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1. Introduction
1.1. History

Let F be a family of k subsets of the n-set [n] ={1,2,...,n}, F C (["]) >k > 2. The Erdos-
Ko-Rado (EKR) theorem [6] states that if any two sets intersect and n > 2k, then |F| < ( ) Katona
proposed in 1980 the following related problem: Suppose that every three members Fi, F», F3 €

F meet (F1 N F3 N F3 # ) whenever their union is small, |F;1 U Fo U F3| < 2k. It was proved by
Frankl and the first author [8] that then the same EKR-type upper bound holds for || for n > nj(k).
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The case 3k/2 < n < 2k follows from a result of Frankl [7] (also see Mubayi and Verstraéte [19]), and
finally Mubayi [16] gave a nice short proof that |F| < (zj}) holds for all n > 2k (with equality only
for (F # ¥) so ni(k) = [3k/2]. Mubayi [17] showed that the EKR bound also holds, if |F; U Fy U
F3 U F4| < 2k implies F1 N F, N F3 N F4 # @ (for n > ny(k)). This led him to the following conjecture.

Conjecture 1. Call a family of k-sets {F1, ..., Fq} a (k, d)-cluster if

[FiUFU---UF4| <2k and Fi1NFyN---NFz=40.

Letk>d>2,n>dk/(d— 1) and suppose that F is a k-uniform family on n elements containing no (k, d)-
cluster. Then | F| < (’,::}) with equality only if (| F # 0.

The case d = k follows from a theorem of Chvatal [5] as it was observed by Chen, Liu, and
Wang [4]. Keevash and Mubayi [14] proved Conjecture 1 when both k/n and n/2 — k are bounded
away from zero, and Mubayi and Ramadurai [18] for n > n3(k). The present authors also proved Con-
jecture 1 in 2007 for n > n4(k) with a different approach (unpublished). Recently, Jiang, Pikhurko, and
Yilma [13] proved a more general result concerning the so-called strong simplices.

In Theorem 2, we give a stronger generalization which not only implies Conjecture 1 and all the
above results for sufficiently large n but also gives an explicit structure of the unavoidable subhyper-
graphs.

In our notation, A C B also includes the case that A= B. We write A C B for the case A C B and
A+#B.

1.2. a-Clusters

Let a=(ai,...,ap) be a sequence of positive integers, p > 2, k =aj + --- + ap. An a-partition of a
k-set F is a partition in the form F = A; U---U Ap with |A;| =aq; for 1 <i < p. An a-cluster A with
host Fg is a family of k-sets {Fo, ..., Fp} such that for some a-partition of Fo, Fo N F; = Fg \ A; for
1 <i<p and the sets F; \ Fo are pairwise disjoint. The family A has 2k vertices and it is unique up
to isomorphisms.

Theorem 2. Suppose that k > p > 1, F c (") with | F| > (}~]
n—1

JF contains any a-cluster, a # 1. Moreover, if | F| = (kfl), a-cluster-free, then it consists of all the k-subsets
containing a given element.

) and n is sufficiently large (n > N(k)). Then

Our N(k) is very large, it is double exponential in k. In the proof of Theorem 2, we use the delta-
system method and a complicated version of the stability method developed in [10] by Frankl and
the first author of this paper. Note that the case k=p, ie.,, a=(1,1,...,1), is different as described
in Section 3.2.

1.3. The delta-system method

It is natural to investigate the intersection structure of F. This is exactly where the delta-system
method can be applied.
The intersection structure of F € F with respect to the family F is defined as

I(F,F)={FNF: F eF, F£F}.

If the set F is given, A C F with (F \ A) € Z(F, F), then we use the notation F(A) for a k-set in F
such that F(A)NF =F \ A.
A k-uniform family F C ([ZJ) is k-partite if one can find a partition [n] = X; U --- U X} with

[FNXjl=1forall FeF, 1<i<k. If F is k-partite, then for any set S C [n], its projection IT(S)
is defined as

O(S)={i: SNX;#¥} and [I(Z(F,F))={I1(S): Se€I(F,F)}.



