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One of the central problems of extremal hypergraph theory is
the description of unavoidable subhypergraphs, in other words,
the Turán problem. Let a = (a1, . . . ,ap) be a sequence of positive
integers, k = a1 + · · · + ap . An a-partition of a k-set F is a partition
in the form F = A1 ∪ · · · ∪ Ap with |Ai | = ai for 1 � i � p.
An a-cluster A with host F0 is a family of k-sets {F0, . . . , F p} such
that for some a-partition of F0, F0 ∩ Fi = F0 \ Ai for 1 � i � p
and the sets Fi \ F0 are pairwise disjoint. The family A has 2k
vertices and it is unique up to isomorphisms. With an intensive use
of the delta-system method we prove that for k > p and sufficiently
large n, if F is a k-uniform family on n vertices with |F | exceeding
the Erdős–Ko–Rado bound

(n−1
k−1

)
, then F contains an a-cluster.

The only extremal family consists of all the k-subsets containing
a given element.

Published by Elsevier Inc.

1. Introduction

1.1. History

Let F be a family of k subsets of the n-set [n] = {1,2, . . . ,n}, F ⊂ ([n]
k

)
, n � k � 2. The Erdős–

Ko–Rado (EKR) theorem [6] states that if any two sets intersect and n � 2k, then |F | �
(n−1

k−1

)
. Katona

proposed in 1980 the following related problem: Suppose that every three members F1, F2, F3 ∈
F meet (F1 ∩ F2 ∩ F3 �= ∅) whenever their union is small, |F1 ∪ F2 ∪ F3| � 2k. It was proved by
Frankl and the first author [8] that then the same EKR-type upper bound holds for |F | for n > n1(k).
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The case 3k/2 � n < 2k follows from a result of Frankl [7] (also see Mubayi and Verstraëte [19]), and
finally Mubayi [16] gave a nice short proof that |F | �

(n−1
k−1

)
holds for all n � 2k (with equality only

for
⋂

F �= ∅) so n1(k) = �3k/2	. Mubayi [17] showed that the EKR bound also holds, if |F1 ∪ F2 ∪
F3 ∪ F4| � 2k implies F1 ∩ F2 ∩ F3 ∩ F4 �= ∅ (for n > n2(k)). This led him to the following conjecture.

Conjecture 1. Call a family of k-sets {F1, . . . , Fd} a (k,d)-cluster if

|F1 ∪ F2 ∪ · · · ∪ Fd| � 2k and F1 ∩ F2 ∩ · · · ∩ Fd = ∅.

Let k � d � 2, n � dk/(d − 1) and suppose that F is a k-uniform family on n elements containing no (k,d)-
cluster. Then |F | � (n−1

k−1

)
, with equality only if

⋂
F �= ∅.

The case d = k follows from a theorem of Chvátal [5] as it was observed by Chen, Liu, and
Wang [4]. Keevash and Mubayi [14] proved Conjecture 1 when both k/n and n/2 − k are bounded
away from zero, and Mubayi and Ramadurai [18] for n > n3(k). The present authors also proved Con-
jecture 1 in 2007 for n > n4(k) with a different approach (unpublished). Recently, Jiang, Pikhurko, and
Yilma [13] proved a more general result concerning the so-called strong simplices.

In Theorem 2, we give a stronger generalization which not only implies Conjecture 1 and all the
above results for sufficiently large n but also gives an explicit structure of the unavoidable subhyper-
graphs.

In our notation, A ⊂ B also includes the case that A = B . We write A � B for the case A ⊂ B and
A �= B .

1.2. a-Clusters

Let a = (a1, . . . ,ap) be a sequence of positive integers, p � 2, k = a1 + · · · + ap . An a-partition of a
k-set F is a partition in the form F = A1 ∪ · · · ∪ A p with |Ai| = ai for 1 � i � p. An a-cluster A with
host F0 is a family of k-sets {F0, . . . , F p} such that for some a-partition of F0, F0 ∩ Fi = F0 \ Ai for
1 � i � p and the sets Fi \ F0 are pairwise disjoint. The family A has 2k vertices and it is unique up
to isomorphisms.

Theorem 2. Suppose that k > p > 1, F ⊂ ([n]
k

)
with |F | >

(n−1
k−1

)
and n is sufficiently large (n > N(k)). Then

F contains any a-cluster, a �= 1. Moreover, if |F | = (n−1
k−1

)
, a-cluster-free, then it consists of all the k-subsets

containing a given element.

