

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 34 (2009) 323-327

www.elsevier.com/locate/endm

List colorings with distinct list sizes, the case of complete bipartite graphs

Zoltán Füredi ^{a,b,1,3}, Ida Kantor ^{a,2}

^a Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

^b Rényi Institute of Mathematics of the Hungarian Academy, Pf. 127, 1364 Budapest, Hungary

Abstract

A graph G is f-choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. The sum choice number, $\chi_{sc}(G)$, is the minimum of $\sum f(v)$, over all f such that G is f-choosable. In this paper we show that $\chi_{sc}(G)/|V(G)|$ can be bounded while the minimum degree $\delta_{\min}(G) \to \infty$. (This is not true for the list chromatic number, $\chi_{\ell}(G)$). Our main tool is to give tight estimates for the sum choice number for the complete bipartite graphs $K_{a,g}$.

Keywords: graphs, list chromatic number.

¹ Research supported in part by the Hungarian National Science Foundation under grants OTKA 062321, 060427 and by the National Science Foundation under grant NFS DMS 06-00303.

Email: isvejda2@illinois.edu
 Email: z-furedi@math.uiuc.edu

1 Average list sizes and planar graphs

Given a graph G and a list of colors L(v) for each vertex $v \in V(G)$ we say that G is L-choosable if it is possible to choose $\ell(v) \in L(v)$ for all v so that ℓ is a proper coloring of G. The choice number (or list chromatic number) χ_{ℓ} is the minimum t such that every assignment L with $|L(v)| \geq t$ for all $v \in V$ the graph is L-choosable. It is well-known (Grötzsch's theorem) that

$$\chi_{\ell}(P) \le 5 \tag{1}$$

for every planar graph P, and this is the best possible. Erdős, Rubin and Taylor (see, e.g., [1]) showed for the complete bipartite graph that

$$\chi_{\ell}(K_{q,q}) = \Theta(\log q). \tag{2}$$

However, if we allow distinct list sizes, then the average size can be smaller. For example, Thomassen's beautiful proof [6] for (1) gives that if P is an n-vertex planar graph, v_1, \ldots, v_t are its outside vertices and the list sizes are

$$|L(v)| = \begin{cases} 1 & \text{for } v = v_1, \\ 2 & \text{for } v = v_2, \\ 3 & \text{for } v = v_3, \dots, v_t, \\ 5 & \text{otherwise,} \end{cases}$$
 (3)

then P is L-choosable.

Consider a function $f:V(G)\to\mathbb{N}$. An f-assignment is an assignment of lists L(v) to the vertices $v\in V(G)$ such that |L(v)|=f(v) for all v. The function f itself is choosable if G is L-choosable for all f-assignments L. We define the sum choice number of G, denoted $\chi_{sc}(G)$, to be the least k for which there exists a choosable f with $\sum_{v\in V(G)}f(v)=k$. Thomassen's theorem implies that $\chi_{sc}(P)\leq 5n-9$.

In fact, more is true. It is easy to show (see, e.g., [5]) that for every graph

$$\chi_{sc}(G) \le |V(G)| + |E(G)| \tag{4}$$

holds. Hence $\chi_{sc}(P) \leq 4n - 6$. Our first result is a slight improvement.

Theorem 1.1 Let P be an n-vertex planar graph. There exists an f: $V(P) \to \mathbb{N}$ such that $\sum f(v) = 4n - 6$, $\max f(v) \le 6$, and P is f-choosable. \square

2 Graphs with small average list sizes, $K_{a,q}$

Sum choice numbers were introduced by Isaak in [4] who proved that if G is the line-graph of $K_{2,q}$ then $\chi_{sc}(G) = q^2 + \lceil 5q/3 \rceil$. Various classes of graphs were investigated by Isaak in [5], by Berliner, Bostelmann, Brualdi, and Deaett [2] and by Heinold [3]. Two results are of particular interest to us.

Theorem 2.1 (Berliner et al. [2]) $\chi_{sc}(K_{2,q}) = 2q + 1 + \lfloor \sqrt{4q+1} \rfloor$.

Theorem 2.2 (Heinold [3])
$$\chi_{sc}(K_{3,q}) = 2q + 1 + |\sqrt{12q + 4}|$$
.

Our main result extends Theorems 2.1 and 2.2 to arbitrary a.

Theorem 2.3 There exist constants c_1 and c_2 such that for all $a \ge 4$ and $q \ge 50a^2 \log a$

$$2q + c_1 a \sqrt{q \log a} \le \chi_{sc}(K_{a,q}) \le 2q + c_2 a \sqrt{q \log a}.$$

This implies that we can find a choosable f such that the average list size does not necessarily grow with the average degree. Indeed, with q tending to infinity, average degree of $K_{a,q}$ approaches 2a. We obtain

$$\lim_{a \to \infty, \ q > > a^2 \log a} \frac{|E(K_{a,q})|}{a+q} = \infty, \quad \lim_{a \to \infty, \ q > > a^2 \log a} \frac{\chi_{sc}(K_{a,q})}{a+q} = 2.$$
 (5)

3 List chromatic number and average degree

Alon has shown in [1] that χ_l depends heavily on the average degree.

Theorem 3.1 (Alon, [1]) For some constant c, every graph G with average degree d has $\chi_l(G) \geq c \frac{\log d}{\log \log d}$.

One of the most interesting corollaries of our Theorem 2.3 is (5), that if different list sizes are allowed, the conclusion of Theorem 3.1 is no longer true. Sum-choice depends more on the structure of the graph than the list chromatic number.