2248 Z. Fiiredi, L. Ozkahya / Journal of Combinatorial Theory, Series A 118 (2011) 2246-2256

A family {D1, D2, ..., D} is called a delta-system of size s and with center C if D; N Dj = C holds
for all 1 <i < j<s. The delta-system method is described in the following theorem due to the first
author.

Theorem 3. (See [12].) For any positive integers s and k with s > k, there exists a positive constant c(k, s) such
that every family F C ([Z]) contains a subfamily F* C F satisfying

(B1) |F*| = ck, )| F,

(3.2) F*is k-partite,

(3.3) there s a family 7 c 2{1:2-K\ {[k]} such that IT(Z(F, F*)) = J holds for all F € F*,

(3.4) J is closed under intersection (i.e, A, B € J imply ANB € J),

(3.5) every member of Z(F, F*) is the center of a delta-system D of size s formed by members of F* and
containing F, F € D C F*.

We call a family F* homogeneous if F* satisfies (3.2)—(3.5). In this paper, we fix s = 2k in Theo-
rem 3.

Lemma 4. Suppose that 7* C F, where F* is obtained by using Theorem 3 with s = 2k. If G € F*, Gy € F,
MeZ(G1,F*), M C Gyand M NS =@, where |S| <k, then there exists a G3 € F* such that G, NGz =M
and SNG3 =40.

Proof. Let {F}, F},..., F}} C F* be a delta-system centered at M, where F; = Gj. Since the sets
Fj \M,...,Fék \ M are pairwise disjoint, and |G \ M| <k and |S| <k there is an F] avoiding both
(1<i<2k).Then G;NF/=Mand SNF/=0. O

2. Proof of the main theorem
2.1. Rank and shadow of a-cluster-free families

Throughout the proof of Theorem 2, we will be mostly interested in the rank of .7, which is
defined as

r(J7)=min{|A|: AC[k], #Be J, AC B}.

The rank of 7 is k only if 7 = 2K\ {[k]}; otherwise, it is at most k — 1.
From now on, F C (“,: ) is an arbitrary k-family containing no a-cluster, where a= (ai,...,ap) is a

non-increasing sequence with a; > 2. We will show that |F| > (Z:}) implies (| F # ¢ for sufficiently
large n.

Frankl and the first author [9] developed a method while proving a conjecture of Erdds that is
used in [10] to show that a family F C ([Z]) has a common element (") F # ¢) if certain intersection
constraints are fulfilled. Here we revisit that result and modify that proof to obtain a version for
a-cluster-free families.

For the rest of the paper, we let 7* C F be a homogeneous subfamily of F.

Corollary5.Let F = {x1, ..., xx} € F*.Ifr(J) > k—1,thenr(J) = k—1,ie,itisimpossible that (F\ {x;}) €
Z(F,F*) forall1 <i<k.

Proof. Assume, on the contrary, that r(J7) = k. Because 7 is closed under intersection, we have
J = 2K\ {[k]}. Therefore, Z(F,F*) contains all proper subsets of F. Consider an a-partition of
F = (A1,...,Ap). Using Lemma 4 p times with Gy =F, M=F\ A; and S = Uj<,-(Fj \ F) we ob-
tain Fyq,..., Fp € 7* such that, for i € [p], FNF; = F \ {A;} and the sets F; \ F are disjoint. Therefore,
{F1,..., Fp, F} is an a-cluster with host F. O
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We use the notation A,(H) for the £-shadow of the family H, i.e.,
A¢(H):={L: |L|=¢, 3H e H with L C H}.
Lemma 6. F is not too dense, i.e., |Ax_1(G)| > c1(k)|G| for all G C F, where cq (k) := c(k, 2k) from (3.1).

Proof. Apply Theorem 3 to G to obtain a k-partite G* with a homogeneous intersection structure
J c2M e, M(Z(G,G*) =T for all G € G*. Corollary 5 implies that the rank of J is at most
k —1 so each G € G* has a (k — 1)-subset that is not contained by another member of G*. We obtain
|Ak—1(G*)| > |G*|, and hence

|Ak-1(@)| = |Ak=1(6)| = 6% 2 ck.2b)IG1. D (1)
2.2. The intersection structure of rank-(k — 1) subfamilies

For a subset S C F € F, denote the degree of S in F by

degr(S)=|{F: FeF, SCF}|.
A subset of F € F is called an own subset of F, if its degree in F is one.
Lemma 7. Let Fo € F* and {A1, ..., Ap} an a-partition of Fq. Assume that there exists an H € F and i € [p]

such that Fo N H = (Fo \ A;). Suppose Fo \ Aj € Z(Fo, F*) for each j € [p] when j # i. Then there is an
a-cluster in F with host Fy.