Our N(k) is very large, it is double exponential in k. In the proof of Theorem 2, we use the delta-
system method and a complicated version of the stability method developed in [10] by Frankl and
the first author of this paper. Note that the case k = p, i.e., a = (1,1, . . . ,1), is different as described
in Section 3.2.

1.3. The delta-system method

It is natural to investigate the intersection structure of F . This is exactly where the delta-system
method can be applied.

The intersection structure of F ∈ F with respect to the family F is defined as

I(F , F ) = {
F ∩ F ′: F ′ ∈ F , F �= F ′}.

If the set F is given, A ⊂ F with (F \ A) ∈ I(F , F ), then we use the notation F (A) for a k-set in F
such that F (A) ∩ F = F \ A.

A k-uniform family F ⊂ ([n]
k

)
is k-partite if one can find a partition [n] = X1 ∪ · · · ∪ Xk with

|F ∩ Xi| = 1 for all F ∈ F , 1 � i � k. If F is k-partite, then for any set S ⊂ [n], its projection Π(S)

is defined as

Π(S) = {i: S ∩ Xi �= ∅} and Π
(

I(F , F )
) = {

Π(S): S ∈ I(F , F )
}
.
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A family {D1, D2, . . . , Ds} is called a delta-system of size s and with center C if Di ∩ D j = C holds
for all 1 � i < j � s. The delta-system method is described in the following theorem due to the first
author.

Theorem 3. (See [12].) For any positive integers s and k with s > k, there exists a positive constant c(k, s) such
that every family F ⊂ ([n]

k

)
contains a subfamily F ∗ ⊂ F satisfying

(3.1) |F ∗| � c(k, s)|F |,
(3.2) F ∗ is k-partite,
(3.3) there is a family J ⊂ 2{1,2,...,k} \ {[k]} such that Π(I(F , F ∗)) = J holds for all F ∈ F ∗ ,
(3.4) J is closed under intersection (i.e., A, B ∈ J imply A ∩ B ∈ J ),
(3.5) every member of I(F , F ∗) is the center of a delta-system D of size s formed by members of F ∗ and

containing F , F ∈ D ⊂ F ∗ .

We call a family F ∗ homogeneous if F ∗ satisfies (3.2)–(3.5). In this paper, we fix s = 2k in Theo-
rem 3.

Lemma 4. Suppose that F ∗ ⊂ F , where F ∗ is obtained by using Theorem 3 with s = 2k. If G1 ∈ F ∗ , G2 ∈ F ,
M ∈ I(G1, F ∗), M ⊂ G2 and M ∩ S = ∅, where |S| � k, then there exists a G3 ∈ F ∗ such that G2 ∩ G3 = M
and S ∩ G3 = ∅.

Proof. Let {F ′
1, F ′

2, . . . , F ′
2k} ⊂ F ∗ be a delta-system centered at M , where F ′

1 = G1. Since the sets
F ′

1 \ M, . . . , F ′
2k \ M are pairwise disjoint, and |G2 \ M| < k and |S| � k there is an F ′

i avoiding both
(1 � i � 2k). Then G2 ∩ F ′

i = M and S ∩ F ′
i = ∅. �

2. Proof of the main theorem

2.1. Rank and shadow of a-cluster-free families

Throughout the proof of Theorem 2, we will be mostly interested in the rank of J , which is
defined as

r(J ) = min
{|A|: A ⊂ [k], �B ∈ J , A ⊂ B

}
.

The rank of J is k only if J = 2[k] \ {[k]}; otherwise, it is at most k − 1.
From now on, F ⊂ ([n]

k

)
is an arbitrary k-family containing no a-cluster, where a = (a1, . . . ,ap) is a

non-increasing sequence with a1 � 2. We will show that |F | � (n−1
k−1

)
implies

⋂
F �= ∅ for sufficiently

large n.
Frankl and the first author [9] developed a method while proving a conjecture of Erdős that is

used in [10] to show that a family F ⊂ ([n]
k

)
has a common element (

⋂
F �= ∅) if certain intersection

constraints are fulfilled. Here we revisit that result and modify that proof to obtain a version for
a-cluster-free families.

For the rest of the paper, we let F ∗ ⊂ F be a homogeneous subfamily of F .

Corollary 5. Let F = {x1, . . . , xk} ∈ F ∗ . If r(J ) � k−1, then r(J ) = k−1, i.e., it is impossible that (F \{xi}) ∈
I(F , F ∗) for all 1 � i � k.

