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Abstract

A graph G is f -choosable if for every collection of lists with list sizes specified by
f there is a proper coloring using colors from the lists. The sum choice number,
χsc(G), is the minimum of

∑
f(v), over all f such that G is f -choosable. In this

paper we show that χsc(G)/|V (G)| can be bounded while the minimum degree
δmin(G) → ∞. (This is not true for the list chromatic number, χ�(G)). Our main
tool is to give tight estimates for the sum choice number for the complete bipartite
graphs Ka,q.
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1 Average list sizes and planar graphs

Given a graph G and a list of colors L(v) for each vertex v ∈ V (G) we say
that G is L-choosable if it is possible to choose �(v) ∈ L(v) for all v so that
� is a proper coloring of G. The choice number (or list chromatic number) χ�

is the minimum t such that every assignment L with |L(v)| ≥ t for all v ∈ V
the graph is L-choosable. It is well-known (Grötzsch’s theorem) that

χ�(P ) ≤ 5 (1)

for every planar graph P , and this is the best possible. Erdős, Rubin and
Taylor (see, e.g., [1]) showed for the complete bipartite graph that

χ�(Kq,q) = Θ(log q). (2)

However, if we allow distinct list sizes, then the average size can be smaller.
For example, Thomassen’s beautiful proof [6] for (1) gives that if P is an n-
vertex planar graph, v1, . . . , vt are its outside vertices and the list sizes are

|L(v)| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for v = v1,

2 for v = v2,

3 for v = v3, . . . , vt,

5 otherwise,

(3)

then P is L-choosable.

Consider a function f : V (G) → N. An f -assignment is an assignment
of lists L(v) to the vertices v ∈ V (G) such that |L(v)| = f(v) for all v.
The function f itself is choosable if G is L-choosable for all f -assignments L.
We define the sum choice number of G, denoted χsc(G), to be the least k
for which there exists a choosable f with

∑
v∈V (G) f(v) = k. Thomassen’s

theorem implies that χsc(P ) ≤ 5n − 9.

In fact, more is true. It is easy to show (see, e.g., [5]) that for every graph

χsc(G) ≤ |V (G)| + |E(G)| (4)

holds. Hence χsc(P ) ≤ 4n − 6. Our first result is a slight improvement.

Theorem 1.1 Let P be an n-vertex planar graph. There exists an f :
V (P ) → N such that

∑
f(v) = 4n− 6, max f(v) ≤ 6, and P is f -choosable.�
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2 Graphs with small average list sizes, Ka,q

Sum choice numbers were introduced by Isaak in [4] who proved that if G is the
line-graph of K2,q then χsc(G) = q2 + �5q/3�. Various classes of graphs were
investigated by Isaak in [5], by Berliner, Bostelmann, Brualdi, and Deaett [2]
and by Heinold [3]. Two results are of particular interest to us.

Theorem 2.1 (Berliner et al. [2]) χsc(K2,q) = 2q + 1 + 	√4q + 1�.
Theorem 2.2 (Heinold [3]) χsc(K3,q) = 2q + 1 + 	√12q + 4�.

Our main result extends Theorems 2.1 and 2.2 to arbitrary a.

Theorem 2.3 There exist constants c1 and c2 such that for all a ≥ 4 and
q ≥ 50a2 log a

2q + c1a
√

q log a ≤ χsc(Ka,q) ≤ 2q + c2a
√

q log a.

This implies that we can find a choosable f such that the average list size
does not necessarily grow with the average degree. Indeed, with q tending to
infinity, average degree of Ka,q approaches 2a. We obtain

lim
a→∞, q>>a2 log a

|E(Ka,q)|
a + q

= ∞, lim
a→∞, q>>a2 log a

χsc(Ka,q)

a + q
= 2. (5)

3 List chromatic number and average degree

Alon has shown in [1] that χl depends heavily on the average degree.