Proof. Call H to F;. Use Lemma 4 (p — 1) times to define F; for j e [p]\ {i} with G{ =H, M =
Fo\ Aj € Z(Fo, F*) and S = (F; \ Fo) Uz<j(F€ \ Fo). Note that |S| <k at each step. O

Lemma 7 can be generalized to allow more than one member with properties of H as used in the
proof of Lemma 9.

Lemma 8. Let F = {x1,...,x} € F* Ifr(J) =k — 1, and there are k — 1 (k — 1)-sets in J, say F \ {x;} €
I(F,F*) for2 <i<k, then F\ {x1} is an own subset of F in F. Moreover, in this case

FieF, |FiNF|>k—2 implyx; € F;. (2)

Such an F (and J and F*) is called of type I. Note that we claim that F \ {x;} is an own subset
of F in F, not only in F*.

Proof. Suppose, on the contrary, that there exists an F; € F such that F1 = {y,x2,...,%}, ¥ ¢ F1.
This will enable us to find an a-cluster (with a host F; to be defined later), a contradiction.
Choose a subset M of F such that x; € M and |[M| =k —a; + 1 (< k). Note that (3.4) implies that

{E: ECF, xy e E}CZ(F,F¥). (3)

So M € Z(F, 7*) and by Lemma 4 we can pick another member F, € F* such that FN F, = M and
y ¢ F,. We obtain

FNFi=M\{x1} hence |F;NFi|=k—a;.

Consider an a-partition of F, such that Ay = F, \ Fq, i.e. F1 = F2(Aq7). Since F» € F* and F* is
homogeneous, by (3) and (3.3) of Theorem 3, we have

{E: EC Fa, X1 € E} CZ(Fa, 7¥).

Therefore, F, \ Aj € Z(Fp, F*) for 2 <i < p and we obtain an a-cluster by Lemma 7, a contradiction.
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The proof of (2) when |F; N F| =k — 2, assuming X1, X, ¢ F1, is similar and we omit the details.
To prove this case, one needs to follow the same steps assuming that x1,x; € M and have to choose
M and F; such that M| =k —ay+2 and F, N F; = M\ {x1, X2}, respectively, except in the case a; =2
when we define F =F. O

Lemma9.Ifr(J) = k—1, and there are exactly k —t (k—1)-setsin J with2 <t <k, say F\ {x;} € Z(F, F*)
fort <i<kthen

1 1
2 Gy S TRt

1<igt
These F € F* (and J and F*) are called type IL

Proof. Define a bipartite graph G with partite sets X = {xq,...,x;} and Y = [n] \ F and edges xy for
xe X and y €Y if and only if (F\ {x}) U{y} € F. We claim that the maximum number of independent
edges in this graph, v(G), is at most t — 2. This indeed implies Lemma 9 as follows. By the Kénig-Hall
theorem the size of a minimum vertex cover S of G is at most t — 2. Let |X \ S| = ¢, we have £ > 2
and |SNY| < ¢ —2. Since each vertex v € X \ S has neighbors only in SNY, we have

degr(F\{v})=degc(v)+1<ISNY|+1<e—1.
This yields

1 £ k
Z d F > -1 > k—1
Vot degr(FANTv) ~ £=17 k=

To prove v(G) < t—2 suppose, on the contrary, that there are F; := (F\ {x;}U{y;}) € F for 2 <i <t,
where y;’s are distinct elements outside F. We will see this leads to the existence of an a-cluster. First,
we describe the intersection structure of F in F™* by using repeatedly the fact that Z(F, F*) is closed
under intersection.