Proof. Assume, on the contrary, that r(J ) = k. Because J is closed under intersection, we have
J = 2[k] \ {[k]}. Therefore, I(F , F ∗) contains all proper subsets of F . Consider an a-partition of
F = (A1, . . . , A p). Using Lemma 4 p times with G1 = F , M = F \ Ai and S = ⋃

j<i(F j \ F ) we ob-
tain F1, . . . , F p ∈ F ∗ such that, for i ∈ [p], F ∩ Fi = F \ {Ai} and the sets Fi \ F are disjoint. Therefore,
{F1, . . . , F p, F } is an a-cluster with host F . �
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We use the notation ��(H) for the �-shadow of the family H, i.e.,

��(H) := {
L: |L| = �, ∃H ∈ H with L ⊂ H

}
.

Lemma 6. F is not too dense, i.e., |�k−1(G)| � c1(k)|G| for all G ⊂ F , where c1(k) := c(k,2k) from (3.1).

Proof. Apply Theorem 3 to G to obtain a k-partite G∗ with a homogeneous intersection structure
J ⊂ 2[k] , i.e., Π(I(G, G∗)) = J for all G ∈ G∗ . Corollary 5 implies that the rank of J is at most
k − 1 so each G ∈ G∗ has a (k − 1)-subset that is not contained by another member of G∗ . We obtain
|�k−1(G∗)| � |G∗|, and hence

∣∣�k−1(G)
∣∣ �

∣∣�k−1
(

G∗)∣∣ �
∣∣G∗∣∣ � c(k,2k)|G|. � (1)

2.2. The intersection structure of rank-(k − 1) subfamilies

For a subset S ⊂ F ∈ F , denote the degree of S in F by

degF (S) = ∣∣{F : F ∈ F , S ⊂ F }∣∣.
A subset of F ∈ F is called an own subset of F , if its degree in F is one.

Lemma 7. Let F0 ∈ F ∗ and {A1, . . . , A p} an a-partition of F0 . Assume that there exists an H ∈ F and i ∈ [p]
such that F0 ∩ H = (F0 \ Ai). Suppose F0 \ A j ∈ I(F0, F ∗) for each j ∈ [p] when j �= i. Then there is an
a-cluster in F with host F0 .

Proof. Call H to Fi . Use Lemma 4 (p − 1) times to define F j for j ∈ [p] \ {i} with G1 = H , M =
F0 \ A j ∈ I(F0, F ∗) and S = (Fi \ F0)

⋃
�< j(F� \ F0). Note that |S| < k at each step. �

Lemma 7 can be generalized to allow more than one member with properties of H as used in the
proof of Lemma 9.

Lemma 8. Let F = {x1, . . . , xk} ∈ F ∗ . If r(J ) = k − 1, and there are k − 1 (k − 1)-sets in J , say F \ {xi} ∈
I(F , F ∗) for 2 � i � k, then F \ {x1} is an own subset of F in F . Moreover, in this case

F1 ∈ F , |F1 ∩ F | � k − 2 imply x1 ∈ F1. (2)

Such an F (and J and F ∗) is called of type I. Note that we claim that F \ {x1} is an own subset
of F in F , not only in F ∗ .

Proof. Suppose, on the contrary, that there exists an F1 ∈ F such that F1 = {y, x2, . . . , xk}, y /∈ F1.
This will enable us to find an a-cluster (with a host F2 to be defined later), a contradiction.

Choose a subset M of F such that x1 ∈ M and |M| = k − a1 + 1 (< k). Note that (3.4) implies that

{E: E � F , x1 ∈ E} ⊂ I
(

F , F ∗). (3)

So M ∈ I(F , F ∗) and by Lemma 4 we can pick another member F2 ∈ F ∗ such that F ∩ F2 = M and
y /∈ F2. We obtain

F2 ∩ F1 = M \ {x1} hence |F2 ∩ F1| = k − a1.

