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The n-dimensional hypercube, Q,, is the graph whose vertex set is {0, 1}" and whose edge set
is the set of pairs that differ in exactly one coordinate. For graphs Q and P, let ex(Q, P) denote
the generalized Turdn number, i.e., the maximum number of edges in a P-free subgraph of Q. For a
graph G, we use n(G) and e(G) to denote the number of vertices and the number of edges of G,
respectively.

Let c,(n) = ex(Qn, Cp)/e(Qpn) and ¢, = lim,_, o, c¢(n). Note that ¢, exists, because cy(n) is a non-
increasing and bounded function of n. The following conjecture of Erdoés is still open.

Conjecture 1. (See [7].) c4 = .

Erdos [7] also asked whether o(n)2" edges in a subgraph of Q, would imply the existence of a
cycle Cy for I > 2.

The best upper bound c4 < 0.6226 was obtained by Thomason and Wagner [11], slightly improving
the result of Chung [4]. Brass, Harborth and Nienborg [3] showed that the lower bound for c4(n) is
1(141//n), when n=4" for integer r, and 1(1+0.9//n), when n > 9. The problem of deciding
the values of cg and cqp is open as well. The question of Erdés was answered negatively for cg
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by Chung [4], showing that cg > 1/4. The best known results for cg are 1/3 < cg < 0.3941 due to
Conder [5] and Lu [10], respectively. Chung [4] proved for k > 2 that

1 1
cap(m) <cen~ 2=, (1)

Axenovich and Martin [2] gave cg42 < 1/+/2 for k > 1. The present authors [9] recently showed that
c14 = 0. Here, we extend this result to all c44, for k > 3 by using similar but simpler methods.

Theorem 2. For k > 3,

0 (n~7m), ke(3,57},
1

Cak+2(M) = _i. :
O(n~ " T&-D), otherwise,

ie., Cag42 =0.

Recently, Conlon [6] generalized our result by showing ex(Qn, H) =o0(e(Qp)) for all H that admit
a k-partite representation, also satisfied by each H = Cy, except ¢ € {2, 3, 5}.

In the rest of the paper, G is assumed to be a C4y-free subgraph of Q,. We fix a,b > 2 such
that 4a + 4b = 4k + 4. This relation between a and b implies that a cycle of length 4a cannot intersect
a cycle of length 4b at a single edge, otherwise their union contains a C442. We define N(G, P) to
be the number of subgraphs of G that are isomorphic to P. In the first section, we provide an upper
bound on N(G, C4q). In the second section, a lower bound on N(G, C44) is obtained via a lower bound
on the number of Co4’s in an auxiliary graph obtained from G, which was described by Chung in [4].
Comparing these bounds leads to an upper bound on the average degree of G.

1. An upper bound on N (G, C4q)

We define the direction of an edge uv in E(Q,), denoted by d(uv), to be the single coordinate
from [n] where the 0-1 vectors u and v differ. Similarly,

D(F) :={d(e): e € E(F)}
where F is any subgraph of Q.

Lemma 3. Let C' and C” be cycles of length 4a and 4b of G, respectively, whose intersection contains an edge.
Then |D(C") N D(C")| > 2.

Proof. Let vi and v, be the endpoints of the edge in the intersection of C’ and C”. By previous
observation, there must be another vertex vz common in C’ and C”. Because vs3 differs from either
v1 or vy in at least two coordinates, these two coordinates are also contained in the intersection of
D(C" and D(C"). O

Observe that, for any cycle C of length 2I in Q,, D(C) <, because the direction of each edge in
C appears an even number of times on E(C). Hence, N(G, C4q) < N(Qn, Caq) = 2" x O (1n?%). In the
following, we obtain a better bound using Lemma 3.