Note that

if AC {X41,...,x) then F\AeZ(F, F). (4)

Also, if ACF, |A| <k and

|AN{x1,....x}|>2 then (F\A)eZ(F,F*). (5)

Indeed, the rank of 7 exceeds k — 2, so we have that F\ {x,}, F\ {xy} ¢ Z(F, F*) (1<u < v <t), but
F\ {xy,xy} € Z(F, F*). Also F \ {xy} € Z(F, F*) for t <w < k. Since J is closed under intersection,
we obtain that

F\A= ( N (F\ {xu,xv})> N ( (N (F\ {xw})> e I(F,F%).
Xu,Xy €A, u<v<t XwEA, w>t

In the rest of the proof, we specify how one can build an a-cluster with host F using Lemma 7 if
each A; in an a-partition of F satisfies either one of (4) and (5) or A; = {x;} with 1 < j <k. There are
several cases to consider.

Recall that a; >ap > --- > ap and a; > 2. Define the positive integers i and ¢ as follows.

ap+---+ai1 <t<ar +---+a,
L=t—(ar+---+a1).

Except the last case, the host of the a-cluster is F.
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Case 1: £ > 2. Then ay,...,a; > £ > 2.

Let A1, Az, ..., Ai_1 CX={X1,...,x} and |A;N{x1,..., X} =¢.

Case 2: £=1and a; =1.

By our assumption, there exist F; := (F \ {x;} U {yi}) € F for 2 <i <t, where y;'s are distinct
elements outside F. Let AfUAU---UA;={X1,...,X}, X1 € Aq.

From now on, =1 and a; >2 so i > 2.

Case 3: £=1,a; >2 and a; > 3.

Let AfUAU---UA; D{X1, ..., Xt, Xr+1}, Xe+1 € A1 and ApU---UA;_1 C {X1,...,Xx:}. We have that
[IXNA1l, XN A >2.

Case4: £=1,a>22,a1<2andap=1.Thenay=---=a; =2.
Let AlUAzU”-UAi,]UAp={X],...,Xt}, Ap = {x¢}.
Case 5: 4=1,a1=---=ap=2.

This implies that ¢t is odd, t > 3, and k = 2p is even so t < k. Pick a member Fy from F* such
that Fo = F \ {x¢} U {y} for some y # y,. Choose an a-partition of Fg such that A; = {y, x»}, which
means F = Fo(A1). The other parts are Ay = {x1,x3} and Aj = {Xj_»,%j_1} for 3 < j < p. By (3.3)
of Theorem 3, the intersection structure Z(Fo, F*) is isomorphic to Z(F, F*) so (4) and (5) imply that
F\AjeZ(Fp, F*) for 2< j < p. Then Lemma 7 implies that there is an a-cluster with host Fo. O

2.3. Type I dominates, a partition of F

Apply Theorem 3 to F to obtain G; := (F)* with the intersection structure 7; C 2. Then we
apply Theorem 3 again to F \ G; to obtain G» = (F \ G1)* and 7>, then apply to F\ (G UG>) and so
on, until either 7\ (G1U---UGy) =0 or 1(Jm+1) < k — 2 for some m. Let F; be the union of those
Gi's, where 7; contains exactly k — 1 (k — 1)-sets (type I families) and let , be the union of the rest
of these families (type II families)

Fy = U{gj: r(Jj) =k — 1, but 7j does not contain exactly (k — 1) (k — 1)-sets}.
j
Finally, let
F3:=F\(G1U---UGn) =F\ (F1UF).

Lemma 10.If F C ([Z]) is a-cluster-free with | F| > (Z:}) then
|F2| + [F3] < L( " ) + (k- 1)<n B 1) <c(ln*=2,
c1(k) \k—2 k—2
where cq (k) := c(k, 2k) from (3.1).

Proof. Since the rank of Jp41 is at most k — 2, each member of G, 1 has its own (k — 2)-subset in
GOm+1. We obtain as in (1) that

c(k, 2k)| F\ (G1U -+ UGn)| < |Gmt1] < |Ak—2(Gmt1)| < (kfz)

therefore we can write

k sl < k n
k=13 S k—Damk \k=2)

Lemma 8 implies that every F € F; contains an own (k — 1)-set. This and Lemma 9 give
k 1 n
|f1|+—|fz|<Z(Zi)zmkq(mg( )
k—1 Py AN degz(F \ {v}) k—1

Compare the sum of the above two inequalities to (Zj) < |F1| + | F2| + | F3]. A simple calculation
completes the proof. O
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2.4. Another partition, the stability of the extremum

For every F € Fp there exists a type I family G; C F, F € G;. By the definition of type I family,
there exists a (unique) ¢ := £(F) such that {E: ¢ € E C F} C Z(F, G;). Classify the members F € F;
according to ¢(F), let H; :={F € F1: £(F) =i}, i € [n]. Let

Hi:={H\{i}: HeH;}.