Consider an a-partition of F2 such that A1 = F2 \ F1, i.e. F1 = F2(A1). Since F2 ∈ F ∗ and F ∗ is
homogeneous, by (3) and (3.3) of Theorem 3, we have

{E: E � F2, x1 ∈ E} ⊂ I
(

F2, F ∗).
Therefore, F2 \ Ai ∈ I(F2, F ∗) for 2 � i � p and we obtain an a-cluster by Lemma 7, a contradiction.
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The proof of (2) when |F1 ∩ F | = k − 2, assuming x1, x2 /∈ F1, is similar and we omit the details.
To prove this case, one needs to follow the same steps assuming that x1, x2 ∈ M and have to choose
M and F2 such that |M| = k −a1 + 2 and F2 ∩ F1 = M \ {x1, x2}, respectively, except in the case a1 = 2
when we define F2 = F . �
Lemma 9. If r(J ) = k−1, and there are exactly k−t (k−1)-sets in J with 2 � t � k, say F \{xi} ∈ I(F , F ∗)
for t < i � k then

∑
1�i�t

1

degF (F \ {xi}) � 1 + 1

k − 1
.

These F ∈ F ∗ (and J and F ∗) are called type II.

Proof. Define a bipartite graph G with partite sets X = {x1, . . . , xt} and Y = [n] \ F and edges xy for
x ∈ X and y ∈ Y if and only if (F \{x})∪{y} ∈ F . We claim that the maximum number of independent
edges in this graph, ν(G), is at most t − 2. This indeed implies Lemma 9 as follows. By the König–Hall
theorem the size of a minimum vertex cover S of G is at most t − 2. Let |X \ S| = �, we have � � 2
and |S ∩ Y | � � − 2. Since each vertex v ∈ X \ S has neighbors only in S ∩ Y , we have

degF
(

F \ {v}) = degG(v) + 1 � |S ∩ Y | + 1 � � − 1.

This yields

∑
v∈X\S

1

degF (F \ {v}) � �

� − 1
� k

k − 1
.

To prove ν(G) � t −2 suppose, on the contrary, that there are Fi := (F \{xi}∪{yi}) ∈ F for 2 � i � t ,
where yi ’s are distinct elements outside F . We will see this leads to the existence of an a-cluster. First,
we describe the intersection structure of F in F ∗ by using repeatedly the fact that I(F , F ∗) is closed
under intersection.

Note that

if A ⊆ {xt+1, . . . , xk} then F \ A ∈ I
(

F , F ∗). (4)

Also, if A ⊂ F , |A| < k and

∣∣A ∩ {x1, . . . , xt}
∣∣ � 2 then (F \ A) ∈ I

(
F , F ∗). (5)

Indeed, the rank of J exceeds k − 2, so we have that F \ {xu}, F \ {xv} /∈ I(F , F ∗) (1� u < v � t), but
F \ {xu, xv} ∈ I(F , F ∗). Also F \ {xw} ∈ I(F , F ∗) for t < w � k. Since J is closed under intersection,
we obtain that

F \ A =
( ⋂

xu,xv∈A, u<v�t

(
F \ {xu, xv})

)
∩

( ⋂
xw∈A, w>t

(
F \ {xw})

)
∈ I

(
F , F ∗).

In the rest of the proof, we specify how one can build an a-cluster with host F using Lemma 7 if
each Ai in an a-partition of F satisfies either one of (4) and (5) or Ai = {x j} with 1 < j � k. There are
several cases to consider.

Recall that a1 � a2 � · · · � ap and a1 � 2. Define the positive integers i and � as follows.

a1 + · · · + ai−1 < t � a1 + · · · + ai,

� = t − (a1 + · · · + ai−1).

Except the last case, the host of the a-cluster is F .
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Case 1: � � 2. Then a1, . . . ,ai � � � 2.
Let A1, A2, . . . , Ai−1 ⊂ X = {x1, . . . , xt} and |Ai ∩ {x1, . . . , xt}| = �.
Case 2: � = 1 and ai = 1.
By our assumption, there exist Fi := (F \ {xi} ∪ {yi}) ∈ F for 2 � i � t , where yi ’s are distinct

elements outside F . Let A1 ∪ A2 ∪ · · · ∪ Ai = {x1, . . . , xt}, x1 ∈ A1.
From now on, � = 1 and ai � 2 so i � 2.
Case 3: � = 1, ai � 2 and a1 � 3.
Let A1 ∪ A2 ∪ · · · ∪ Ai ⊇ {x1, . . . , xt , xt+1}, xt+1 ∈ A1 and A2 ∪ · · · ∪ Ai−1 ⊂ {x1, . . . , xt}. We have that

|X ∩ A1|, |X ∩ Ai | � 2.
Case 4: � = 1, ai � 2, a1 � 2 and ap = 1. Then a1 = · · · = ai = 2.
Let A1 ∪ A2 ∪ · · · ∪ Ai−1 ∪ A p = {x1, . . . , xt}, A p := {xt}.
Case 5: � = 1, a1 = · · · = ap = 2.
This implies that t is odd, t � 3, and k = 2p is even so t < k. Pick a member F0 from F ∗ such

