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On 14-Cycle-Free Subgraphs of the Hypercube
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It is shown that the size of a subgraph of Qn without a cycle of length 14 is of order

o(|E(Qn)|).

1. Subgraphs of the hypercube with no C4 or C6

For given two graphs, Q and P , let ex(Q, P ) denote the generalized Turán number , i.e., the

maximum number of edges in a P -free subgraph of Q. The n-dimensional hypercube, Qn,

is the graph with vertex set {0, 1}n and edges assigned between pairs differing in exactly

one coordinate. Let e(G) = |E(G)| be the size of the graph G. We use N(G, P ) for the

number of subgraphs of G that are isomorphic to P .

Erdős [9] conjectured that ex(Qn, C4) = ( 1
2

+ o(1))e(Qn). The best upper bound, (0.6226 +

o(1))e(Qn), is due to Thomason and Wagner [17], while Brass, Harborth and Nienborg [6]

showed 1
2
(n +

√
n)2n−1 � ex(Qn, C4), when n is a positive integer power of 4, and 1

2
(n +

0.9
√
n)2n−1 � ex(Qn, C4) for all n � 9.

Monotonocity implies that the limit c� := limn→∞ ex(Qn, C�)/e(Qn) exists. It is known

that 1/3 � c6 < 0.3941 (Conder [8] and Lu [14], respectively), c4k = 0 for any integer

k � 2 (Chung [7]), and c4k+2 � 1/
√

2 for k � 1 (Axenovich and Martin [3]).

Theorem 1.1. If G is a subgraph of Qn containing no cycle of length 14, then

e(G) = O(n6/72n).

Hence e(G) = o(e(Qn)), i.e., c14 = 0.
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In fact, our proof gives ex(Qn,Θ14) = O(n6/72n), where Θ14 is the 14-cycle with a

longest diagonal. Further related hypercube results can be found, e.g., in Alon et al. [1, 2],

Bialostocki [4], Kostochka [13], Johnson and Entringer [12], Harborth and Nienborg [11],

Offner [15] and Schelp and Thomason [16].

2. The density of a C14-free subgraph of Qn is 0

2.1. Subgraphs with large girth

Lemma 2.1. Let G be a subgraph of Qn. Then there is a subgraph G8 ⊂ G with girth at

least 8 such that e(G8) � (1/3)e(G).

Proof. By a theorem of Conder [8], there is a C4, C6-free subgraph H of Qn with at least

(1/3)e(Qn) edges. Then there is a permutation π ∈ Aut(Qn) such that

|E(π(H)) ∩ E(G)| � 1

|Aut(Qn)|
∑

ρ∈Aut(Qn)

|E(ρ(H)) ∩ E(G)| =
e(H)

e(Qn)
e(G) � 1

3
e(G).

2.2. The intersection structure of C8s

Lemma 2.2. Let G be a subgraph of the hypercube with no C4, C6 or C14. Let C ′ and C ′′

be two 8-cycles of G with a common edge. Then E(C ′) ∩ E(C ′′) forms a path of length 2, 3,

or 4.

Proof. There are two vertices u and v dividing C ′ into two paths of lengths a and b and a

path P ⊂ C ′′ of length c such that V (C ′) ∩ V (P ) = {u, v}, a, b, c � 1, a + b = 8, a � 4 � b.

The condition on the girth of G implies c + b � 8, hence c � a � 4. Thus C ′′ can possess

only one such path P , we have C ′′ ⊂ C ∪ P , and E(C ′) ∩ E(C ′′) is a path of length b. If

b = 1, then the symmetric difference of C ′ and C ′′ is a cycle of length 14, a contradiction.

Let C8(G) or just C denote the set of 8-cycles in the graph G. C[e] and C[e, f] denote

the set of 8-cycles containing the edge e, or containing the edges e and f, respectively. We

have the following obvious corollary of Lemma 2.2.

Lemma 2.3. Let G be a subgraph of the hypercube with no C4, C6 or C14. Let C be an

8-cycle of G with three consecutive edges e, f and g. Then C[f] = C[e, f] ∪ C[f, g].

