

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 34 (2009) 63-67

www.elsevier.com/locate/endm

Unavoidable subhypergraphs: **a**-clusters

Zoltán Füredi ^{1,2}

Rényi Institute of the Hungarian Academy Budapest, P.O.Box 127, Hungary, H-1364, and Department of Mathematics University of Illinois at Urbana-Champaign Urbana, IL 61801, USA

Lale Özkahya³

Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Abstract

One of the central problems of extremal hypergraph theory is the description of unavoidable subhypergraphs, in other words, the Turan problem. Let $\mathbf{a} = (a_1, \ldots, a_p)$ be a sequence of positive integers, $p \geq 2$, $k = a_1 + \ldots + a_p$. An \mathbf{a} -cluster is a family of k-sets $\{F_0, \ldots, F_p\}$ such that the sets $F_i \setminus F_0$ are pairwise disjoint $(1 \leq i \leq p)$, $|F_i \setminus F_0| = a_i$, and the sets $F_0 \setminus F_i$ are pairwise disjoint, too. Given \mathbf{a} there is a unique \mathbf{a} -cluster, and the sets $F_0 \setminus F_i$ form an \mathbf{a} -partition of F_0 . With an intensive use of the delta-system method we prove that for k > p > 1 and sufficiently large n, $(n > n_0(k))$, if \mathcal{F} is an n-vertex k-uniform family with $|\mathcal{F}|$ exceeding the Erdős-Ko-Rado bound $\binom{n-1}{k-1}$, then \mathcal{F} contains an \mathbf{a} -cluster. The only extremal family consists of all the k-subsets containing a given element.

Keywords: Erdős-Ko-Rado, set systems, traces.

1 Clusters

Suppose that \mathcal{F} is a family of k subsets of the n-set $[n] = \{1, 2, ..., n\}$, $\mathcal{F} \subset \binom{[n]}{k}$, $n \geq k \geq 2$. Call a family of k-sets $\{F_1, ..., F_d\}$ a (k, d)-cluster if (1) $|F_1 \cup F_2 \cup ... \cup F_d| \leq 2k$ and $F_1 \cap F_2 ... \cap F_d = \emptyset$.

The Erdős–Ko–Rado (EKR) theorem states that if \mathcal{F} has no (k,2)-cluster for $n \geq 2k$, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$. Katona proposed in 1980 the problem for d=3. It was proved by Frankl and the first author [4] that then the same EKR-type upper bound holds for $|\mathcal{F}|$ (at least for $n > n_1(k)$). Several results for this problem can be found in [10,13]. Mubayi [11] showed that this bound also follows for d=4 and $n > n_2(k)$. This led him to the following conjecture.

Conjecture 1.1 Let $k \geq d \geq 2$, $n \geq dk/(d-1)$ and suppose that \mathcal{F} is a k-uniform family on n elements containing no (k,d)-cluster. Then $|\mathcal{F}| \leq {n-1 \choose k-1}$, with equality only if $\cap \mathcal{F} \neq \emptyset$.

The case d = k follows from a theorem of Chvatal [3] as it was observed by Chen, Liu, and Wang [2]. Keevash and Mubayi [9] proved Conjecture 1.1 when both k/n and n/2-k bonded away from zero, and Mubayi and Ramadurai [12] for $n > n_0(k)$. The present authors also proved Conjecture 1.1 for $n > n_0(k)$ with a different approach (unpublished) and also settled the case d = k + 1.

Our main theorem here not only implies Conjecture 1.1 for sufficiently large n but also gives an explicit structure of the unavoidable subhypergraphs. Let $\mathbf{a} = (a_1, \ldots, a_p)$ be a sequence of positive integers, k > p > 1, $k = a_1 + \ldots + a_p$. An \mathbf{a} -cluster is a family of k-sets $\{F_0, \ldots, F_p\}$ such that the sets $F_i \setminus F_0$ are pairwise disjoint $(1 \le i \le p)$, $|F_i \setminus F_0| = a_i$, and the sets $F_0 \setminus F_i$ are pairwise disjoint as well.

Theorem 1.2 Suppose that k > p > 1, $\mathcal{F} \subset \binom{[n]}{k}$ with $|\mathcal{F}| > \binom{n-1}{k-1}$ and n is sufficiently large, $(n > n_0(k))$. Then \mathcal{F} contains an **a**-cluster. Moreover, if $|\mathcal{F}| = \binom{n-1}{k-1}$, then \mathcal{F} consists of all the k-subsets containing a given element.

2 Trees and traces in hypergraphs

A system of k-sets $\mathbb{T} := \{E_1, E_2, \dots, E_q\}$ is called a **tree** (k-tree) if for every $2 \le i \le q$ we have $|E_i \setminus \bigcup_{j \le i} E_j| = 1$, and there exists an $\alpha = \alpha(i) < i$ such that

¹ Research supported in part by the Hungarian National Science Foundation under grants OTKA 062321, 060427 and by the National Science Foundation under grant NSF DMS 06-00303.