that F0 = F \ {xk} ∪ {y} for some y �= y2. Choose an a-partition of F0 such that A1 = {y, x2}, which
means F2 = F0(A1). The other parts are A2 = {x1, x3} and A j = {x2 j−2, x2 j−1} for 3 � j � p. By (3.3)
of Theorem 3, the intersection structure I(F0, F ∗) is isomorphic to I(F , F ∗) so (4) and (5) imply that
F \ A j ∈ I(F0, F ∗) for 2 � j � p. Then Lemma 7 implies that there is an a-cluster with host F0. �
2.3. Type I dominates, a partition of F

Apply Theorem 3 to F to obtain G1 := (F )∗ with the intersection structure J1 ⊂ 2[k] . Then we
apply Theorem 3 again to F \ G1 to obtain G2 = (F \ G1)

∗ and J2, then apply to F \ (G1 ∪ G2) and so
on, until either F \ (G1 ∪ · · · ∪ Gm) = ∅ or r(Jm+1) � k − 2 for some m. Let F1 be the union of those
Gi ’s, where Ji contains exactly k − 1 (k − 1)-sets (type I families) and let F2 be the union of the rest
of these families (type II families)

F2 :=
⋃

j

{
G j: r(J j) = k − 1, but J j does not contain exactly (k − 1) (k − 1)-sets

}
.

Finally, let

F3 := F \ (G1 ∪ · · · ∪ Gm) = F \ (F1 ∪ F2).

Lemma 10. If F ⊂ ([n]
k

)
is a-cluster-free with |F | � (n−1

k−1

)
, then

|F2| + |F3| � k

c1(k)

(
n

k − 2

)
+ (k − 1)

(
n − 1

k − 2

)
< c2(k)nk−2,

where c1(k) := c(k,2k) from (3.1).

Proof. Since the rank of Jm+1 is at most k − 2, each member of Gm+1 has its own (k − 2)-subset in
Gm+1. We obtain as in (1) that

c(k,2k)
∣∣F \ (G1 ∪ · · · ∪ Gm)

∣∣ � |Gm+1| �
∣∣�k−2(Gm+1)

∣∣ �
(

n

k − 2

)
,

therefore we can write

k

k − 1
|F3| � k

(k − 1)c1(k)

(
n

k − 2

)
.

Lemma 8 implies that every F ∈ F1 contains an own (k − 1)-set. This and Lemma 9 give

|F1| + k

k − 1
|F2| �

∑
F∈F

(∑
v∈F

1

degF (F \ {v})
)

= ∣∣�k−1(F )
∣∣ �

(
n

k − 1

)
.

Compare the sum of the above two inequalities to
(n−1

k−1

)
� |F1| + |F2| + |F3|. A simple calculation

completes the proof. �
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2.4. Another partition, the stability of the extremum

For every F ∈ F1 there exists a type I family Gi ⊂ F , F ∈ Gi . By the definition of type I family,
there exists a (unique) � := �(F ) such that {E: � ∈ E ⊂ F } ⊂ I(F , Gi). Classify the members F ∈ F1
according to �(F ), let Hi := {F ∈ F1: �(F ) = i}, i ∈ [n]. Let

H̃i := {
H \ {i}: H ∈ Hi

}
.

These families are pairwise disjoint, H̃i ∩ H̃ j = ∅. The shadows �k−2(H̃i) are pairwise disjoint, too.
Otherwise, for a set H ∈ �k−2(H̃i) ∩ �k−2(H̃ j), i �= j, (2) implies that H ′ = H ∪ {i, j} ∈ Hi ∩ H j con-
tradicting with the uniqueness of �(H ′).

Given a positive integer d and real x define
(x

d

)
as x(x − 1) · · · (x − d + 1)/d!. We will need the

following version of the Kruskal–Katona theorem due to Lovász.

Theorem 11. (See [15].) Suppose that H ⊂ ([n]
d

)
and |H| = (x

d

)
, x � d. Then |�h(H)| �

(x
h

)
holds for all d >

h � 0.