* * *

Throughout this paper, log is the natural logarithm and the two partite sets of the complete bipartite graph $K_{a,q}$ is denoted by A and Q, with |A| = a and |Q| = q.

4 Upper bound, there are choosable short lists

Theorem 4.1 Suppose that $a, q \in \mathbb{N}$ with q > a > 3. Then

$$\chi_{sc}(K_{a,q}) \le 2q + a \lceil \sqrt{32q(1 + \log a)} \rceil.$$

Proof. To prove the upper bound, we present a function f with $\sum_{v \in A \cup Q} f(v) \ge 2q + a\sqrt{32q(1 + \log a)}$ such that every f-assignment is choosable.

Define f as

$$f(v) = \begin{cases} r \text{ for } v \in A; \\ 2 \text{ for } v \in Q \end{cases}$$

where r will be defined later in (6). Let L be an arbitrary f-assignment, i.e. |L(v)| = f(v) for all v.

Consider $S := \bigcup_{v \in A \cup Q} L(v)$. The assignment L yields a multihypergraph and a multigraph on the vertex set S and with edge sets $\mathcal{L}_A := \{L(u) : u \in A\}$ and $\mathcal{L}_Q := \{L(v) : v \in Q\}$, respectively. Choosability of L means that one can find a set $T \subset S$ meeting all hyperedges of \mathcal{L}_A such that $S \setminus T$ meets all edges of \mathcal{L}_Q , so T is an independent set in the graph \mathcal{L}_Q . Then the choice function ℓ can be defined as

$$\ell(u) \in L(u) \cap T$$
, for $u \in A$

and

$$\ell(v) \in L(v) \cap (S \setminus T)$$
, for $v \in Q$.

We are going to construct such a T by a 2-step random process.

Let us pick, randomly and independently, each element of S with probability p. Let B be the random set of all elements picked. Define a random variable X_u for each $u \in A$ as $X_u = |L(u) \cap B|$, and the random variable Y by $Y := |\{v \in Q : L(v) \subseteq B\}|$, so Y is the number of edges of \mathcal{L}_Q spanned by B. Remove an element $\ell(v) \in L(v)$ for each edge of \mathcal{L}_Q spanned by B, the remaining set $T \subset B$ is certainly independent in \mathcal{L}_Q . If $Y < X_u$ for each $u \in A$, then T meets all $L(u) \in \mathcal{L}_A$ and we are done.

One needs a careful definition

$$p := \sqrt{\frac{2(1 + \log a)}{q}}$$
 and $r \ge 4pq = \sqrt{32(1 + \log a)}q$. (6)

Standard probabilistic arguments (Chernoff inequality) complete the proof. \Box

5 Lower bound, much shorter lists are not choosable

To prove that $\chi_{sc}(G) \geq k$ for a particular k, we need to show that for every f with $\sum_{v \in G} f(v) = k$, there exists a non-choosable f-assignment. Here we only show how to construct a non-choosable assignment for a very special f.

Lemma 5.1 Let $t \geq 2$ and $l \geq 1$. For $a = {2t \choose t}$ and $q = t\ell^2$, there exists a non-choosable assignment L with L(v) = 2 for $v \in Q$ and $L(v) = t\ell$ for $v \in A$.

Note that with this choice of a and q, we have $|L(v)| \ge \sqrt{\frac{q \log_2 a}{2}}$ for $v \in A$.

Proof. Let us define the vertex set of a hypergraph \mathcal{H} as $V(\mathcal{H}) = \bigcup_{i=1}^{2t} A_i$ where the A_i 's are disjoint ℓ -sets. The edges of \mathcal{H} are of the form $\bigcup_{i \in I} A_i$ for all subsets $I \subseteq \{1, \ldots, 2t\}$ of size t. Define a graph G on the vertex set $\bigcup_{i=1}^{2t} A_i$. Let $\{x, y\}$ be an edge if and only if $x \in A_{2i-1}$ and $y \in A_{2i}$.

Define the lists of the vertices $v \in A$ to be the sets in $E(\mathcal{H})$ and the two element sets in E(G) to be the lists of the vertices $v \in Q$.

This argument can be extended to every f if $\sum f(v)$ is sufficiently small.

Theorem 5.2 If $a \ge 3$ and $q > 50a^2 \log a$, then

$$\chi_{sc}(K_{a,q}) \ge 2q + 0.068a\sqrt{q\log a}. \qquad \Box$$

References

- N. Alon, Restricted colorings of graphs, Surveys in combinatorics, 1993 (Keele),
 pp. 1–33. London Math. Soc. Lecture Note Ser., 187, Cambridge Univ. Press,
 Cambridge, 1993.
- [2] A. Berliner, U. Bostelmann, R. A. Brualdi, and L. Deaett, Sum list coloring graphs, Graphs and Combinatorics, 22 (2006), pp. 173–183.
- [3] B. Heinold, Sum list coloring and choosability, PhD thesis, Lehigh University, Bethlehem, 2006.
- [4] G. ISAAK, Sum list coloring $2 \times n$ arrays, Electr. J. Comb., 9 (2002), paper N8.
- [5] G. ISAAK, Sum list coloring block graphs, Graph. Comb., 20 (2004), pp. 499–506.
- [6] C. THOMASSEN, A short list color proof of Grötzsch's theorem, J. Combin. Theory Ser. B, 88 (2003), pp. 189–192.