2.3. An upper bound on N(G,C8)

There is a partition of E(Qn) into n matchings Mi, i ∈ [n], which we call directions , where

Mi is formed of the edges with endpoints differing in the ith coordinate. In every 8-cycle C

in Qn each direction must occur an even number of times, so C has at most 4 directions,

and C is contained in a (unique) 4- or 3-dimensional subcube. Since N(Q3, C8) = 6 and

the number of 4-dimensional 8-cycles in Q4 is 648, we obtain that

N(Qn, C8) = 648

(
n

4

)
2n−4 + 6

(
n

3

)
2n−3.
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This easily implies that, for any two edges e and f of Qn sharing a vertex,

|C8(Qn)[e, f]| = (27/8)(n − 2)(n − 3) + (1/4)(n − 2) = O(n2). (2.1)

Lemma 2.4. Let G be a subgraph of Qn with no C4, C6 or C14. Then the number of C8s in

G is at most O(n2) × e(G).

Proof. It is sufficient to prove that |C[f]| = O(n2) for each edge f ∈ E(G). Let C be an

8-cycle of G containing f and let e, f and g be the three consecutive edges of C . Then

Lemma 2.3 and (2.1) complete the proof.

2.4. A lower bound on the number of C4s

Lemma 2.5. Let H be a graph with e edges and n vertices. Then

N(H,C4) � 2
e3(e − n)

n4
− e2

2n
� 2

e4

n4
− 3

4
en. (2.2)

Proof. This result goes back to Erdős (1962) and was published, e.g., in Erdős and

Simonovits [10] in an asymptotic form. As we use it for arbitrary n and e, we revisit

the proof. Denote the average degree of H by d = 2e/n and the number of x, y-paths of

length two by d(x, y) and let d be its average. We have

d =

(
n

2

)−1 ∑
x,y∈V (H)

d(x, y) =

(
n

2

)−1 ∑
x∈V (H)

(
deg(x)

2

)
�

(
n

2

)−1

n

(
d

2

)
. (2.3)

Therefore, d � 2e(2e−n)
n2(n−1)

. Moreover,

N(H,C4) =
1

2

∑
x,y∈V (H)

(
d(x, y)

2

)
� 1

2

(
n

2

)(
d

2

)
. (2.4)

We may suppose that the middle term in (2.2) is positive, which implies that

2e(2e − n)

n2(n − 1)
� 1/2.

The paraboloid
(
x
2

)
is increasing for x � 1/2. So we may substitute the lower bound of d

from (2.3) into (2.4) and a little algebra gives (2.2).

2.5. A lower bound on the number of C8s

For a graph G ⊂ Qn, we define a graph Hx = Hx(G) for each vertex x ∈ Qn as it was used

by Chung in [7]. The vertex set of Hx consists of the n neighbours of x in Qn. Consider

two vertices y and z in Hx; there is a unique 4-cycle C containing x, y and z in Qn, say

C = yxzw, w = w(y, z). (As vectors, w = y + z − x.) If wz and wy ∈ E(G) then we put an

edge yz in Hx. Every ywz path in G generates an edge in Hx, so we have

∑
x∈V (Qn)

e(Hx) =
∑

w∈V (Qn)

(
degG(w)

2

)
.
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This implies

h �
(
d

2

)
, (2.5)

where h :=
∑

x e(Hx)/2
n, and d := 2e(G)/2n.

A cycle C�, V (C�) = {y1, y2, . . . , y�}, � � 3, in Hx corresponds to a cycle y1, w(y1, y2), y2,

w(y2, y3), . . . , w(y�, y1) of length 2� in G. We have

N(G,C8) �
∑

x∈V (Qn)

N(Hx, C4).

By applying Lemma 2.5 and convexity, we get

N(G,C8) �
∑

x∈V (Qn)

(
2
e(Hx)

4

n4
− 3

4
e(Hx)n

)
� 2n+1 1

n4
h

4 − O(nh2n). (2.6)

The inequality (2.5) and monotonicity in (2.6) give

N(G,C8) � 2n+1 1

n4

(
d

2

)4

− O(nd
2
2n). (2.7)

2.6. The end of the proof of Theorem 1.1

Let G be a C14-free subgraph of Qn of girth at least 8 and let d be its average degree.

Compare (2.7) to the upper bound from Lemma 2.4, O(n2d2n) � N(G,C8). Therefore,

d(G) = O(n6/7) and e(G) = o(e(Qn)). By Lemma 2.1, we get three times this upper

bound for d(G) for an arbitrary C14-free subgraph of Qn, completing the proof of the

theorem.
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