In case of Hi �= ∅ let xi be a real number such that xi � k − 1 and |H̃i | = ( xi
k−1

)
. Without loss of

generality, let x1 be the maximal one, i.e. n − 1 � x1 � xi . We obtain for all i ∈ [n] that

|Hi| = |H̃i| �
( xi

k−1

)
( xi

k−2

) ∣∣�k−2(H̃i)
∣∣ � x1 − k + 2

k − 1

∣∣�k−2(H̃i)
∣∣ � n − k + 1

k − 1

∣∣�k−2(H̃i)
∣∣. (6)

We assume that |F | � (n−1
k−1

)
. Then Lemma 10 gives a lower bound for |F1| = ∑ |Hi|,

(
n − 1

k − 1

)
− c2nk−2 �

∑
i∈[n]

|Hi| � x1 − k + 2

k − 1

( ∑
i∈[n]

∣∣�k−2(H̃i)
∣∣) � x1 − k + 2

k − 1

(
n

k − 2

)
.

This inequality implies that x1 > n − c3 for some constant c3 = c3(k). Therefore there exists a constant
c4 := c4(k) such that

∑
2�i�k

|Hi| =
∑

2�i�k

|H̃i| �
(

n

k − 1

)
−

(
n − c3

k − 1

)
< c4nk−2.

This and Lemma 10 lead to

|F \ H1| � (c2 + c4)n
k−2. (7)

Note that (with minor modifications) the arguments in the above two sections lead to the follow-
ing stability result.

Theorem 12. For every ε > 0 there exists a δ > 0 and n0 = n0(k, ε) such that the following holds. If F ⊂ ([n]
k

)
contains no a-cluster and |F | > (1 − δ)

(n−1
k−1

)
, n > n0 , then there exists an element v ∈ [n] such that all but at

most ε
(n−1

k−1

)
members of F contains v.

2.5. The extremal family is unique, the end of the proof

In this section we complete the proof of Theorem 2. We have given a family F ⊂ ([n]
k

)
containing

no a-cluster and of size |F | �
(n−1

k−1

)
. In previous sections we have already defined H1 ⊂ F1, F2, and

F3 and showed in (7) that H1 constitutes the bulk of F . One can see (as we have seen in Lemma 8)
that

F ∈ F , H ∈ H1, |F ∩ H| � k − a1 imply 1 ∈ F . (8)
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Let us split F into four subfamilies

B = {B: 1 /∈ B ∈ F },
C = {

C : 1 ∈ C ∈ F and |C ∩ B| � k − a1 for some B ∈ B
}
,

D = {D: 1 ∈ D ∈ F \ C and every S with 1 ∈ S � D

is a center of some delta-system of F of size 2k},
E = {E: 1 ∈ E ∈ F } \ (C ∪ D).

We have H1 ⊂ D. In (16), (17) and (20) we will prove that for sufficiently large n with respect to k,
one has

|D| + 4|B| �
(

n − 1

k − 1

)
, |D| + 4|C| �

(
n − 1

k − 1

)
, |D| + 4|E | �

(
n − 1

k − 1

)
. (9)

By adding these three, we have

3|F | + (|B| + |C| + |E |) � 3

(
n − 1

k − 1

)

implying B = C = E = ∅. Thus F = D,
⋂

F �= ∅, and we are done.
Before starting the proof of (9), let us define the following subfamilies:

C̃ := {
C \ {1}: C ∈ C

}
, D̃ := {

D \ {1}: D ∈ D
}
, Ẽ := {

E \ {1}: E ∈ E
}
. (10)

We also apply Theorem 3 with c1(k) := c(k, s) and s = 2k to C̃ and Ẽ to obtain (k − 1)-partite
subfamilies C∗ ⊂ C and E ∗ ⊂ E . By (3.1), we have

∣∣C∗∣∣ � c1(k)|C̃| = c1(k)|C| and
∣∣E ∗∣∣ � c1(k)|Ẽ | = c1(k)|E |. (11)

Since each member of D̃ has (k − 1) subsets of size k − 2 and every (k − 2)-set is contained in
at most (n − k + 1) members of D̃ we have that (n − k + 1)|�k−2(D̃)| � (k − 1)|D̃|. Rearranging and
using |D̃| = |D| we obtain

n − k + 1

k − 1

∣∣�k−2(D̃)
∣∣ � |D|. (12)

Subfamily B. By definition of D and Lemma 8, we have |D ∩ B| �= k − 2 for all D ∈ D̃ and B ∈ B. In
other words, �k−2(D̃) ∩ �k−2(B) = ∅. Hence,

(
n − 1

k − 2

)
�

∣∣�k−2(D̃)
∣∣ + ∣∣�k−2(B)