These families are pairwise disjoint, Hi N 7:lj = (}. The shadows A,<_2(7:l,-) are pairwise disjoint, too.
Otherwise, for a set H € Ag_p(H;) N Ak_z(ﬂj), i# j, (2) implies that H' = H U {i, j} € H; N"H; con-
tradicting with the uniqueness of ¢(H’).

Given a positive integer d and real x define (}) as x(x —1)---(x —d + 1)/d!. We will need the
following version of the Kruskal-Katona theorem due to Lovasz.

Theorem 11. (See [15].) Suppose that H C () and |H| = (), x > d. Then |Ap(H)| > (}) holds for all d >
h> 0.

In case of H; # @ let x; be a real number such that x; > k — 1 and \7:[1| = (k’fl). Without loss of
generality, let x; be the maximal one, i.e. n — 1 > x; > x;. We obtain for all i € [n] that

(k 1)
(k )

We assume that |F| > (’,::}) Then Lemma 10 gives a lower bound for || =Y [H;l,

n—1 k+2 Xx1—k+2/( n
(k—l) <)Ml <Z|Ak 2(H)|> < (k_z).

ie[n] ie[n]

I<+2 k—H

IHil = |Hi| < 7= —

| A2 (Hi)| < | Ak2(Hi)| < | A2 (Hi). (6)

This inequality implies that x; > n — c3 for some constant c3 = c3(k). Therefore there exists a constant
¢4 :=c4(k) such that

L - n n—cs k—2
2 |H1|— E |Hl|<(k—]>_<lc—1)<C4n .
2<igk 2<i<k

This and Lemma 10 lead to

|7\ H1l < (c2 + ca)n*” (7)

Note that (with minor modifications) the arguments in the above two sections lead to the follow-
ing stability result.

Theorem 12. For every & > 0 there exists a § > 0 and no = no (k, &) such that the following holds. If F c (')
contains no a-cluster and |F| > (1 — 8)(k_1), n > ng, then there exists an element v € [n] such that all but at
most e(ﬁ:}) members of F contains v.

2.5. The extremal family is unique, the end of the proof

In this section we complete the proof of Theorem 2. We have given a family F C (["]) containing

no a-cluster and of size |F| > (k 1) In previous sections we have already defined H; C F1, 2, and
JF3 and showed in (7) that H; constitutes the bulk of F. One can see (as we have seen in Lemma 8)
that

FeF, HeHy, |FNH|>k—a; imply1eF. (8)
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Let us split F into four subfamilies

B={B:1¢B¢cF},
c={C:1eCeFand|CNB|>k—ay for some B € B},
D={D:1eDeF\Candevery Swith1eSCD

is a center of some delta-system of F of size 2k},
E={E:1€EeF}\(CUD).

We have H1 € D. In (16), (17) and (20) we will prove that for sufficiently large n with respect to k,
one has

n—1 n—1 n—1
D] +415] < </<_ 1), DI +4iC] < <:<_ 1), D] +41€] < (k_ 1>. (9)

By adding these three, we have

n—1
3IFI+ (1Bl + 11+ 1€ <3(, 4
implying B=C =& =¢. Thus ¥ =D, (| F # @, and we are done.
Before starting the proof of (9), let us define the following subfamilies:

C:={Cc\{1: Cec}, D:={D\{1}: DeD}, E:={E\{1}: Ec&}. (10)

We also apply Theorem 3 with c1(k) :=c(k,s) and s =2k to C and € to obtain (k — 1)-partite
subfamilies C* C C and £* C £. By (3.1), we have

|c*| = c1®ICl=c1®IC] and [£*| > c1(®)|E] = c1(R)IE]. (11)