Claim 4. N(G, Caq) = €(G) 0 (n2%~2) + 0 (2"n¥*~2+3%),

Proof. Let C denote the set of cycles of length 4a in G and let £ be the set of edges contained in
the cycles in C. We count the cycles of length 4a in G over the edges in £. We partition £ = £ U £2
such that £! is the collection of edges that are contained in the intersection of a copy of C4q and a
copy of C4 in G and £2:=E\ £'. Lemma 3 implies that every edge e € £! is contained in 0 (n%?~2)
members of C. The subgraph induced by the edges in £2 does not contain a copy of Cy, implying

that [£2] < ex(Qn, Cap). By (1), |€2| = 0(2"n~2+3 ). Using these bounds, we obtain
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N(G, C4) = 4]_a< Yoo )+ ) O(n2“*1)>

ecé&! ec&?

<e(G)0(M*2) + 0(2m* %), O 2)
2. Alower bound on N (G, C4q)

For a graph G C Qp, we define an auxiliary graph Hy = Hy(G) for each vertex x € Q, as it was
used by Chung in [4]. The vertex set of Hy consists of the neighbors of x in Q,. The edge set of Hy is
defined as follows. Consider any two vertices y and z in Hy. There is a unique C4 in Qp, that contains
X, ¥y and z, say C = yxzw and let w = w(y, z). (As vectors over F;, w = y +z—x.) Then yz is an edge
of Hy if and only if wz and wy are edges of G. According to the definition of Hy, we have

deg-(w)
> eHy= > ( ; )

xeV(Qn) weV(Qn)

By using convexity, we obtain

_ d
h:= Z e(Hx)/2"><2>, (3)

xeV(Qn)

where d is the average degree of G, i.e. d = 2e(G)/2".

For each cycle of Hy with vertex set {yq,...,y¢}, £ > 3, there exists a cycle of length 2¢ in G
with vertex set {y1, w(¥1,¥2),...,Ye¢, W(¥¢, y1)}. Since any vertices x, y € V(Qp) have at most two
common neighbors in Qn, V(Hy) and V(H)) intersect in at most two vertices. Therefore

N(G.Ca)> Y N(Hy, Ca). (4)
xeV(Qn)

By the following theorem of Erdds and Simonovits, we have a lower bound on N(Hy, C24), and there-
fore on N(G, Cyq).

Theorem 5. (See [8].) Let L be a bipartite graph, where there are vertices x and y such that L — {x, y} is a tree.
Then, for a graph H with n vertices and e edges, there exist constants c1, ¢z > 0 such that if H contains more
than cin3/2 edges, then

en(L)
N(H, L) > C2m.

We use this theorem with L = Cyq (n(L) =e(L) = 2a) in the following form so that the condition
on the minimum number of edges is incorporated.

e(H )2(1 (C]n3/2)2a
N(Hx,czﬂ»cz( )

(5)

(4) and (5) imply

2a 3/2\2a
N(G. Cae) > Z Cz(e(Hx) _ (an’?) )

n2a n2a
xeV(Qn)

By using convexity, this inequality implies that

EZG
N(G. Cao) > 022" 50— 0(2"n).
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Finally, by (3) and above, we have
-4a
N(G, C49) > cz”ﬁ —0(2"n%), (6)

for some constant ¢ > 0.
3. Conclusion
Claim 4 together with (6) yields
d= max(O(nl’ﬁ), O(n]—f—a(%—z]—w)),
This bound is minimized when a=2 and b=k — 1 and we obtain
d=0(n' Tt TT). )

Note that another approach we could use in Section 1 is to consider a =b = (k + 1)/2 when k is
odd. This changes the counting argument, since £2 will contain only copies of C4, that are pairwise
edge-disjoint and the number of these copies is at most e(G)/(4a). By following the same proof, we
obtain for odd k that

d=0(n'" =),

This improves (7) for k=3,5,7.

Our proof also implies that ex(Qn, @4q—1,1,40—1) is 0(e(Qy)) for a, b > 2, where Oy w is a Theta-
graph consisting of three paths of lengths u, v, and w having the same endpoints and distinct inner
vertices. Our result also naturally implies that Cy; is Ramsey for odd [ > 7, i.e. there is a monochro-
matic copy of Cy; in any r-edge-coloring of Q,, when n > n(r,1). This is also a result of Alon, Radoicic,
Sudakov, and Vondrak [1] who showed that Co; is Ramsey for [ > 5.
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