² Email: furedi@renyi.hu, z-furedi@math.uiuc.edu

³ Email: ozkahya@illinois.edu

 $|E_{\alpha} \cap E_i| = k - 1$. The case k = 2 corresponds to the usual trees in graphs. Let \mathbb{T} be a k-tree on v vertices, and let $\operatorname{ex}_k(n, \mathbb{T})$ denote the maximum size of k-family on n elements without \mathbb{T} . We have

$$\operatorname{ex}_k(n,\mathbb{T}) \ge (1 + o(1)) \frac{v - k}{k} \binom{n}{k - 1}.$$

Indeed, consider a P(n, v-1, k-1) packing P_1, \ldots, P_m on the vertex set [n]. This means that $|P_i| = v-1$ and $|P_i \cap P_j| < k-1$ for $1 \le i < j \le m$. Rödl's [15] theorem gives a packing of the size $m = (1+o(1))\binom{n}{k-1}/\binom{v-1}{k-1}$, when $n \to \infty$. Put a complete k-hypergraph into each P_i , the obtained k-graph does not contain \mathbb{T} . Note that a $(1, 1, \ldots, 1)$ -cluster is a k-tree with v = 2k, so if a perfect packing P(n, 2k-1, k-1) exists, then the above construction gives a cluster-free k-family of size $\binom{n}{k-1}$, slightly exceeding the EKR bound.

Conjecture 2.1 (Erdős and Sós for graphs, Kalai 1984 for all k, see in [6]) $\operatorname{ex}_k(n,\mathbb{T}) \leq \frac{v-k}{k} \binom{n}{k-1}$.

The k-graph case was proved for **star-shaped** trees by Frankl and the first author [6], i.e., whenever \mathbb{T} contains an edge wich intersects all other edges in k-1 vertices. (For k=2 these are the diameter 3 trees, i.e., 'brooms'.)

Theorem 1.2 is related to the **trace problem of uniform hypergraphs**. Given a hypergraph H, its trace on $S \subseteq V(H)$ is defined as the set $\{E \cap S : E \in \mathcal{E}(H)\}$. Let Tr(n,r,k) denote the maximum number of edges in an r-uniform hypergraph of order n not admitting the power set $2^{[k]}$ as a trace. For $k \leq r \leq n$, the bound $\text{Tr}(n,r,k) \leq \binom{n}{k-1}$ was proved by Frankl and Pach [7]. Mubayi and Zhao [14] reduced this bound by $\log_p n - k!k^k$ in the case when k-1 is a power of a prime p and n is large. On the other hand, Ahlswede and Khachatrian [1] showed $\text{Tr}(n,k,k) \geq \binom{n-1}{k-1} + \binom{n-4}{k-3}$ for $n \geq 2k \geq 6$.

3 The intersection structure of an a-cluster-free family

Definition 3.1 A family $\{D_1, D_2, \dots, D_s\}$ of distinct sets forms a *delta-system* of size s and with center C if $D_i \cap D_j = C$ holds for all $1 \le i < j \le s$.

Definition 3.2 The intersection structure of $F \in \mathcal{F}$ with respect to the family \mathcal{F} is defined as $\mathcal{I}(F,\mathcal{F}) := \{F \cap F' : F' \in \mathcal{F}, F \neq F'\}$. The rank, $r(\mathcal{I})$, of the intersection structure $\mathcal{I} = \mathcal{I}(F,\mathcal{F})$ is defined as $r(\mathcal{I}) = \min\{|A| : A \subset F, \nexists B \in \mathcal{I}, A \subset B\}$.

Definition 3.3 Let \mathcal{F} be k-partite and $S \subset [n]$. The projection $\Pi(S)$ is defined as $\Pi(S) = \{i : S \cap X_i \neq \emptyset\}$, and $\Pi(\mathcal{I}(F, \mathcal{F})) = \{\Pi(S) : S \in \mathcal{I}(F, \mathcal{F})\}$.

The rank is k only if $\mathcal{I} = 2^F \setminus \{F\}$, otherwise it is at most k-1. A k-uniform family $\mathcal{F} \subset \binom{[n]}{k}$ is k-partite if one can find a k-partition $[n] = X_1 \cup \ldots \cup X_k$ with $|F \cap X_i| = 1$ for all $F \in \mathcal{F}$, $1 \le i \le k$.