Theorem 3.1 (Alon, [1]) For some constant c, every graph G with average
degree d has χl(G) ≥ c log d

log log d
.

One of the most interesting corollaries of our Theorem 2.3 is (5), that if
different list sizes are allowed, the conclusion of Theorem 3.1 is no longer true.
Sum-choice depends more on the structure of the graph than the list chromatic
number.

* * *

Throughout this paper, log is the natural logarithm and the two partite
sets of the complete bipartite graph Ka,q is denoted by A and Q, with |A| = a
and |Q| = q.
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4 Upper bound, there are choosable short lists

Theorem 4.1 Suppose that a, q ∈ N with q > a > 3. Then

χsc(Ka,q) ≤ 2q + a�
√

32q(1 + log a)�.

Proof. To prove the upper bound, we present a function f with
∑

v∈A∪Q f(v) ≥
2q + a

√
32q(1 + log a) such that every f -assignment is choosable.

Define f as

f(v) =

⎧⎨
⎩ r for v ∈ A;

2 for v ∈ Q

where r will be defined later in (6). Let L be an arbitrary f -assignment, i.e.
|L(v)| = f(v) for all v.

Consider S := ∪v∈A∪QL(v). The assignment L yields a multihypergraph
and a multigraph on the vertex set S and with edge sets LA := {L(u) : u ∈ A}
and LQ := {L(v) : v ∈ Q}, respectively. Choosability of L means that one
can find a set T ⊂ S meeting all hyperedges of LA such that S \ T meets all
edges of LQ, so T is an independent set in the graph LQ. Then the choice
function � can be defined as

�(u) ∈ L(u) ∩ T, for u ∈ A

and

�(v) ∈ L(v) ∩ (S \ T ), for v ∈ Q.

We are going to construct such a T by a 2-step random process.

Let us pick, randomly and independently, each element of S with proba-
bility p. Let B be the random set of all elements picked. Define a random
variable Xu for each u ∈ A as Xu = |L(u) ∩ B|, and the random variable Y
by Y := |{v ∈ Q : L(v) ⊆ B}|, so Y is the number of edges of LQ spanned
by B. Remove an element �(v) ∈ L(v) for each edge of LQ spanned by B,
the remaining set T ⊂ B is certainly independent in LQ. If Y < Xu for each
u ∈ A, then T meets all L(u) ∈ LA and we are done.

One needs a careful definition

p :=

√
2(1 + log a)

q
and r ≥ 4pq =

√
32(1 + log a)q. (6)

Standard probabilistic arguments (Chernoff inequality) complete the proof.�
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5 Lower bound, much shorter lists are not choosable

To prove that χsc(G) ≥ k for a particular k, we need to show that for every
f with

∑
v∈G f(v) = k, there exists a non-choosable f -assignment. Here we

only show how to construct a non-choosable assignment for a very special f .

Lemma 5.1 Let t ≥ 2 and l ≥ 1. For a =
(
2t
t

)
and q = t�2, there exists a

non-choosable assignment L with L(v) = 2 for v ∈ Q and L(v) = t� for v ∈ A.

Note that with this choice of a and q, we have |L(v)| ≥
√

q log2 a
2

for v ∈ A.

Proof. Let us define the vertex set of a hypergraph H as V (H) = ∪2t
i=1Ai

where the Ai’s are disjoint �-sets. The edges of H are of the form ∪i∈IAi for
all subsets I ⊆ {1, . . . , 2t} of size t. Define a graph G on the vertex set ∪2t

i=1Ai.
Let {x, y} be an edge if and only if x ∈ A2i−1 and y ∈ A2i.

Define the lists of the vertices v ∈ A to be the sets in E(H) and the two
element sets in E(G) to be the lists of the vertices v ∈ Q. �

This argument can be extended to every f if
∑

f(v) is sufficiently small.

Theorem 5.2 If a ≥ 3 and q > 50a2 log a, then

χsc(Ka,q) ≥ 2q + 0.068a
√

q log a. �
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