Since each member of D has (k — 1) subsets of size k — 2 and every (k — 2)-set is contained in
at most (n — k + 1) members of D we have that (n — k + 1)|Ar_2(D)| > (k — 1)|D|. Rearranging and
using |D| = |D| we obtain

n—k+1

1 [ D) 21D, (12)

Subfamily B. By definition of D and Lemma 8, we have [D N B|#k—2 for all D € D and B € B. In
other words, Ax_>(D) N Ax_2(B) = . Hence,

k—2
Multiplying (14) with (n —k+1)/(k — 1) and using (12), we obtain

n—1 -
> | Ak—2(D)| + | Ak—2(B)|.
n—1 n—k+1
> |D —— A2 (B)]|. 13
(21) 2P+ e ) (13)
Let x >k — 1 be a real number such that [Ag_;(B)| = (,*,). By Theorem 11, we have

a2 B> 1 |a L ®)]. (14)
X—k+2
By Lemma 6,

|Ak-1(B)| = c1(k)|BI. (15)
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Then (13)-(15) yield
n—1 n—k+1
> |D| +c1(k) ————=1B]. 16
(k_]>/| +erlo,— 18 (16)

Since B is contained in F \ H; inequality (7) gives
X
(k ]> = | A1 (B)| <kIBI < k(ca + cq)n* 2

implying that x < csn®~2/®=1 for some constant cs. Therefore, the coefficient of || in (16) is at
least 4 for sufficiently large n.

Subfamily C. We denote the homogeneous intersection structure of C by Jc.

Claim 13. Each C’' € C* has a (k — 2)-set such that it is contained neither in Ak,z(f)) norin Z(C’,C*).

Proof. Suppose, on the contrary, that for some C’ = {x1, ..., X1} € C* with C =C'U{1} € C, we have
[, D), i=1,....r,
c/\{xi}e{ (©.D), =11
[, e, i=r+1,... k-1

All subsets of C’\ {x;} are contained in Z(C’, D), for 1 <i<r, and all supersets of the set {x1,..., %}
in C’/, except C’ itself, are contained in Z(C’,C*). So, for all S C C’, there is a delta-system of size 2k
with center S U {1}.

We claim that r > 1. Otherwise J¢ = 2¥~11\ {[k — 1]} and there exists a member C” € C such that
C”"\{1} €C* and |C" N B| =k —a;y for some B € B. Then one can build an a-cluster with host C” such
that C”(A1) =B.

Let D; € D such that CND; =C\ {x;}, fori=1,...,r and choose a B € B with |[CNB| >k —ay. By
definition of D,

|IDiNB|<k—aj; —1.
We also have
IDiNB|+1>|C'NB|=|CNB|>k—a.

Therefore, x; e CNB foralli=1,...,r and |C N B| =k —ay and one can build an a-cluster with host
C and C(A1) = B, a contradiction. O

By Claim 13, we have

n—1 ~ "
Lo ) = B2 D) +c7].

Multiplying this by % and applying (11) and (12) we obtain
n—1 n—k+1
> |D| + c1(k)————|C|. 17
(k—l) DI+ 1) ———Ic (17)

Subfamily £.  First we show that each E' € £* has a (k — 2)-subset that is neither in Z(E’, £*) nor in
Z(E’, D). Suppose, on the contrary, that for some E € £, E' :=E\ {1} € £*, E' = {x1,..., X1} such
that

I(E, D), i=1,...,r,

E/\{xi}e{ . (18)
I(E'EY, i=r+1,...,k—1.



Z. Fiiredi, L. Ozkahya / Journal of Combinatorial Theory, Series A 118 (2011) 2246-2256 2255

All subsets of E”\ {x;} are contained in Z(E’, @), for 1 <i<r, and all supersets of the set {x1,...,X;}
in E’, except E’ itself, are contained in Z(E’, £*). So, for all S C E’, there is a delta-system of size 2k
with center S U {1}. This contradicts to E ¢ D. _

Since every E’ € £* contains a (k — 2)-set that is not contained in any member of D or another
member of £*, we have

n—1 -
> [Ak—2(D)] + [€7. (19)
k—2
After multiplying (19) with ”;EJ{] and applying the inequalities (11) and (12), we obtain
n—1 n—k+1
> |D| + c1 (k) ——————€]. 20
(k—l) D1+ 10— —— €] (20)