Theorem 3.4 [8] For any two positive integers k and s there exists a positive constant c(k,s) such that every family $\mathcal{F} \subset {[n] \choose k}$ contains a subfamily $\mathcal{F}^* \subset \mathcal{F}$ satisfying

- $(1) \quad |\mathcal{F}^*| \ge c(k,s)|\mathcal{F}|,$
- (2) \mathcal{F}^* is k-partite,
- (3) there is a family $\mathcal{J} \subset 2^{[k]} \setminus \{[k]\}$ such that $\Pi(\mathcal{I}(F, \mathcal{F}^*)) = \mathcal{J}$ holds for all $F \in \mathcal{F}^*$,
 - (4) \mathcal{J} is closed under intersection, i.e. $A, B \in \mathcal{J}$ implies $A \cap B \in \mathcal{J}$,
- (5) every member of $\mathcal{I}(F, \mathcal{F}^*)$ is the center of a delta-system of size s formed by members of \mathcal{F}^* .

Lemma 3.5 Suppose that $\mathcal{F} \subset {[n] \choose k}$ is an **a**-cluster-free family ($\mathbf{a} \neq \mathbf{1}$). Let $\mathcal{F}^* \subset \mathcal{F}$ be k-partite with $\Pi(\mathcal{I}(F, \mathcal{F}^*)) = \mathcal{J}$ for all $F \in \mathcal{F}^*$, where $\mathcal{J} \subset 2^{[k]} \setminus {[k]}$, and every member of $\mathcal{I}(F, \mathcal{F}^*)$ is the center of a delta-system of size $s \geq 2k$ formed by members of \mathcal{F}^* Let $F = \{x_1, \ldots, x_k\} \in \mathcal{F}^*$. If \mathcal{J} is closed under intersection and $r(\mathcal{J}) \geq k-1$, then

- 1. $r(\mathcal{J})=k-1$, i.e.,, it is impossible that $(F \setminus \{x_i\}) \in \mathcal{I}(F,\mathcal{F}^*)$ for all 1 < i < k.
- 2. If there are k-1 (k-1)-sets in \mathcal{J} , e.g., $F \setminus \{x_i\} \in \mathcal{I}(F,\mathcal{F}^*)$ for $2 \leq i \leq k$, then $F \setminus \{x_1\}$ is an own set of F in \mathcal{F} . (Note that it is own in \mathcal{F} , not only in \mathcal{F}^* .)
- 3. If there are k-t (k-1)-sets in \mathcal{J} , say $F \setminus \{x_i\} \in \mathcal{I}(F, \mathcal{F}^*)$ for $t < i \leq k$ with $2 \leq t \leq k$, then either F has at least two own (k-1)-subsets in \mathcal{F} among $\{F \setminus \{x_1\}, \ldots, F \setminus \{x_t\}\}$ or there is no collection $\{F(x_1), \ldots, F(x_t)\} \subset \mathcal{F}$ whose t-1 members have disjoint elements outside F.

To prove this lemma, we mainly use the properties of an **a**-cluster-free family and the properties of the subfamily \mathcal{F}^* . The existence of the subfamily \mathcal{F}^* is guaranteed by Theorem 3.4 for sufficiently large n.

Finally, in the proof of Theorem 1.2 we use the above tools and a complicated version of the stability method developed by Frankl and the first author in [6].

References

- [1] R. Ahlswede and L. H. Khachatrian, Counterexample to the Frankl-Pach conjecture for uniform, dense families, Combinatorica 17 (1997), 299–301.
- [2] W. Y. C. Chen, Jiuqiang Liu, and L. X. W. Wang, Families of sets with intersecting clusters, submitted for publication.
- [3] V. Chvatal, An extremal set-intersection theorem, J. London Math. Soc., (2), 9 (1974/1975), 355–359.
- [4] P. Frankl and Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3 (1983), 341–349.
- [5] P. Frankl and Z. Füredi, Forbidding just one intersection, J. Combinatorial Theory Ser. A **39** (1985), 160–176.
- [6] P. Frankl and Z. Füredi, Exact solution of some Turán-type problems, J. Combinatorial Theory Ser. A 45 (1987), 226–262.
- [7] P. Frankl and J. Pach, On disjointly representable sets, Combinatorica 4 (1984), 39–45.
- [8] Z. Füredi, On finite set-systems whose every intersection is a kernel of a star, Discrete Mathematics 47 (1983), 129–132.
- [9] P. Keevash and D. Mubayi, Set systems without a simplex or a cluster, Combinatorica, in press.
- [10] D. Mubayi, Erdős-Ko-Rado for three sets, J. Combinatorial Theory Ser. A 113 (2006), 547–550.
- [11] D. Mubayi, An intersection theorem for four sets, Advances in Math. 215 (2007), 601–615.
- [12] D. Mubayi and R. Ramadurai, Set systems with union and intersection constraints, J. of Combin. Theory, Ser. B, **99** (2009), 639–642.
- [13] D. Mubayi and J. Verstraëte, Proof of a conjecture of Erdős on triangles in set systems, *Combinatorica* **25** (2005), 599–614.
- [14] D. Mubayi and Yi Zhao, On the VC-dimension of uniform hypergraphs J. Algebraic Combin. 25 (2007), 101–110.
- [15] V. Rödl, On a packing and covering problem, European J. Combin. 6 (1985), 69–78.