∣∣.
Multiplying (14) with (n − k + 1)/(k − 1) and using (12), we obtain(

n − 1

k − 1

)
� |D| + n − k + 1

k − 1

∣∣�k−2(B)
∣∣. (13)

Let x � k − 1 be a real number such that |�k−1(B)| = ( x
k−1

)
. By Theorem 11, we have

∣∣�k−2(B)
∣∣ � k − 1

x − k + 2

∣∣�k−1(B)
∣∣. (14)

By Lemma 6,

∣∣�k−1(B)
∣∣ � c1(k)|B|. (15)
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Then (13)–(15) yield(
n − 1

k − 1

)
� |D| + c1(k)

n − k + 1

x − k + 2
|B|. (16)

Since B is contained in F \ H1 inequality (7) gives(
x

k − 1

)
= ∣∣�k−1(B)

∣∣ � k|B| < k(c2 + c4)n
k−2

implying that x < c5n(k−2)/(k−1) for some constant c5. Therefore, the coefficient of |B| in (16) is at
least 4 for sufficiently large n.

Subfamily C . We denote the homogeneous intersection structure of C by JC .

Claim 13. Each C ′ ∈ C∗ has a (k − 2)-set such that it is contained neither in �k−2(D̃) nor in I(C ′, C∗).

Proof. Suppose, on the contrary, that for some C ′ = {x1, . . . , xk−1} ∈ C∗ with C = C ′ ∪ {1} ∈ C , we have

C ′ \ {xi} ∈
{

I(C ′, D̃), i = 1, . . . , r,

I(C ′, C∗), i = r + 1, . . . ,k − 1.

All subsets of C ′ \ {xi} are contained in I(C ′, D̃), for 1 � i � r, and all supersets of the set {x1, . . . , xr}
in C ′ , except C ′ itself, are contained in I(C ′, C∗). So, for all S ⊂ C ′ , there is a delta-system of size 2k
with center S ∪ {1}.

We claim that r � 1. Otherwise JC = 2[k−1] \ {[k − 1]} and there exists a member C ′′ ∈ C such that
C ′′ \ {1} ∈ C∗ and |C ′′ ∩ B| = k −a1 for some B ∈ B. Then one can build an a-cluster with host C ′′ such
that C ′′(A1) = B .

Let Di ∈ D such that C ∩ Di = C \ {xi}, for i = 1, . . . , r and choose a B ∈ B with |C ∩ B| � k − a1. By
definition of D,

|Di ∩ B| � k − a1 − 1.

We also have

|Di ∩ B| + 1 �
∣∣C ′ ∩ B

∣∣ = |C ∩ B| � k − a1.

Therefore, xi ∈ C ∩ B for all i = 1, . . . , r and |C ∩ B| = k − a1 and one can build an a-cluster with host
C and C(A1) = B , a contradiction. �

By Claim 13, we have(
n − 1

k − 2

)
�

∣∣�k−2(D̃)
∣∣ + ∣∣C∗∣∣.

Multiplying this by n−k+1
k−1 and applying (11) and (12) we obtain

(
n − 1

k − 1

)
� |D| + c1(k)

n − k + 1

k − 1
|C|. (17)

Subfamily E . First we show that each E ′ ∈ E ∗ has a (k − 2)-subset that is neither in I(E ′, E ∗) nor in
I(E ′, D̃). Suppose, on the contrary, that for some E ∈ E , E ′ := E \ {1} ∈ E ∗ , E ′ = {x1, . . . , xk−1} such
that

E ′ \ {xi} ∈
{

I(E ′, D̃), i = 1, . . . , r,
′ ∗ (18)
I(E , E ), i = r + 1, . . . ,k − 1.
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All subsets of E ′ \ {xi} are contained in I(E ′, D̃), for 1 � i � r, and all supersets of the set {x1, . . . , xr}
in E ′ , except E ′ itself, are contained in I(E ′, E ∗). So, for all S ⊂ E ′ , there is a delta-system of size 2k
with center S ∪ {1}. This contradicts to E /∈ D.