3. Concluding remarks
3.1. Finding a (k, k + 1)-cluster

Our first observation is, that in Conjecture 1 the constraint d < k is not necessary. We prove the
case d =k + 1. It is not clear what is the possible maximum value of d. We need a classical result of
Bollobas [3]. A cross-intersecting set system, {A;, B;} for i € [m], is a collection of pairs of sets such that
AiNB;j=%¥ and AjNB;#® for i # j. If |A;] <a and |B;| <b (for all 1 <i<m) then

b
m< (“ - )
a
Equality holds only if {A,..., An} = ([aﬁb]) and B; =[a+b]\ A;.

';hr;o]l;emwm. IfFcC ([',:]) contains no (k, k + 1)-cluster and n > k, then | F| < (Z:}) Here equality holds only
if O F % 0.

Proof. Every F € F has a (k — 1)-subset B(F) C F that is not contained by any other member of F,

otherwise there are sets Fq, ..., Fx € F such that F ={xq,...,x,} and FNF; = F\ {x;}, a contradiction.

Therefore, the sets {B(F), [n]— F} form an intersecting set pair system and the result of Bollobas yields
(k—1)+(n—k)\ _ m—1

IFI< (") =G)- o

3.2. Trees in hypergraphs, Kalai’s conjecture

A system of k-sets T :={Eq, E, ..., Eq} is called a tree (k-tree) if for every 2 <i < q we have
|E; \ Uj<,- Ejl =1, and there exists an a = (i) < i such that |[Eq N E;j| =k — 1. The case k =2 cor-
responds to the usual trees in graphs. Let T be a k-tree on v vertices, and let ex,(n, T) denote the
maximum size of a k-family on n elements without T. We have

v—k( n
exy(n, T) > (1+4+o0(1))— . 21
> (1+om) () ey
Indeed, consider a P(n,v — 1,k — 1) packing P1, ..., P; on the vertex set [n]. This means that |P;| =
v—1and [P;NPj|<k—1for 1<i< j<m. Rodl's [21] theorem gives a packing of the size m =

1+ 0(1))(,£1)/(,‘2:}), when n — oo. Put a complete k-hypergraph into each P;, the obtained k-graph

does not contain T.

Conjecture 15. (Erdés and Sés for graphs, Kalai 1984 for all k, see in [10].)

v—k( n
T < —— .
ex(n. ) < — </<—1>



2256 Z. Fiiredi, L. Ozkahya / Journal of Combinatorial Theory, Series A 118 (2011) 2246-2256

This was proved for star-shaped trees by Frankl and the first author [10], i.e., whenever T contains
an edge which intersects all other edges in k — 1 vertices. (For k =2 these are the diameter 3 trees,
i.e,, ‘brooms’.)

Note that a 1-cluster is a k-tree with v = 2k, here 1:=(1,1,...,1). A Steiner system S(n,k,t) is
a perfect packing, a family of k-subsets of [n] such that each t-subset of [n] is contained in a unique
member of that family. So if an S(n,2k — 1,k — 1) exists then construction (21) gives a cluster-free
k-family of size (,",), slightly exceeding the EKR bound. (Such designs exist, e.g., for k=3 and n=1
or 5 (mod 20), see [2].) On the other hand, the result of Frankl and the first author [10] (cited above)
implies that if F C ([Z]) is a family with more than (,",) members, then F contains every star-shaped
tree with k 4+ 1 edges, especially it contains a 1-cluster.

3.3. Traces

Theorem 2 is related to the trace problem of uniform hypergraphs. Given a hypergraph H, its trace
on S C V(H) is defined as the set {ENS: E € £(H)}. Let Tr(n,r, k) denote the maximum number
of edges in an r-uniform hypergraph of order n and not admitting the power set 2/ as a trace. For

k <r <n, the bound Tr(n,r, k) < (kfl) was proved by Frankl and Pach [11]. Mubayi and Zhao [20]

slightly reduced this upper bound by log,n — k!k* in the case when k — 1 is a power of the prime p

and n is large. On the other hand, Ahlswede and Khachatrian [1] showed Tr(n, k, k) > (’,Zj) + (Z:g)
for n > 2k > 6.
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