k + 4. This relation between a and b implies that a cycle of length 4a cannot intersect
a cycle of length 4b at a single edge, otherwise their union contains a C4k+2. We define N(G, P ) to
be the number of subgraphs of G that are isomorphic to P . In the first section, we provide an upper
bound on N(G, C4a). In the second section, a lower bound on N(G, C4a) is obtained via a lower bound
on the number of C2a ’s in an auxiliary graph obtained from G , which was described by Chung in [4].
Comparing these bounds leads to an upper bound on the average degree of G .

1. An upper bound on N(G, C4a)

We define the direction of an edge uv in E(Q n), denoted by d(uv), to be the single coordinate
from [n] where the 0–1 vectors u and v differ. Similarly,

D(F ) := {
d(e): e ∈ E(F )

}
where F is any subgraph of Q n .

Lemma 3. Let C ′ and C ′′ be cycles of length 4a and 4b of G, respectively, whose intersection contains an edge.
Then |D(C ′) ∩ D(C ′′)| � 2.

Proof. Let v1 and v2 be the endpoints of the edge in the intersection of C ′ and C ′′ . By previous
observation, there must be another vertex v3 common in C ′ and C ′′ . Because v3 differs from either
v1 or v2 in at least two coordinates, these two coordinates are also contained in the intersection of
D(C ′) and D(C ′′). �

Observe that, for any cycle C of length 2l in Q n , D(C) � l, because the direction of each edge in
C appears an even number of times on E(C). Hence, N(G, C4a) � N(Q n, C4a) = 2n × O (n2a). In the
following, we obtain a better bound using Lemma 3.

Claim 4. N(G, C4a) = e(G)O (n2a−2) + O (2nn2a− 1
2 + 1

2b ).

Proof. Let C denote the set of cycles of length 4a in G and let E be the set of edges contained in
the cycles in C . We count the cycles of length 4a in G over the edges in E . We partition E = E 1 ∪ E 2

such that E 1 is the collection of edges that are contained in the intersection of a copy of C4a and a
copy of C4b in G and E 2 := E \ E 1. Lemma 3 implies that every edge e ∈ E 1 is contained in O (n2a−2)

members of C . The subgraph induced by the edges in E 2 does not contain a copy of C4b , implying

that |E 2| � ex(Q n, C4b). By (1), |E 2| = O (2nn− 1
2 + 1

2b ). Using these bounds, we obtain
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N(G, C4a) = 1

4a

( ∑
e∈E 1

O
(
n2a−2) +

∑
e∈E 2

O
(
n2a−1))

� e(G)O
(
n2a−2) + O

(
2nn2a− 1

2 + 1
2b

)
. � (2)

2. A lower bound on N(G, C4a)

For a graph G ⊂ Q n , we define an auxiliary graph Hx = Hx(G) for each vertex x ∈ Q n as it was
used by Chung in [4]. The vertex set of Hx consists of the neighbors of x in Q n . The edge set of Hx is
defined as follows. Consider any two vertices y and z in Hx . There is a unique C4 in Q n , that contains
x, y and z, say C = yxzw and let w = w(y, z). (As vectors over F2, w = y + z − x.) Then yz is an edge
of Hx if and only if wz and wy are edges of G . According to the definition of Hx , we have

∑
x∈V (Q n)

e(Hx) =
∑

w∈V (Q n)

(
degG(w)

2

)
.

By using convexity, we obtain

h :=
∑

x∈V (Q n)

e(Hx)/2n �
(

d

2

)
, (3)

where d is the average degree of G , i.e. d = 2e(G)/2n .
For each cycle of Hx with vertex set {y1, . . . , y�}, � � 3, there exists a cycle of length 2� in G

with vertex set {y1, w(y1, y2), . . . , y�, w(y�, y1)}. Since any vertices x, y ∈ V (Q n) have at most two
common neighbors in Q n , V (Hx) and V (H y) intersect in at most two vertices. Therefore

N(G, C4a) �
∑

x∈V (Q n)

N(Hx, C2a). (4)

By the following theorem of Erdős and Simonovits, we have a lower bound on N(Hx, C2a), and there-
fore on N(G, C4a).

Theorem 5. (See [8].) Let L be a bipartite graph, where there are vertices x and y such that L − {x, y} is a tree.
Then, for a graph H with n vertices and e edges, there exist constants c1, c2 > 0 such that if H contains more
than c1n3/2 edges, then

N(H, L) � c2
en(L)

n2e(L)−n(L)
.

We use this theorem with L = C2a (n(L) = e(L) = 2a) in the following form so that the condition
on the minimum number of edges is incorporated.

N(Hx, C2a) � c2

(
e(Hx)

2a

n2a
− (c1n3/2)2a

n2a

)
. (5)

(4) and (5) imply

N(G, C4a) �
∑

x∈V (Q n)

c2

(
e(Hx)

2a

n2a
− (c1n3/2)2a

n2a

)
.

By using convexity, this inequality implies that

N(G, C4a) � c22n h
2a

2a
− O

(
2nna).
n
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Finally, by (3) and above, we have

N(G, C4a) � c2n d
4a

n2a
− O

(
2nna), (6)

for some constant c > 0.

3. Conclusion

Claim 4 together with (6) yields

d = max
(

O
(
n1− 1

4a−1
)
, O

(
n1− 1

4a ( 1
2 − 1

2b )
))

.

This bound is minimized when a = 2 and b = k − 1 and we obtain

d = O
(
n1− 1

16 + 1
16(k−1)

)
. (7)

Note that another approach we could use in Section 1 is to consider a = b = (k + 1)/2 when k is
odd. This changes the counting argument, since E 2 will contain only copies of C4a that are pairwise
edge-disjoint and the number of these copies is at most e(G)/(4a). By following the same proof, we
obtain for odd k that

d = O
(
n1− 1

2k+1
)
.

This improves (7) for k = 3,5,7.
Our proof also implies that ex(Q n,Θ4a−1,1,4b−1) is o(e(Q n)) for a,b � 2, where Θu,v,w is a Theta-

graph consisting of three paths of lengths u, v , and w having the same endpoints and distinct inner
vertices. Our result also naturally implies that C2l is Ramsey for odd l � 7, i.e. there is a monochro-
matic copy of C2l in any r-edge-coloring of Q n when n > n(r, l). This is also a result of Alon, Radoičić,
Sudakov, and Vondrák [1] who showed that C2l is Ramsey for l � 5.
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[8] P. Erdős, M. Simonovits, Cube-saturated graphs and related problems, in: Progress in Graph Theory, Waterloo, Ont., 1982,

Academic Press, 1984, pp. 203–218.
[9] Z. Füredi, L. Özkahya, On 14-cycle-free subgraphs of the hypercube, Combin. Probab. Comput. 18 (2009) 725–729.

[10] Linyuan Lu, Hexagon-free subgraphs in hypercube Q n , private communication.
[11] A. Thomason, P. Wagner, Bounding the size of square-free subgraphs of the hypercube, Discrete Math. 309 (2009) 1730–

1735.


	On even-cycle-free subgraphs of the hypercube
	An upper bound on N(G,C4a)
	A lower bound on N(G,C4a)
	Conclusion
	Acknowledgments
	References