Since every E ′ ∈ E ∗ contains a (k − 2)-set that is not contained in any member of D̃ or another
member of E ∗ , we have(

n − 1

k − 2

)
�

∣∣�k−2(D̃)
∣∣ + ∣∣E ∗∣∣. (19)

After multiplying (19) with n−k+1
k−1 and applying the inequalities (11) and (12), we obtain

(
n − 1

k − 1

)
� |D| + c1(k)

n − k + 1

k − 1
|E |. (20)

3. Concluding remarks

3.1. Finding a (k,k + 1)-cluster

Our first observation is, that in Conjecture 1 the constraint d � k is not necessary. We prove the
case d = k + 1. It is not clear what is the possible maximum value of d. We need a classical result of
Bollobás [3]. A cross-intersecting set system, {Ai, Bi} for i ∈ [m], is a collection of pairs of sets such that
Ai ∩ Bi = ∅ and Ai ∩ B j �= ∅ for i �= j. If |Ai | � a and |Bi | � b (for all 1 � i � m) then

m �
(

a + b

a

)
.

Equality holds only if {A1, . . . , Am} = ([a+b]
a

)
and Bi = [a + b] \ Ai .

Theorem 14. If F ⊂ ([n]
k

)
contains no (k,k + 1)-cluster and n � k, then |F | � (n−1

k−1

)
. Here equality holds only

if
⋂

F �= ∅.

Proof. Every F ∈ F has a (k − 1)-subset B(F ) ⊂ F that is not contained by any other member of F ,
otherwise there are sets F1, . . . , Fk ∈ F such that F = {x1, . . . , xk} and F ∩ Fi = F \{xi}, a contradiction.
Therefore, the sets {B(F ), [n]− F } form an intersecting set pair system and the result of Bollobás yields
|F | � (

(k−1)+(n−k)
k−1

) = (n−1
k−1

)
. �

3.2. Trees in hypergraphs, Kalai’s conjecture

A system of k-sets T := {E1, E2, . . . , Eq} is called a tree (k-tree) if for every 2 � i � q we have
|Ei \ ⋃

j<i E j | = 1, and there exists an α = α(i) < i such that |Eα ∩ Ei | = k − 1. The case k = 2 cor-
responds to the usual trees in graphs. Let T be a k-tree on v vertices, and let exk(n,T) denote the
maximum size of a k-family on n elements without T. We have

exk(n,T) �
(
1 + o(1)

) v − k

k

(
n

k − 1

)
. (21)

Indeed, consider a P (n, v − 1,k − 1) packing P1, . . . , Pm on the vertex set [n]. This means that |Pi | =
v − 1 and |Pi ∩ P j | < k − 1 for 1 � i < j � m. Rödl’s [21] theorem gives a packing of the size m =
(1 + o(1))

( n
k−1

)
/
(v−1

k−1

)
, when n → ∞. Put a complete k-hypergraph into each Pi , the obtained k-graph

does not contain T.

Conjecture 15. (Erdős and Sós for graphs, Kalai 1984 for all k, see in [10].)

exk(n,T) � v − k

k

(
n

k − 1

)
.
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This was proved for star-shaped trees by Frankl and the first author [10], i.e., whenever T contains
an edge which intersects all other edges in k − 1 vertices. (For k = 2 these are the diameter 3 trees,
i.e., ‘brooms’.)

Note that a 1-cluster is a k-tree with v = 2k, here 1 := (1,1, . . . ,1). A Steiner system S(n,k, t) is
a perfect packing, a family of k-subsets of [n] such that each t-subset of [n] is contained in a unique
member of that family. So if an S(n,2k − 1,k − 1) exists then construction (21) gives a cluster-free
k-family of size

( n
k−1

)
, slightly exceeding the EKR bound. (Such designs exist, e.g., for k = 3 and n ≡ 1

or 5 (mod 20), see [2].) On the other hand, the result of Frankl and the first author [10] (cited above)
implies that if F ⊂ ([n]

k

)
is a family with more than

( n
k−1

)
members, then F contains every star-shaped

tree with k + 1 edges, especially it contains a 1-cluster.

3.3. Traces

Theorem 2 is related to the trace problem of uniform hypergraphs. Given a hypergraph H , its trace
on S ⊆ V (H) is defined as the set {E ∩ S: E ∈ E (H)}. Let Tr(n, r,k) denote the maximum number
of edges in an r-uniform hypergraph of order n and not admitting the power set 2[k] as a trace. For
k � r � n, the bound Tr(n, r,k) �

( n
k−1

)
was proved by Frankl and Pach [11]. Mubayi and Zhao [20]

slightly reduced this upper bound by logp n − k!kk in the case when k − 1 is a power of the prime p

and n is large. On the other hand, Ahlswede and Khachatrian [1] showed Tr(n,k,k) �
(n−1

k−1

) + (n−4
k−3

)
for n � 2k � 6.
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